Zbigniew Szkutnik

# UNFOLDING SPHERES SIZE DISTRIBUTION <br> FROM LINEAR SECTIONS WITH $B$-SPLINES AND EMDS ALGORITHM 


#### Abstract

The stereological problem of unfolding spheres size distribution from linear sections is formulated as a problem of inverse estimation of a Poisson process intensity function. A singular value expansion of the corresponding integral operator is given. The theory of recently proposed B-spline sieved quasi-maximum likelihood estimators is modified to make it applicable to the current problem. Strong $L^{2}$-consistency is proved and convergence rates are given. The estimators are implemented with the recently proposed EMDS algorithm. Promising performance of this new methodology in finite samples is illustrated with a numerical example. Data grouping effects are also discussed.


Keywords: inverse problem, singular value expansion, stereology, discretization, quasi-maximum likelihood estimator.

Mathematics Subject Classification: 62G05, 45Q05.

## 1. THE UNFOLDING PROBLEM

A population of spheres embedded in a medium is modeled with a Poisson process $\Psi_{1}$ of points $(x, y, z, R)$ in $\mathbb{R}^{3} \times(0, \infty)$. The centers $(x, y, z)$ of the spheres form a homogeneous Poisson process in $\mathbb{R}^{3}$ with the expected number of $c$ points per unit volume. The random spheres radii $R$ have a distribution $Q$, independent of the center. The mean measure of $\Psi_{1}$ is thus $\nu_{1}=c \cdot \lambda_{3} \otimes Q$. (Here and in what follows $\lambda_{k}$ stands for the Lebesgue measure in $\mathbb{R}^{k}$.)

The spheres cannot be observed directly. Instead, a random linear section through the medium is observed, i.e., for a randomly selected straight line, one observes the line segments that are intersections of the line with the spheres. Our derivation of the folding operator is similar to that given in [5], pp. 47-48, for a related Wicksell's problem. Without loss of generality, assume that the straight line is the $z$-axis. For $D=\left\{(x, y, z, R): x^{2}+y^{2} \leq R^{2}\right\}$, denote by $\Psi_{2}(\cdot):=\Psi_{1}(\cdot \cap D)$ the truncation of
$\Psi_{1}$ to those spheres that are intersected by the $z$-axis. $\Psi_{2}$ is again a Poisson process with the mean measure $\nu_{2}(\cdot)=\nu_{1}(\cdot \cap D)$; see, e.g., [5], p. 8 .

Let $\Phi$ be the point process of the observed linear sections, i.e., the point process in $\mathbb{R}^{2}$ with points $(z, r)$ that represent the centers $z$ and radii $r$ of the observed line segments (one-dimensional balls). The points of $\Phi$ are thus obtained from the points of $\Psi_{2}$ through the transformation $h(x, y, z, R)=\left(z, \sqrt{R^{2}-x^{2}-y^{2}}\right)$. Therefore, $\Phi$ is a Poisson process with the mean measure $\nu_{\Phi}(\cdot)=\nu_{2}\left[h^{-1}(\cdot)\right]$; see, e.g., [5], p. 13. For any Borel set $B \subset \mathbb{R}$ and $t>0$, one obtains

$$
\begin{aligned}
\nu_{\Phi}(B \times[0, t]) & =\nu_{2}\left(\left\{(x, y, z, R): z \in B, \sqrt{R^{2}-x^{2}-y^{2}} \leq t\right\}\right)= \\
& =\nu_{1}\left(\left\{(x, y, z, R): z \in B, \sqrt{R^{2}-x^{2}-y^{2}} \leq t, x^{2}+y^{2} \leq R^{2}\right\}\right)= \\
& =c \cdot \lambda_{1}(B) \cdot\left(\lambda_{2} \otimes Q\right)\left(\left\{(x, y, z, R): R^{2}-t^{2} \leq x^{2}+y^{2} \leq R^{2}\right\}\right)= \\
& =c \cdot \lambda_{1}(B) \cdot \pi \int_{0}^{\infty}\left[R^{2}-\max \left\{0, R^{2}-t^{2}\right\}\right] \mathrm{d} Q(R) .
\end{aligned}
$$

Noting that

$$
R^{2}-\max \left\{0, R^{2}-t^{2}\right\}=\int_{0}^{t} \mathbf{1}_{[0, R]}(r) \cdot 2 r \mathrm{~d} r
$$

one gets, changing the order of integration,

$$
\begin{aligned}
\nu_{\Phi}(B \times[0, t]) & =\pi c \lambda_{1}(B) \int_{0}^{\infty} \int_{0}^{t} \mathbf{1}_{[0, R]}(r) \cdot 2 r \mathrm{~d} r \mathrm{~d} Q(R)= \\
& =\pi c \lambda_{1}(B) \int_{0}^{t}\left[2 r \int_{r}^{\infty} \mathrm{d} Q(R)\right] \mathrm{d} r .
\end{aligned}
$$

This means that, if $B$ is the observed portion of the linear section through the medium, then the intensity function of the Poisson process on $[0, \infty)$ of the radii of observed sections has an intensity function of the form $2 \pi c \lambda_{1}(B) r \int_{r}^{\infty} \mathrm{d} Q(R)$ with respect to $\lambda_{1}$. Assume that there is an upper bound, say 1 , for $R$ and that $Q \ll \lambda_{1}$ with $\mathrm{d} Q / \mathrm{d} \lambda_{1}=q$. Denote $c q$ with $f$ and the 'size of the experiment' $\pi \lambda_{1}(B)$ with $t$. One then observes a Poisson process of radii of sections with an intensity function $t \cdot g(r)$, where

$$
\begin{equation*}
g(r)=2 r \int_{r}^{1} f(R) \mathrm{d} R \tag{1}
\end{equation*}
$$

and the final goal is to unfold $f$. Notice that the definition of the 'size of the experiment' is quite natural: $t$ equals the volume of the cylinder to which the centers of the intersected balls must belong. Also notice that the function $f$ to be unfolded does not have to be a probability density. This means that both the shape of the distribution and the intensity $c$ have to be estimated.

Equations equivalent to (1) were first derived by Spektor ([7]) and Lord and Willis ([4]) as models of some measurements in material sciences. For an application in metallurgy, see, e.g., [1]. The problem, called in the sequel the SLW problem, was also discussed in [8], p. 296-299, along with traditionally used algorithms based on
various discretizations of equation (1), and the (rather discouraging) performance of the algorithms was illustrated with a numerical example. Since then, to the best of our knowledge, there have been no further significant contributions to the problem.

The SLW problem is known to be a rather hard ill-posed inverse problem, essentially harder than the related and better-known Wicksell's stereological problem of unfolding spheres size distribution from planar sections. The solution of (1) takes the form:

$$
f(R)=\frac{1}{2}\left[\frac{g(R)}{R^{2}}-\frac{g^{\prime}(R)}{R}\right]
$$

which explains the statistical difficulty of the problem - inverse estimation of $f$ in $L^{2}(\mathrm{~d} R)$ roughly corresponds to the direct estimation of the intensity $g$ in $L^{2}\left(R^{-4} \mathrm{~d} R\right)$ and of its derivative $g^{\prime}$ in $L^{2}\left(R^{-2} \mathrm{~d} R\right)$.

The aim of this paper is to study the potential of a more formal, alternative approach to the SLW problem - the construction of nonparametric, sieved quasi-maximum likelihood estimators. In Section 2, the difficulty of the SLW problem is quantified with the decay rate of the singular values of the integral operator defined in (1)-the result needed for the analysis of the asymptotics of the estimators. In Section 3, the construction of sieved quasi-maximum likelihood estimators is discussed and general theorems on $L^{2}$-consistency and convergence rates are given and then applied to the SLW problem. A numerical example is given in Section 4. Proofs and some auxiliary results are deferred to the Appendix.

