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UNFOLDING SPHERES SIZE DISTRIBUTION

FROM LINEAR SECTIONS

WITH B-SPLINES AND EMDS ALGORITHM

Abstract. The stereological problem of unfolding spheres size distribution from linear sec-
tions is formulated as a problem of inverse estimation of a Poisson process intensity function.
A singular value expansion of the corresponding integral operator is given. The theory of
recently proposed B-spline sieved quasi-maximum likelihood estimators is modified to make
it applicable to the current problem. Strong L

2-consistency is proved and convergence rates
are given. The estimators are implemented with the recently proposed EMDS algorithm.
Promising performance of this new methodology in finite samples is illustrated with a nu-
merical example. Data grouping effects are also discussed.
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1. THE UNFOLDING PROBLEM

A population of spheres embedded in a medium is modeled with a Poisson process
Ψ1 of points (x, y, z, R) in R

3 × (0,∞). The centers (x, y, z) of the spheres form a
homogeneous Poisson process in R

3 with the expected number of c points per unit
volume. The random spheres radii R have a distribution Q, independent of the center.
The mean measure of Ψ1 is thus ν1 = c ·λ3 ⊗Q. (Here and in what follows λk stands
for the Lebesgue measure in R

k.)
The spheres cannot be observed directly. Instead, a random linear section through

the medium is observed, i.e., for a randomly selected straight line, one observes the
line segments that are intersections of the line with the spheres. Our derivation of
the folding operator is similar to that given in [5], pp. 47–48, for a related Wicksell’s
problem. Without loss of generality, assume that the straight line is the z-axis. For
D = {(x, y, z, R) : x2 + y2 ≤ R2}, denote by Ψ2(·) := Ψ1(· ∩ D) the truncation of
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Ψ1 to those spheres that are intersected by the z-axis. Ψ2 is again a Poisson process
with the mean measure ν2(·) = ν1(· ∩D); see, e.g., [5], p. 8.

Let Φ be the point process of the observed linear sections, i.e., the point process
in R

2 with points (z, r) that represent the centers z and radii r of the observed line
segments (one-dimensional balls). The points of Φ are thus obtained from the points

of Ψ2 through the transformation h(x, y, z, R) = (z,
√

R2 − x2 − y2). Therefore, Φ is
a Poisson process with the mean measure νΦ(·) = ν2[h

−1(·)]; see, e.g., [5], p. 13. For
any Borel set B ⊂ R and t > 0, one obtains

νΦ(B × [0, t]) = ν2

({

(x, y, z, R) : z ∈ B,
√

R2 − x2 − y2 ≤ t
})

=

= ν1

({

(x, y, z, R) : z ∈ B,
√

R2 − x2 − y2 ≤ t, x2 + y2 ≤ R2
})

=

= c · λ1(B) · (λ2 ⊗Q)
({

(x, y, z, R) : R2 − t2 ≤ x2 + y2 ≤ R2
})

=

= c · λ1(B) · π
∫ ∞

0

[

R2 − max{0, R2 − t2}
]

dQ(R) .

Noting that

R2 − max{0, R2 − t2} =

∫ t

0

1[0,R](r) · 2rdr ,

one gets, changing the order of integration,

νΦ(B × [0, t]) = πcλ1(B)

∫ ∞

0

∫ t

0

1[0,R](r) · 2rdrdQ(R) =

= πcλ1(B)

∫ t

0

[

2r

∫ ∞

r

dQ(R)

]

dr.

This means that, if B is the observed portion of the linear section through the medium,
then the intensity function of the Poisson process on [0,∞) of the radii of observed
sections has an intensity function of the form 2πcλ1(B)r

∫ ∞

r
dQ(R) with respect to

λ1. Assume that there is an upper bound, say 1, for R and that Q << λ1 with
dQ/dλ1 = q. Denote cq with f and the ’size of the experiment’ πλ1(B) with t. One
then observes a Poisson process of radii of sections with an intensity function t · g(r),
where

g(r) = 2r

∫ 1

r

f(R)dR (1)

and the final goal is to unfold f . Notice that the definition of the ’size of the experi-
ment’ is quite natural: t equals the volume of the cylinder to which the centers of the
intersected balls must belong. Also notice that the function f to be unfolded does not
have to be a probability density. This means that both the shape of the distribution
and the intensity c have to be estimated.

Equations equivalent to (1) were first derived by Spektor ([7]) and Lord and Willis
([4]) as models of some measurements in material sciences. For an application in
metallurgy, see, e.g., [1]. The problem, called in the sequel the SLW problem, was
also discussed in [8], p. 296–299, along with traditionally used algorithms based on
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various discretizations of equation (1), and the (rather discouraging) performance of
the algorithms was illustrated with a numerical example. Since then, to the best of
our knowledge, there have been no further significant contributions to the problem.

The SLW problem is known to be a rather hard ill-posed inverse problem, essen-
tially harder than the related and better-known Wicksell’s stereological problem of
unfolding spheres size distribution from planar sections. The solution of (1) takes the
form:

f(R) =
1

2

[

g(R)

R2
− g′(R)

R

]

,

which explains the statistical difficulty of the problem – inverse estimation of f in
L2(dR) roughly corresponds to the direct estimation of the intensity g in L2(R−4dR)
and of its derivative g′ in L2(R−2dR).