## 2. SINGULAR VALUES AND SINGULAR FUNCTIONS OF THE FOLDING OPERATOR

The kernel $k(y, x)=2 y \mathbf{1}_{\{y<x\}}$ of the operator $(\mathcal{K} f)(y)=\int_{0}^{1} k(y, x) f(x) \mathrm{d} x$ defined by equation (1) is square-integrable in $[0,1]^{2}$, which implies that $\mathcal{K}$, considered as an operator in $L^{2}\left([0,1], \lambda_{1}\right)$, is a Hilbert-Schmidt operator. Consequently, as an inverse of a compact operator, $\mathcal{K}^{-1}$ is not bounded and the unfolding problem is ill-posed in the Hadamard sense. The degree of ill-posedness can be measured with the decay rate of the singular values $\sigma_{i}$ of $\mathcal{K}$, written in the nonincreasing order. It will be shown below that they decay as $i^{-1}$. This shows that the SLW problem is indeed essentially harder than the Wicksell's problem, for which the singular values of the corresponding Abel-type operator are known to decay as $i^{-1 / 2}$, with suitably chosen dominating measures.

The singular values and the right singular functions of $\mathcal{K}$ can be found, respectively, as square roots of the eigenvalues and as the eigenfunctions of the self-adjoint operator $\mathcal{K}^{*} \mathcal{K}$, which is an integral operator of the form

$$
\left(\mathcal{K}^{*} \mathcal{K} f\right)(x)=\frac{4}{3} \int_{0}^{1} \min ^{3}(x, y) f(y) \mathrm{d} y=\frac{4}{3} \int_{0}^{x} y^{3} f(y) \mathrm{d} y+\frac{4}{3} \int_{x}^{1} x^{3} f(y) \mathrm{d} y
$$

Differentiation of the eigenequation $\left(\mathcal{K}^{*} \mathcal{K} f\right)(x)=\eta f(x)$ with respect to $x$ gives

$$
\begin{equation*}
4 x^{2} \int_{x}^{1} f(y) \mathrm{d} y=\eta f^{\prime}(x) \tag{2}
\end{equation*}
$$

Setting $x=0$ in the eigenequation gives $f(0)=0$ and setting $x=1$ in equation (2) gives $f^{\prime}(1)=0$. Division of (2) by $x^{2}$ and another differentiation with respect to $x$ leads to a differential eigenvalue problem

$$
\left\{\begin{array}{l}
x^{2} f^{\prime \prime}-2 x f^{\prime}+\mu x^{4} f=0 \\
f(0)=f^{\prime}(1)=0
\end{array}\right.
$$

with $\mu=4 / \eta$.
The solution of this differential equation takes the form (cf. [3], Part 3, Ch. II, Eq. 2.162(1a)):

$$
f(x)=\left[C_{1} J_{3 / 4}\left(\sqrt{\mu} x^{2} / 2\right)+C_{2} J_{-3 / 4}\left(\sqrt{\mu} x^{2} / 2\right)\right] \cdot x^{3 / 2}
$$

where $J_{\nu}(\cdot)$ denotes rank $\nu$ Bessel function of the first kind, i.e.

$$
\begin{align*}
J_{\nu}(z) & =\frac{z^{\nu}}{2^{\nu} \Gamma(\nu+1)}\left(1-\frac{z^{2}}{2(2 \nu+2)}+\frac{z^{4}}{2 \cdot 4(2 \nu+2)(2 \nu+4)}-\ldots\right)= \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}(z / 2)^{\nu+2 k}}{k!\Gamma(\nu+k+1)} \tag{3}
\end{align*}
$$

Since $J_{\nu}(z) \asymp z^{\nu}$, as $z \rightarrow 0$, one obtains $x^{3 / 2} J_{-3 / 4}\left(\sqrt{\mu} x^{2} / 2\right) \asymp 1$ and $x^{3 / 2} J_{3 / 4}\left(\sqrt{\mu} x^{2} / 2\right) \rightarrow 0$, as $x \rightarrow 0$, and the boundary condition $f(0)=0$ implies that $C_{2}=0$. It is well known (see, e.g., [13], Ch. 17.21) that $\left[z^{\nu} J_{\nu}(z)\right]^{\prime}=z^{\nu} J_{\nu-1}(z)$. Hence, with $F(y):=y^{3 / 4} J_{3 / 4}(y)$, we obtain

$$
f^{\prime}(x)=C_{1}\left(\frac{2}{\sqrt{\mu}}\right)^{3 / 4} \frac{d}{d x} F\left(\sqrt{\mu} x^{2}\right)=C_{1} \sqrt{\mu} x^{5 / 2} J_{-3 / 4}\left(\sqrt{\mu} x^{2} / 2\right)
$$

which implies that $f^{\prime}(1)=0$ if and only if $J_{-1 / 4}(\sqrt{\mu} / 2)=0$.
For $|z| \rightarrow \infty$, one has $J_{\nu}(z)=\sqrt{2 /(\pi z)}[\cos (z-\nu \pi / 2-\pi / 4)+O(1 / z)]$ (see, e.g., [13], Ch. 17.5), so that, for $\mu_{i} \rightarrow \infty$,

$$
J_{-1 / 4}\left(\sqrt{\mu_{i}} / 2\right)=\frac{2}{\pi^{1 / 2} \mu_{i}^{1 / 4}}\left[-\sin \left(\frac{\sqrt{\mu_{i}}}{2}-\frac{5 \pi}{8}\right)+H\left(\mu_{i}\right)\right]
$$

with a function $H(\cdot)$ such that

$$
\begin{equation*}
H\left(\mu_{i}\right)=O\left(1 / \sqrt{\mu_{i}}\right) \tag{4}
\end{equation*}
$$

Hence, $J_{-1 / 4}\left(\sqrt{\mu_{i}} / 2\right)=0$ if

$$
\begin{equation*}
\frac{\sqrt{\mu_{i}}}{2}-\frac{5 \pi}{8}=i \pi+\Delta_{i} \tag{5}
\end{equation*}
$$

with $\Delta_{i} \rightarrow 0$ such that

$$
\begin{equation*}
\sin \left(i \pi+\Delta_{i}\right)=(-1)^{i} \sin \Delta_{i}=H\left(\mu_{i}\right) \tag{6}
\end{equation*}
$$

Then, because of (4), (5) and (6),

$$
\frac{\sqrt{\mu_{i}}}{2}-\frac{5 \pi}{8}=i \pi+\frac{\Delta_{i}}{\sin \Delta_{i}} \sin \Delta_{i}=i \pi+O\left(1 / \sqrt{\mu_{i}}\right)
$$

which implies that $\sqrt{\mu_{i}} \asymp i$ and

$$
\mu_{i}=(5 \pi / 4+2 i \pi)^{2}+O\left(1 / \mu_{i}\right)+O\left(i / \sqrt{\mu_{i}}\right)=(5 \pi / 4+2 i \pi)^{2}+O(1)
$$

Consequently,

$$
\eta_{i}=\frac{4}{\mu_{i}}=\frac{4}{(5 \pi / 4+2 i \pi)^{2}+O(1)} \asymp i^{-2},
$$

i.e., the singular values $\sigma_{i}$ of the SLW operator $\mathcal{K}$ are exactly of the order of $i^{-1}$.

With $z_{i}, i=1,2, \ldots$ denoting the positive zeroes of $J_{-1 / 4}(z)$, the right singular functions are $\phi_{i}(x)=A_{i} x^{3 / 2} J_{3 / 4}\left(z_{i} x^{2}\right)$ and the normalizing constants $A_{i}=$ $2 /\left|J_{3 / 4}\left(z_{i}\right)\right|=2 /\left|J_{-1 / 4}^{\prime}\left(z_{i}\right)\right|$ can easily be computed using the integral formulas given, e.g., in [13], Ch. 17, Ex. 18. Those formulas can also be used to prove directly that $\phi_{i}, i=1,2, \ldots$ indeed form an orthonormal system.

The left singular functions $\psi_{i}(y)=A_{i} y^{3 / 2} J_{-1 / 4}\left(z_{i} y^{2}\right)$ can now be obtained from the equation $\mathcal{K} \phi_{i}=\sigma_{i} \psi_{i}$, using representation (3). Again, integral formulas from [13], Ch.17, Ex. 19 can be used to prove directly that $\psi_{i}, i=1,2, \ldots$ form an orthonormal system.

The calculations are summarized as
Proposition 1. Let $z_{i}, i=1,2, \ldots$ be the positive zeroes of $J_{-1 / 4}(z)$ and let $A_{i}=$ $2 /\left|J_{3 / 4}\left(z_{i}\right)\right|=2 /\left|J_{-1 / 4}^{\prime}\left(z_{i}\right)\right|$. The singular values of the SLW operator, considered as an operator in $L^{2}\left([0,1], \lambda_{1}\right)$, are equal to $\sigma_{i}=z_{i}^{-1} \asymp i^{-1}$ with the corresponding right singular functions $\phi_{i}(x)=A_{i} x^{3 / 2} J_{3 / 4}\left(z_{i} x^{2}\right)$ and left singular functions $\psi_{i}(y)=$ $A_{i} y^{3 / 2} J_{-1 / 4}\left(z_{i} y^{2}\right)$.

## 3. SIEVED QUASI-MAXIMUM LIKELIHOOD ESTIMATORS

As an alternative to the traditional algorithms, described in [8], the SLW problem may be solved with a sieved quasi-maximum likelihood approach. For a general inverse problem, with B-spline sieves in the solution space and with discrete, binned data, this approach was studied in detail in [12]. Following that paper, let [0, 1] $=B_{1} \cup \cdots \cup B_{m}$ be a partition of the data space into disjoint bins. The observed data $\mathbf{n}=\left[n_{1}, \ldots, n_{m}\right]$ consist of the counts $n_{i}$ of the line segments radii observed in the bins $B_{i}$, respectively.

The order $p$, B-spline sieve in the solution space is defined as follows. First, a set of equidistant knots is defined by $x_{k}=k h, k=-p+1,-p+2, \ldots, n$ with $h=1 /(n-p+1)$. Notice that $x_{0}=0$ and $x_{n-p+1}=1$, so that, in total, $2 p-2$ knots are outside the interval $[0,1]$. Then, the order $p$, B -spline sieve is defined as $U_{n}=\operatorname{Span}\left\{u_{j}, j=1, \ldots, n\right\}$, with $u_{j}(x)=Q_{p}\left(\left(x-x_{j-p}\right) / h\right) \mathbf{1}_{[0,1]}(x)$, where

$$
Q_{p}(x)=\frac{1}{(p-1)!} \sum_{i=0}^{p}(-1)^{i}\binom{p}{i}(x-i)_{+}^{p-1} .
$$

$\left\{u_{j}\right\}$ is a basis of the linear space of order $p$ (degree $p-1$ ) splines on $[0,1]$ with $n-p$ internal, equidistant knots of multiplicity one (cf. [6], Theorem 4.9).

The data binning can also be expressed in terms of sieves. Let $v_{i}(y)=\mathbf{1}_{B_{i}}(y), i=$ $1, \ldots, m$ be indicator functions of the bins $B_{i}$. In the observation space one then has a histogram sieve $V_{m}=\operatorname{Span}\left\{v_{i}, i=1, \ldots, m\right\}$. Denote with $\mathcal{P}_{m}^{V}$ and $\mathcal{P}_{n}^{U}$ the $L^{2}\left([0,1], \lambda_{1}\right)$ projections onto $V_{m}$ and $U_{n}$. Discretization replaces the operator $\mathcal{K}$ with a finite-dimensional operator $\mathcal{K}_{m n}=\mathcal{P}_{m}^{V} \mathcal{K} \mathcal{P}_{n}^{U}$.

Define a $m \times n$ matrix $\mathbf{C}=\left[c_{i j}\right]$ with

$$
c_{i j}=\int_{B_{i}} \int_{0}^{1} k(x, y) u_{j}(x) d x d y=\left\langle\mathcal{K} u_{j}, v_{i}\right\rangle
$$

where $\langle\cdot, \cdot\rangle$ denotes the inner product in $L^{2}\left([0,1], \lambda_{1}\right)$. With a parametric set $\Theta_{n} \subset \mathbb{R}^{n}$, one then has a Poisson regression model for $\mathbf{n}$

$$
P_{\mathbf{g}}^{t}(\mathbf{n})=\prod_{i=1}^{m}\left(t g_{i}\right)^{n_{i}}\left(n_{i}!\right)^{-1} e^{-t g_{i}}
$$

with $\mathbf{g}=\left[g_{1}, \ldots, g_{m}\right]^{T}=\mathbf{C} \boldsymbol{\theta}, \boldsymbol{\theta} \in \Theta_{n}$. The vector $\mathbf{g}$ represents the expected counts in the data space bins, and $\boldsymbol{\theta}=\left[\theta_{1}, \ldots, \theta_{n}\right]^{T}$ represents the projection $\mathcal{P}_{n}^{U} f=\sum_{j=1}^{n} \theta_{j} u_{j}$. The vector $\boldsymbol{\theta}$ that corresponds to the true $f$ will be denoted with $\boldsymbol{\theta}^{0}$, and the true vector of intensities with $\mathbf{g}^{0}=\left[g_{1}^{0}, \ldots, g_{m}^{0}\right]^{T}$.

With $\gamma(t) \in(0,1]$ and with $\hat{\boldsymbol{\theta}}=\left[\hat{\theta}_{1}, \ldots, \hat{\theta}_{n}\right]^{T}$, we call

$$
\hat{f}_{t}(x)=\sum_{j=1}^{n} \hat{\theta}_{j} u_{j}(x)
$$

a quasi-maximum likelihood (QML) B-spline sieve estimator of $f$ if

$$
P_{\mathbf{C} \hat{\boldsymbol{\theta}}}^{t}(\mathbf{n}) \geq \gamma(t) \sup _{\boldsymbol{\theta} \in \Theta_{n}} P_{\mathbf{C} \boldsymbol{\theta}}^{t}(\mathbf{n})
$$

As $t$ increases, the discretization indices $n$ and $m$ are increased as well. For simplicity, the dependence of $m$ and $n$ on $t$ is not marked explicitly in the notation. The same holds true for the matrix $\mathbf{C}$ and several other quantities.

It turns out that, due to discretization effects, it is necessary to modify the matrix $\mathbf{C}$ in order to obtain strongly $L^{2}$-consistent estimators. As in [12], let $\mathbf{G}$ be the Gram matrix of the functions $\left\{u_{j}\right\}$ and let $\mathbf{T}:=\operatorname{diag}\left(\lambda_{1}\left(B_{i}\right)\right)$. Write the singular value decomposition $\mathbf{T}^{-1 / 2} \mathbf{C G}^{-1 / 2}=\mathbf{V} \operatorname{diag}\left(s_{i}\right) \mathbf{W}^{T}$, where $\mathbf{V}$ and $\mathbf{W}=\left[\mathbf{w}_{1} \vdots \ldots \vdots \mathbf{w}_{n}\right]$ are matrices with orthonormal columns and $\mathbf{w}_{i}$ denotes the $i$ th column of $\mathbf{W}$. The numbers $s_{1} \geq s_{2} \geq \cdots \geq s_{n}$ are then the singular values of $\mathcal{K}_{m n}$, and they approximate the singular values of $\mathcal{K}$ from below (see [12]). A modified or regularized matrix $\mathbf{C}_{r}$ that replaces $\mathbf{C}$ in the definition of the QML estimators is defined as

$$
\mathbf{C}_{r}=\mathbf{T}^{1 / 2} \mathbf{V} \operatorname{diag}\left(r_{i}\right) \mathbf{W}^{T} \mathbf{G}^{1 / 2}
$$

where

$$
r_{i}=\max \left\{s_{i}, C_{0} n^{-(p-\alpha) / 2}\right\}
$$

and $\alpha<p$ and $C_{0}$ are some positive parameters. Under suitable assumptions, the QML B-spline sieve estimators with the matrix $\mathbf{C}_{r}$ in place of $\mathbf{C}$ may be proved to be strongly $L^{2}$-consistent and the convergence rates can be obtained (Theorems 3 and 4 in [12]). Those results are, however, not directly applicable to the SLW problem, because of a restrictive assumption of all data bins being of the same size, i.e., $\lambda_{1}\left(B_{i}\right)=\lambda_{1}\left(B_{k}\right), i, k=1, \ldots, m$, which is hard to satisfy for the SLW problem together with assumption C2 in Theorem 3 in [12]. Therefore, in this paper, we first generalize Theorems 1, 3 and 4 from [12] to cover also the case of non-uniform data binnings, and only then apply them to the SLW problem.

In the sequel, for a vector $\mathbf{x}=\left[x_{1}, \ldots, x_{n}\right] \in \mathbb{R}^{n},\|\mathbf{x}\|$ stands for its Euclidean norm, $\|\mathbf{x}\|_{1}=\sum_{i}\left|x_{i}\right|$ denotes its $\ell^{1}$-norm and $C$ is used as a generic constant.

With some arbitrary $m \times n$ matrix $\mathbf{A}$, consider a QML estimator $\hat{f}_{t}$, constructed with $\mathbf{A}$ in place of $\mathbf{C}$. Let $\lambda_{\min }\left(\mathbf{A}^{T} \mathbf{A}\right)$ be the minimal eigenvalue of $\mathbf{A}^{T} \mathbf{A}$ and $\lambda_{\max }(\mathbf{G})$ the maximal eigenvalue of $\mathbf{G}$.

Theorem 1. Assume that:
A1. $m \geq n$ and $\log \gamma(t)^{-1}=O(m \log m t)$.
A2. $g_{i}^{0} \asymp m^{-1}$ and $g_{i} \asymp m^{-1}, i=1, \ldots, m$, for $\mathbf{g}=\mathbf{A} \boldsymbol{\theta}, \boldsymbol{\theta} \in \Theta_{n}$.
A3. $m=o(t)$ and $\lambda_{\max }(\mathbf{G}) / \lambda_{\min }\left(\mathbf{A}^{T} \mathbf{A}\right)=O\left(t^{\beta}\right)$ for some $0<\beta<1$.
A4. $\left\|\mathbf{A} \boldsymbol{\theta}^{0}-\mathbf{g}^{0}\right\|_{1}=o\left(m \lambda_{\min }\left(\mathbf{A}^{T} \mathbf{A}\right) / \lambda_{\max }(\mathbf{G})\right)$.
Then, with probability one, $\left\|\hat{f}_{t}-f\right\|_{L^{2}} \rightarrow 0$ as $t \rightarrow \infty$, for all $f$ such that $\boldsymbol{\theta}^{0} \in \Theta_{n}$ for sufficiently large $n$.

Notice that A4 is slightly weaker than the corresponding assumption $\left\|\mathbf{A} \boldsymbol{\theta}^{0}-\mathbf{g}^{0}\right\|=$ $o\left(m^{1 / 2} \lambda_{\min }\left(\mathbf{A}^{T} \mathbf{A}\right) / \lambda_{\max }(\mathbf{G})\right)$ in [12], because $\left\|\mathbf{A} \boldsymbol{\theta}^{0}-\mathbf{g}^{0}\right\|_{1} \leq m^{1 / 2}\left\|\mathbf{A} \boldsymbol{\theta}^{0}-\mathbf{g}^{0}\right\|$. In addition to other advantages discussed in the sequel, this small change allows for a more explicit interpretation of A4, with the minimal bin size involved only (cf. formula (7) in [12], in which the maximal bin size is used as well). To this end, set $\mathbf{A}=\mathbf{C}$, assume that $\min _{i} \lambda_{1}\left(B_{i}\right) \asymp m^{-1}$ and recall that $\lambda_{\min }(\mathbf{G}) \asymp n^{-1}$ and $\lambda_{\max }(\mathbf{G}) \asymp n^{-1}$ ([12], Lemma 2). The first part of Lemma 1 in [12] then gives $m n \lambda_{\min }\left(\mathbf{C}^{T} \mathbf{C}\right) \geq C \lambda_{\min }\left(\mathcal{K}_{m n}^{*} \mathcal{K}_{m n}\right)$. Further,

$$
\begin{align*}
\left\|\mathbf{C} \boldsymbol{\theta}^{0}-\mathbf{g}^{0}\right\|_{1} & =\left\|\mathcal{P}_{m}^{V} \mathcal{K} \mathcal{P}_{n}^{U} f-\mathcal{P}_{m}^{V} \mathcal{K} f\right\|_{L^{1}} \leq\left\|\mathcal{P}_{m}^{V} \mathcal{K} \mathcal{P}_{n}^{U} f-\mathcal{P}_{m}^{V} \mathcal{K} f\right\|_{L^{2}}= \\
& =O\left(\left\|\mathcal{P}_{n}^{U} f-f\right\|_{L^{2}}\right) \tag{7}
\end{align*}
$$

(cf. [9], p.8, and use the Hölder inequality and the boundedness of $\mathcal{P}_{m}^{V}$ and $\mathcal{K}$ ). Consequently, with $\mathbf{A}=\mathbf{C}$ and $\min _{i} \lambda_{1}\left(B_{i}\right) \asymp m^{-1}$, it is sufficient for A4 that $\left\|\mathcal{P}_{n}^{U} f-f\right\|_{L^{2}}=o\left(\lambda_{\min }\left(\mathcal{K}_{m n}^{*} \mathcal{K}_{m n}\right)\right)$, which shows that A4 is indeed a crucial feasibility condition, as discussed in detail in [12].

Assume that

$$
\begin{equation*}
\Theta_{n} \subset\left\{\boldsymbol{\theta} \in \mathbb{R}^{n}: \sum_{i=1}^{n} i^{2 a}\left(\mathbf{w}_{i}^{T} \mathbf{G}^{1 / 2} \boldsymbol{\theta}\right)^{2}<M\right\} \tag{8}
\end{equation*}
$$

with some positive constants $M$ and $a$. Condition (8) may be interpreted as a discrete version of the requirement that the Fourier coefficients of $f$ with respect to right singular functions of $\mathcal{K}$ decay at a certain rate; cf. a related discussion in [12]. The following theorem is a generalized version of Theorem 3 in that paper. The assumption of all data bins being of the same size is replaced with a condition on the smallest bin size only. The largest bin size is allowed to decrease at an arbitrary rate. Moreover, the generalized theorem covers a broader range of the operator regularization parameter $\alpha$.

Denote by $W_{2}^{p}$ the Sobolev space of functions on $[0,1]$ with square integrable $p$-th derivative and let $\|\mathcal{K}\|_{H S}$ be the Hilbert-Schmidt norm.

Theorem 2. Let $\hat{f}_{t}$ be a $Q M L$ order $p$, B-spline sieve estimator of $f$ constructed with the matrix $\mathbf{C}_{r}$ in place of $\mathbf{C}$, with parametric sets satisfying (8) and with data binning such that $C_{1} \leq m \lambda_{1}\left(B_{i}\right) \leq C_{2} m^{\Delta}, i=1, \ldots, m$, with some $C_{1}, C_{2}>0$ and $\Delta \in(0,1)$. Assume that the singular values $\sigma_{i}$ of $\mathcal{K}$ decay as $i^{-b}$ and that:

B1. $m \geq n$ and $\log \gamma(t)^{-1}=O(m \log m t)$.
B2. $g_{i}^{0} \asymp m^{-1}$ and $g_{i} \asymp m^{-1}, i=1, \ldots, m$, for $\mathbf{g}=\mathbf{C} \boldsymbol{\theta}, \boldsymbol{\theta} \in \Theta_{n}$.
B3. $\left\|\mathcal{K}-\mathcal{K}_{m n}\right\|_{H S}=O\left(n^{-r}\right)$ with some $r>0$.
If either ("weak regularization regime")
B4. $0<\alpha<p-2 r, m^{\Delta}=o\left(n^{2 a r / b-(p-\alpha)}\right), m^{\Delta+1}=o\left(n^{2 a r / b+p-\alpha}\right)$ and $m n^{p-\alpha}=$ $O\left(t^{\beta}\right)$ for some $\beta \in(0,1)$,
or ("strong regularization regime")
B4'. $p-2 r \leq \alpha<p, m^{\Delta}=o\left(n^{(p-\alpha)(a-b) / b}\right), m^{\Delta+1}=o\left(n^{(p-\alpha)(a+b) / b}\right)$ and $m n^{p-\alpha}=O\left(t^{\beta}\right)$ for some $\beta \in(0,1)$,
then, with probability one, $\left\|\hat{f}_{t}-f\right\|_{L^{2}} \rightarrow 0$ as $t \rightarrow \infty$, for all $f \in S_{2}^{p}$ such that $\boldsymbol{\theta}^{0} \in \Theta_{n}$ for sufficiently large $n$.

Because $m \geq n$, the weak regularization regime is possible only if

$$
\begin{equation*}
p-\frac{2 a r}{b}-\Delta<\alpha<p-\max \left\{2 r, \Delta+1-\frac{2 a r}{b}\right\} \tag{9}
\end{equation*}
$$

and with

$$
\begin{equation*}
a>\frac{b}{2 r}(\Delta+\max \{2 r, 1 / 2\}), \tag{10}
\end{equation*}
$$

which ensures that (9) gives a non-empty interval for $\alpha$.
Similarly, the strong regularization regime is possible only if

$$
\begin{equation*}
p-2 r \leq \alpha<p-\frac{b}{a+b} \max \left\{\Delta+1, \Delta \frac{a+b}{a-b}\right\} \tag{11}
\end{equation*}
$$

and with

$$
\begin{equation*}
a \geq \frac{b}{2 r} \max \{\Delta+2 r, \Delta-2 r+1\} \tag{12}
\end{equation*}
$$

With $p \leq 2 r$, only the strong regime is possible and $\alpha>0$ provides a lower bound for $\alpha$. In this case, one has a non-empty interval for $\alpha$ only if $a>b(\Delta+p) / p$.

With $\Delta=0$ in the strong regularization regime, one obtains Theorem 3 from [12] as a special case.

For a fixed value of $a$, which implicitly defines the size of the function class to which $f$ may belong, the parameters $\alpha$ and $\beta$ and the discretization rates may be optimized to produce the fastest convergence rates. The following theorem describes the dependence of the convergence rate on the parameter $\alpha$ and allows, in any particular application, to choose $\alpha$ in the optimal way. For simplicity, only the case $m \asymp n$ is covered. It can be shown, however, that $n=o(m)$ does not lead to any improvements. Note that, with $m \asymp n$, the last part of B4 and B4' becomes $m \asymp n \asymp t^{\beta /(p-\alpha+1)}$.

Define the mean integrated square error of $\hat{f}_{t}$ as $\operatorname{MISE}\left(\hat{f}_{t}\right)=\mathrm{E}\left\|\hat{f}_{t}-f\right\|_{L^{2}}^{2}$.
Theorem 3. Under the assumptions of Theorem 2, with $m \asymp n \asymp t^{\beta /(p-\alpha+1)}$ and with any positive $D, \operatorname{MISE}\left(\hat{f}_{t}\right)=O\left(t^{-s} \log t\right)$ as $t \rightarrow \infty$, uniformly for $f \in W_{2}^{p}$ such that $\left\|D^{p} f\right\|_{L^{2}} \leq D$ and $\boldsymbol{\theta}^{0} \in \Theta_{n}$ for sufficiently large $n$.

In the weak regularization regime, $s=1-\beta=\alpha /(p+1)$, if $\alpha \leq 2 r a / b-p-\Delta$ and $s=1-\beta=[2 r a-b \Delta-b(p-\alpha)] /[2 r a-b \Delta+b(p-\alpha)+2 b]$ for larger $\alpha$. In both cases $s$ increases with $\alpha$.

In the strong regularization regime, $s=1-\beta=\alpha /(p+1)$ and $s$ increases with $\alpha$, if $\alpha \leq[p(a-b)-b \Delta] /(a+b)$, and $s=1-\beta=[(p-\alpha)(a-b)-b \Delta] /[(p-\alpha)(a+b)+b(2-\Delta)]$ and $s$ decreases with $\alpha$, for larger values of $\alpha$.

Setting $\Delta=0$ in the strong regularization regime, one obtains Theorem 4 in [12] as a special case.

The first part of assumption B2 essentially means that all data bins should be approximately equally populated, which usually leads to a non-uniform binning in the data space. In the sequel, a special binning will be constructed for the SLW problem, suitable for functions $f$ that are bounded and cut away from zero. For such functions, if $B_{1}=\left[0, y_{1}\right]$ and $B_{i}=\left(y_{i-1}, y_{i}\right], i=2, \ldots, m$ with $y_{m}=1$, one gets

$$
g_{i}^{0}=\int_{B_{i}} \int_{0}^{1} 2 y \mathbf{1}_{\{y<x\}} f(x) d y d x \asymp H\left(y_{i}\right)-H\left(y_{i-1}\right)
$$

with $H(y)=y^{2}(3-2 y)$. Hence, if $b_{i}$ are selected to satisfy $H\left(b_{i}\right)=i / m$, then $g_{i}^{0} \asymp m^{-1}$ for $i=1, \ldots, m$. Notice that $H^{\prime}(y)$ takes its maximal value $3 / 2$ at $y=1 / 2$ and $H^{\prime}(0)=H^{\prime}(1)=0$. This means that the central bins are the smallest ones and $\min _{i} \lambda_{1}\left(B_{i}\right) \asymp m^{-1}$, as postulated in Theorem 2. The size of the largest bins tends, however, to zero at a slower rate $\left(\lambda_{1}\left(B_{1}\right) \asymp m^{-1 / 2}\right)$, which means that $\Delta=1 / 2$ should be set in Theorems 2 and 3 and shows that the work invested in generalizing the theorems was indeed necesary, in order to make them applicable to the SLW problem with functions $f$ bounded and cut away from zero.

It then follows from Lemma 1 (see the Appendix) that, with the special binning defined by $H(\cdot),\left\|\mathcal{K}-\mathcal{K}_{m n}\right\|_{H S}=O\left(n^{-1 / 4}\right)$. In this setup, the properties of $\hat{f}_{t}$ in the SLW problem can be summarized as
Corollary 1. Let a $Q M L$ order $p$, B-spline sieve estimator $\hat{f}_{t}$ for $f$ in the $S L W$ problem be constructed with the matrix $\mathbf{C}_{r}$ in place of $\mathbf{C}$, with data binning defined by the function $H(\cdot)$ and with parametric sets satisfying (8) and such that $0<c \leq$
$\sum_{j=1}^{n} \theta_{j} u_{j}(x) \leq d$ for some constants $c$ and $d$ and for $x \in[0,1]$. Assume that B1 holds true and that $f \in S_{2}^{p}$ is bounded and cut away from zero and such that $\boldsymbol{\theta}^{0} \in \Theta_{n}$ for sufficiently large $n$. Then the best rates are obtained in the strong regularization regime:

1. If $2<a \leq 4 p$, then $\operatorname{MISE}\left(\hat{f}_{t}\right)=O\left(t^{-(a-2) /(a+4)} \log t\right)$, with $m \asymp n \asymp t^{4 /(a+4)}$ and $\alpha=p-1 / 2$.
2. If $a>4 p$, then $\operatorname{MISE}\left(\hat{f}_{t}\right)=O\left(t^{-[p(a-1)-1 / 2] /[(p+1)(a+1)]} \log t\right)$, with $m \asymp n \asymp$ $t^{1 /(p+1)}$ and $\alpha=[p(a-1)-1 / 2] /(a+1)$.

In both cases $\hat{f}_{t}$ is strongly $L^{2}$-consistent.
Whether the rates given in Corollary are minimax is an open question, because no lower bounds for the minimax risk are known for the non-standard class of functions to which $f$ is assumed to belong.

If $f$ might be arbitrarily close to zero or unbounded, the special binning defined through the function $H(\cdot)$ need not, of course, lead to all $g_{i}^{0}$ of the same order. "Approximately equally populated data bins" remains, however, a paradigm in applications to real data sets.

It should be noticed that with uniform data binning one obtains $\left\|\mathcal{K}-\mathcal{K}_{m n}\right\|_{H S}=$ $O\left(n^{-1 / 2}\right)$, which leads to faster convergence rates. With $r=1 / 2$ and $\Delta=0$, the weak regime is possible with $a>1$ and $p-a<\alpha<p-1$, (cf. (9) and (10)), and the strong regime is possible with $a>1$ and $p-1 \leq \alpha<p-1 /(a+1)$, (cf. (11) and (12)). Then, $s=(a-1) /(a+3)$, if $a<2 p+1$, and $s=p(a-1) /[(p+1)(a+1)]$, if $a \geq 2 p+1$, and the rates are again obtained in the strong regime. It is, however, not quite clear how to express any natural conditions on $f$ that may ensure B 2 with the uniform data binning.

Also notice that, for "small" $a$ (or "large" $p$ ), the convergence rates depend neither on the order of the splines, nor on the smoothness of $f$, both expressed in terms of $p$. This may be attributed to discretization effects (cf. a related discussion in [12]) and considered a drawback of the maximum likelihood approach to the analysis of binned data.

## 4. NUMERICAL EXAMPLE

The QML B-spline sieve estimators may be computed by means of the EMDS algorithm, described in detail in [11, 12]. In order to illustrate this approach and to compare its performance with more traditional methods, the SLW problem with data taken from Table 11.3 in [8], p. 298, was solved. The data formed an artificial sample of 1,000 points, grouped in 13 intervals of equal lengths, and were generated from a Rayleigh density. For the present example the range was rescaled to the $(0,1)$ interval. Additionally, to make our results comparable with those in Table 11.3, the unfolded function was normalized to be a probability density function.

In the implementation of the EMDS algorithm, a discrete approximation of the folding operator was needed. Let $B_{i}=\left(b_{i-1}, b_{i}\right], i=1, \ldots, m, b_{0}=0, b_{m}=1$,
be the data bins. For the EMDS implementation, the domain of the solution was also partitioned into a (large) number of subintervals $\left(a_{j-1}, a_{j}\right], j=1, \ldots, s, a_{0}=0$, $a_{s}=1$. The discrete approximation of the operator was then represented by a matrix $\left[\bar{c}_{j i}\right]$, with $\bar{c}_{j i}=2 \int_{b_{j-1}}^{b_{j}} \int_{a_{i-1}}^{a_{j}} y \mathbf{1}_{\{y<x\}}(y) \mathrm{d} x \mathrm{~d} y$, and elementary calculation gave $\bar{c}_{i j}$ in the form:

$$
\begin{array}{ll}
0 & \text { if } a_{i} \leq b_{j-1} \\
\frac{1}{3} a_{i}^{3}+\frac{2}{3} b_{j-1}^{3}-b_{j-1}^{2} a_{i} & \text { if } b_{j-1}<a_{i} \leq b_{j}, a_{i-1} \leq b_{j-1} \\
\frac{1}{3}\left(a_{i}^{3}-a_{i-1}^{3}\right)-b_{j-1}^{2}\left(a_{i}-a_{i-1}\right) & \text { if } b_{j-1}<a_{i} \leq b_{j}, a_{i-1}>b_{j-1} \\
a_{i}\left(b_{j}^{2}-b_{j-1}^{2}\right)-\frac{2}{3}\left(b_{j}^{3}-b_{j-1}^{3}\right) & \text { if } a_{i}>b_{j}, a_{i-1} \leq b_{j-1} \\
\frac{1}{3}\left(b_{j}^{3}-a_{i-1}^{3}\right)-b_{j-1}^{2}\left(b_{j}-a_{i-1}\right) & \\
\quad+\left(a_{i}-b_{j}\right)\left(b_{j}^{2}-b_{j-1}^{2}\right) & \text { if } a_{i}>b_{j}, b_{j-1}<a_{i-1} \leq b j \\
\left(a_{i}-a_{i-1}\right)\left(b_{j}^{2}-b_{j-1}^{2}\right) & \text { if } a_{i-1}>b_{j} .
\end{array}
$$

Figure 1 shows the true function (smooth, solid line), the solution obtained with the EMDS algoritm with a sieve spanned by 13 cubic B-splines (solid, step-like line) and the solution obtained with a two-step algorithm proposed in [1] (dotted line). The latter is based on the last column in Table 11.3 in [8], and was also rescaled to the $(0,1)$ interval.


Fig. 1. True Rayleigh density (solid), the QML estimator (solid, step-like) and the Barthel-Klimanek-Stoyan estimator (dotted). The step-like representation of the QML estimator is due to its implementation via the EMDS algorithm

The parameters used in the EMDS algorithm (cf. [12]) were: $s=100, J=19$, $a=2$ and $e d f=13 . \mathbf{C}_{r}=\mathbf{C}$ was set and the $e d f$ parameter was selected to minimize a GCV-like criterion, as described in [11, 12]. It should be noticed that edf $=13$ means that no so-called projection smoothing was applied.

Although the QML solution is clearly much more accurate than that obtained in [8] with the method of Barthel ([1]), more extensive simulation studies are needed to further investigate the potential of the QML approach to the SLW problem.

## 5. APPENDIX

Proof of Theorem 1. It may be proved (see [9], Corollary to Proposition 1) that, under A1 and A2, for $\epsilon>0$ and $t>6 m$

$$
\mathrm{P}\left(\left\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{0}\right\|>\epsilon\right) \leq F \exp \left[-\left(4 C \epsilon^{2} m \lambda_{\min }\left(\mathbf{A}^{T} \mathbf{A}\right)-O\left(\left\|\mathbf{A} \boldsymbol{\theta}^{0}-\mathbf{g}^{0}\right\|_{1}\right)\right) t\right]
$$

where $F=F(m, t)$ and $\log F=O(m \log m t)$. Using that, a minor modification of the proof to Theorem 1 from [12] gives the thesis.

Proof of Theorem 2. It will be proved that the assumptions of Theorem 1 are satisfied with $\mathbf{A}=\mathbf{C}_{r}$. Using Lemma 1 in [10] and then the Ostrowski theorem, as in [12], notice first that

$$
\begin{aligned}
\lambda_{\min }\left(\mathbf{C}_{r}^{T} \mathbf{C}_{r}\right) & =s_{\min }^{2}\left(\mathbf{C}_{r}\right) \geq C \min _{i} \lambda_{1}\left(B_{i}\right) s_{\min }^{2}\left(\mathbf{V} \operatorname{diag}\left(r_{i}\right) \mathbf{W}^{T} \mathbf{G}^{1 / 2}\right)= \\
& =C m^{-1} \lambda_{\min }\left(\mathbf{G}^{1 / 2} \mathbf{W} \operatorname{diag}\left(r_{i}^{2}\right) \mathbf{W}^{T} \mathbf{G}^{1 / 2}\right) \geq C(m n)^{-1} n^{-(p-\alpha)}
\end{aligned}
$$

where $s_{\min }(\cdot)$ stands for the minimal singular value of a matrix. This gives

$$
\begin{equation*}
m n \lambda_{\min }\left(\mathbf{C}_{r}^{T} \mathbf{C}_{r}\right) \geq C n^{-(p-\alpha)} \tag{13}
\end{equation*}
$$

Assumption A3 takes the form

$$
m=o(t) \text { and } n^{-1}=O\left(t^{\beta} \lambda_{\min }\left(\mathbf{C}_{r}^{T} \mathbf{C}_{r}\right)\right)
$$

which is satisfied, because of (13) and the last part of B4 or B4'.
For A4, using (7) and the approximation rate $n^{-p}$ of functions from $W_{2}^{p}$ with order $p$, B-splines (Theorems 6.27 and 2.59 in [6]), write

$$
\begin{aligned}
\left\|\mathbf{C}_{r} \boldsymbol{\theta}^{0}-\mathbf{g}^{0}\right\|_{1} & \leq\left\|\mathbf{C} \boldsymbol{\theta}^{0}-\mathbf{g}^{0}\right\|_{1}+\left\|\left(\mathbf{C}_{r}-\mathbf{C}\right) \boldsymbol{\theta}^{0}\right\|_{1} \leq \\
& \leq O\left(\left\|\mathcal{P}_{n}^{U} f-f\right\|_{L^{2}}\right)+m^{1 / 2}\left\|\left(\mathbf{C}_{r}-\mathbf{C}\right) \boldsymbol{\theta}^{0}\right\|= \\
& =O\left(n^{-p}\right)+m^{1 / 2}\left\|\left(\mathbf{C}_{r}-\mathbf{C}\right) \boldsymbol{\theta}^{0}\right\|
\end{aligned}
$$

In view of (13), it is then sufficient for A4 that $m^{1 / 2}\left\|\left(\mathbf{C}_{r}-\mathbf{C}\right) \boldsymbol{\theta}^{0}\right\|=o\left(n^{-(p-\alpha)}\right)$. Denote $\delta_{i}=r_{i}-s_{i}$. Then, using the assumption on the data bins size and (8),

$$
m^{1 / 2}\left\|\left(\mathbf{C}_{r}-\mathbf{C}\right) \boldsymbol{\theta}^{0}\right\| \leq C_{2}^{1 / 2} m^{\Delta / 2}\left\|\operatorname{diag}\left(\delta_{i}\right) \mathbf{W}^{T} \mathbf{G}^{1 / 2} \boldsymbol{\theta}^{0}\right\| \leq C m^{\Delta / 2}\left[\max _{1 \leq i \leq n} \frac{\delta_{i}^{2}}{i^{2 a}}\right]^{1 / 2}
$$

and, reasoning as in the proof of Theorem 3 in [12], one obtains that it is sufficient for A4 that $m^{\Delta} n^{p-\alpha-2 a \gamma / b}=o(1)$ with $\gamma=\min \{(p-\alpha) / 2, r\}$, which is clearly satisfied in both weak and strong regularization regime.

In order to show that the second part of A2 holds true with $\mathbf{A}=\mathbf{C}_{r}$ (as needed for an application of Theorem 1) if it is true with $\mathbf{A}=\mathbf{C}$ (as assumed in the second part of B2) notice that

$$
m\left\|\left(\mathbf{C}_{r}-\mathbf{C}\right) \boldsymbol{\theta}\right\| \leq C m^{(\Delta+1) / 2} n^{-(p-\alpha) / 2-a \gamma / b}
$$

and (cf. [12]) it is sufficient to show that $m^{\Delta+1}=o\left(n^{p-\alpha+2 a \gamma / b}\right)$, which is obviously true in both regularization regimes. This completes the proof.
Proof of Theorem 3. Write
$\operatorname{MISE}\left(\hat{f}_{t}\right)=\left\|f-\mathcal{P}_{n}^{U} f\right\|_{L^{2}}^{2}+\mathrm{E}\left\|\hat{f}_{t}-\mathcal{P}_{n}^{U} f\right\|_{L^{2}}^{2}=O\left(n^{-2 p}\right)+\int_{0}^{\infty} \mathrm{P}\left(\left\|\hat{f}_{t}-\mathcal{P}_{n}^{U} f\right\|_{L^{2}}^{2}>x\right) \mathrm{d} x$
and, because $\left\|\hat{f}_{t}-\mathcal{P}_{n}^{U} f\right\|_{L^{2}}^{2} \leq \lambda_{\max }(\mathbf{G})\left\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{0}\right\|^{2} \leq C n^{-1}\left\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{0}\right\|^{2}$ (cf. [12], p. 214 and Lemma 2), one obtains

$$
\begin{aligned}
& \mathrm{P}\left(\left\|\hat{f}_{t}-\mathcal{P}_{n}^{U} f\right\|_{L^{2}}^{2}>x\right) \leq \mathrm{P}\left(\left\|\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{0}\right\|>C(n x)^{1 / 2}\right) \leq \\
& \quad \leq O(m \log m t) \exp \left[-\left(4 C_{1} x n^{-(p-\alpha)}-O\left(m^{1 / 2}\left\|\left(\mathbf{C}_{r}-\mathbf{C}\right) \boldsymbol{\theta}^{0}\right\|+n^{-p}\right)\right) t\right]
\end{aligned}
$$

as in the proofs of Theorems 1 and 2. Further (cf. the proof of Theorem 2 above and of Theorem 3 in [12]),

$$
m^{1 / 2}\left\|\left(\mathbf{C}_{r}-\mathbf{C}\right) \boldsymbol{\theta}^{0}\right\| \leq C m^{\Delta / 2} n^{-[(p-\alpha) / 2+\gamma a / b]}=C n^{-[(p-\alpha) / 2+\gamma a / b-\Delta / 2]}
$$

with $\gamma=\min \{(p-\alpha) / 2, r\}$. Hence,

$$
\begin{equation*}
\mathrm{P}\left(\left\|\hat{f_{t}}-\mathcal{P}_{n}^{U} f\right\|_{L^{2}}^{2}>x\right) \leq \exp \left[-\left(4 C_{1} x n^{-(p-\alpha)}-C_{2} m t^{-1} \log m t-C_{3} n^{-\delta}\right) t\right] \tag{14}
\end{equation*}
$$

and $\delta=\min \{p,(p-\alpha) / 2+r a / b-\Delta / 2\}$ in the weak regularization regime, and $\delta=\min \{p,(p-\alpha)(a+b) /(2 b)-\Delta / 2\}$ in the strong regularization regime.

Consider the strong regime first. If $\alpha \leq[p(a-b)-b \Delta] /(a+b)$, then $\delta=p$ and, reasoning as in the proof of Theorem 4 in [12], one obtains $s=\min \{\alpha \beta /(p-\alpha+$ $1), 1-\beta\}$, which is maximal if $s=1-\beta=\alpha /(p+1)$. If $\alpha>[p(a-b)-b \Delta] /(a+b)$, then $\delta=(p-\alpha)(a+b) /(2 b)-\Delta / 2$ and, reasoning as before, one obtains $s=\min \{1-$ $\beta, \beta[(p-\alpha)(a-b) /(2 b)-\Delta / 2] /(p-\alpha+1)\}$. Balancing the two terms, one obtains the optimal $s$ in the form given in the theorem and it is elementary to check that this optimal $s$ decreases with increasing $\alpha$.

In the weak regularization regime, if $\alpha \leq 2 r a / b-p-\Delta$, then $\delta=p$ and one obtains $s=\alpha /(p+1)$, as in the strong regime. If $\alpha>2 r a / b-p-\Delta$, then $\delta=$ $(p-\alpha) / 2+r a / b-\Delta / 2$ and the last term in the exponent in (14) becomes negligible, if

$$
x>n^{(p-\alpha) / 2-r a / b+\Delta / 2} \log t=t^{-\beta[r a / b-\Delta / 2-(p-\alpha) / 2] /(p-\alpha+1)} \log t
$$

As in [12], this leads to $s=\min \{1-\beta, \beta[r a / b-\Delta / 2-(p-\alpha) / 2] /(p-\alpha+1)\}$ and, after balancing the two terms, to the optimal $s$ in the form given in the theorem. Clearly, the optimal $s$ increases with increasing $\alpha$. This completes the proof.

Proof of Corollary 1. The first part of B2 is, of course, fulfilled with the binning defined through the function $H(\cdot)$. For its second part, write

$$
g_{i}=\sum_{j=1}^{n} c_{i j} \theta_{j}=\int_{B_{i}} \int_{0}^{1} 2 y \mathbf{1}_{\{y<x\}} \sum_{j=1}^{n} \theta_{j} u_{j}(x) \mathrm{d} x \mathrm{~d} y
$$

and notice that this is again of the same order as $H\left(b_{i}\right)-H\left(b_{i-1}\right) \asymp m^{-1}$. With $a>2$, the weak regularization regime is possible with $\max \{0, p-a / 2+1 / 2\}<\alpha<p-1 / 2$, (cf. (9) and (10)), and the strong regime is possible with $p-1 / 2 \leq \alpha<p-3 /[2(a+1)]$, (cf. (11) and (12)). The conclusion then follows from considering two cases, in which [ $p(a-1)-1 / 2] /(a+1)$ does, or does not belong to that interval, respectively.

Lemma 1. Let $\Delta_{x}$ be the mesh size of the set of $x$-knots and $\Delta_{y}=\max _{j}\left(y_{j}-y_{j-1}\right)$ be the size of the largest data bin. Then, $\left\|\mathcal{K}-\mathcal{K}_{m n}\right\|_{H S}^{2}=O\left(\Delta_{x}+\Delta_{y}\right)$ as $m, n \longrightarrow \infty$.
Proof. The degenerated kernel $k_{m n}$ of the finite-dimensional operator $\mathcal{K}_{m n}$ is the orthogonal projection in $L^{2}\left([0,1]^{2}, \lambda_{2}\right)$ of $k(y, x)=2 y \mathbf{1}_{\{y<x\}}$ onto the space spanned by tensor-product splines $u_{j}(x) \mathbf{1}_{B_{i}}(y)$, where $j=1, \ldots, n$ and $i=1, \ldots, m$. With $B_{i}=\left(y_{i-1}, y_{i}\right]$, one obtains

$$
\left\|\mathcal{K}-\mathcal{K}_{m n}\right\|_{H S}^{2}=\sum_{i=1}^{m} \int_{0}^{1} \int_{y_{i-1}}^{y_{i}}\left(k-k_{m n}\right)^{2} \mathrm{~d} y \mathrm{~d} x
$$

Define $r(i):=\max \left\{k: x_{k} \leq y_{i-1}\right\}$ and $s(i):=\min \left\{k: x_{k} \geq y_{i}\right\}$. The best $L^{2}$-approximation is not worse than

$$
\tilde{k}(y, x)=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} u_{j}(x) \mathbf{1}_{B_{i}}(y)
$$

with $a_{i j}=0$, if $j<r(i)+p$ and $a_{i j}=y_{i-1}$, if $j \geq r(i)+p$. Notice that $u_{j}(x)$ is zero outside the interval $\left[x_{j-p}, x_{j}\right]$ and recall that B-splines $u_{j}$ form a partition of unity; that is $\sum_{j} u_{j}=1$. Define $S_{i}^{(1)}:=B_{i} \times\left[0, x_{r(i)}\right], S_{i}^{(2)}:=B_{i} \times\left[x_{r(i)}, x_{s(i)+p-1}\right]$ and $S_{i}^{(3)}=B_{i} \times\left[x_{s(i)+p-1}, 1\right]$. In $S_{i}^{(1)}$, both $k$ and $\tilde{k}$ are zero. In $S_{i}^{(2)}$, both $k$ and $\tilde{k}$ are between 0 and $y_{i}$. In $S_{i}^{(3)}, \tilde{k}(y, x)=y_{i-1}$ and $y_{i-1} \leq k(y, x) \leq y_{i}$. Consequently,

$$
\begin{aligned}
\left\|\mathcal{K}-\mathcal{K}_{m n}\right\|_{H S}^{2} & \leq \sum_{i=1}^{m}\left[\int_{y_{i-1}}^{y_{i}} \int_{x_{r(i)}}^{x_{s(i)+p-1}} y_{i}^{2} \mathrm{~d} x \mathrm{~d} y+\int_{y_{i-1}}^{y_{i}} \int_{x_{s(i)+p-1}}^{1}\left(y_{i}-y_{i-1}\right)^{2} \mathrm{~d} x \mathrm{~d} y\right] \leq \\
& \leq \sum_{i=1}^{m}\left(y_{i}-y_{i-1}\right)\left[\left(x_{s(i)+p-1}-x_{r(i)}\right)+\left(y_{i}-y_{i-1}\right)^{2}\right] \leq \\
& \leq \sum_{i=1}^{m}\left(y_{i}-y_{i-1}\right)\left[\Delta_{y}+(p+1) \Delta_{x}+\Delta_{y}^{2}\right]=O\left(\Delta_{x}+\Delta_{y}\right)
\end{aligned}
$$

which completes the proof.

## Acknowledgements

Work supported by AGH local Grant 10.420.03.

## REFERENCES

[1] M. Barthel, P. Klimanek, D. Stoyan, Stereological substructure analysis in hot-deformed metals from TEM-images, Czech. J. Phys. B 35 (1985), 265-268.
[2] I.M. Johnstone, B.W. Silverman, Discretization effects in statistical inverse problems, J. Complexity 7 (1991), 1-34.
[3] E. Kamke, Differentialgleichungen. Lösungsmethoden und Lösungen (6th ed., Leipzig 1959), Russian edition: Nauka, Moscow, 1971.
[4] G.W. Lord, T.F. Willis, Calculation of air bubble distribution from results of a Rosiwal traverse of aerated concrete, A.S.T.M. Bull. 56 (1951), 177-187.
[5] R.D. Reiss, A course on point processes, Springer, New York, 1993.
[6] L.L. Schumaker, Spline functions: basic theory, Krieger Publishing Company, Malabar, Florida, 1993.
[7] A.G. Spektor Analysis of distribution of spherical particles in non-transparent structures, Zavodsk. Lab. 16 (1950), 173-177.
[8] D. Stoyan, W.S. Kendall, L. Mecke, Stochastic geometry and its applications, Akademie-Verlag, Berlin, 1987.
[9] Z. Szkutnik, Unfolding intensity function of a Poisson process in models with approximately specified folding operator, Metrika 52 (2000), 1-26.
[10] Z. Szkutnik, A note on quasi-maximum likelihood solutions to an inverse problem for Poisson processes, Statist. Probab. Lett. 60 (2002), 253-263.
[11] Z. Szkutnik, Doubly smoothed EM algorithm for statistical inverse problems, J. Amer. Statist. Assoc. 98 (2003), 178-190.
[12] Z. Szkutnik, B-splines and discretization in an inverse problem for Poisson processes, J. Multiv. Anal. 93 (2005), 198-221.
[13] E.T. Whittaker, G.N. Watson, A course of modern analysis. Part 2, University Press, Cambridge, 1963.

Zbigniew Szkutnik
szkutnik@agh.edu.pl
AGH University of Science and Technology Faculty of Applied Mathematics al. Mickiewicza 30, 30-059 Cracow, Poland

Received: September 7, 2006.