The aim of this paper is to study the potential of a more formal, alterna-
tive approach to the SLW problem – the construction of nonparametric, sieved
quasi-maximum likelihood estimators. In Section 2, the difficulty of the SLW problem
is quantified with the decay rate of the singular values of the integral operator defined
in (1)–the result needed for the analysis of the asymptotics of the estimators. In Sec-
tion 3, the construction of sieved quasi-maximum likelihood estimators is discussed
and general theorems on L2-consistency and convergence rates are given and then
applied to the SLW problem. A numerical example is given in Section 4. Proofs and
some auxiliary results are deferred to the Appendix.

2. SINGULAR VALUES AND SINGULAR FUNCTIONS
OF THE FOLDING OPERATOR

The kernel k(y, x) = 2y1{y<x} of the operator (Kf)(y) =
∫ 1

0
k(y, x)f(x)dx defined

by equation (1) is square-integrable in [0, 1]2, which implies that K, considered as an
operator in L2([0, 1], λ1), is a Hilbert-Schmidt operator. Consequently, as an inverse
of a compact operator, K−1 is not bounded and the unfolding problem is ill-posed
in the Hadamard sense. The degree of ill-posedness can be measured with the decay
rate of the singular values σi of K, written in the nonincreasing order. It will be
shown below that they decay as i−1. This shows that the SLW problem is indeed
essentially harder than the Wicksell’s problem, for which the singular values of the
corresponding Abel-type operator are known to decay as i−1/2, with suitably chosen
dominating measures.

The singular values and the right singular functions of K can be found, respectively,
as square roots of the eigenvalues and as the eigenfunctions of the self-adjoint operator
K∗K, which is an integral operator of the form

(K∗Kf)(x) =
4

3

∫ 1

0

min3(x, y)f(y)dy =
4

3

∫ x

0

y3f(y)dy +
4

3

∫ 1

x

x3f(y)dy .

Differentiation of the eigenequation (K∗Kf)(x) = ηf(x) with respect to x gives

4x2

∫ 1

x

f(y)dy = ηf ′(x) . (2)
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Setting x = 0 in the eigenequation gives f(0) = 0 and setting x = 1 in equation (2)
gives f ′(1) = 0. Division of (2) by x2 and another differentiation with respect to x
leads to a differential eigenvalue problem

{

x2f ′′ − 2xf ′ + µx4f = 0,
f(0) = f ′(1) = 0

with µ = 4/η.
The solution of this differential equation takes the form (cf. [3], Part 3, Ch. II,

Eq. 2.162(1a)):

f(x) = [C1J3/4(
√
µx2/2) + C2J−3/4(

√
µx2/2)] · x3/2,

where Jν(·) denotes rank ν Bessel function of the first kind, i.e.

Jν(z) =
zν

2ν Γ(ν + 1)

(

1 − z2

2(2ν + 2)
+

z4

2 · 4(2ν + 2)(2ν + 4)
− . . .

)

=

=
∞
∑

k=0

(−1)k(z/2)ν+2k

k! Γ(ν + k + 1)
.

(3)

Since Jν(z) � zν , as z → 0, one obtains x3/2J−3/4(
√
µx2/2) � 1 and

x3/2J3/4(
√
µx2/2) → 0, as x → 0, and the boundary condition f(0) = 0 implies

that C2 = 0. It is well known (see, e.g., [13], Ch. 17.21) that [zνJν(z)]′ = zνJν−1(z).
Hence, with F (y) := y3/4J3/4(y), we obtain

f ′(x) = C1

(

2√
µ

)3/4
d

dx
F (

√
µx2) = C1

√
µx5/2 J−3/4(

√
µx2/2) ,

which implies that f ′(1) = 0 if and only if J−1/4(
√
µ/2) = 0.

For |z| → ∞, one has Jν(z) =
√

2/(πz)[cos(z − νπ/2 − π/4) + O(1/z)] (see, e.g.,
[13], Ch. 17.5), so that, for µi → ∞,

J−1/4(
√
µi/2) =

2

π1/2µ
1/4
i

[

− sin

(√
µi

2
− 5π

8

)

+H(µi)

]

with a function H(·) such that

H(µi) = O(1/
√
µi) . (4)

Hence, J−1/4(
√
µi/2) = 0 if

√
µi

2
− 5π

8
= iπ + ∆i (5)

with ∆i → 0 such that

sin(iπ + ∆i) = (−1)i sin∆i = H(µi) . (6)
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Then, because of (4), (5) and (6),
√
µi

2
− 5π

8
= iπ +

∆i

sin∆i
sin∆i = iπ +O(1/

√
µi) ,

which implies that
√
µi � i and

µi = (5π/4 + 2iπ)2 +O(1/µi) +O(i/
√
µi) = (5π/4 + 2iπ)2 +O(1) .

Consequently,

ηi =
4

µi
=

4

(5π/4 + 2iπ)2 +O(1)
� i−2 ,

i.e., the singular values σi of the SLW operator K are exactly of the order of i−1.
With zi, i = 1, 2, . . . denoting the positive zeroes of J−1/4(z), the right sin-

gular functions are φi(x) = Aix
3/2J3/4(zix

2) and the normalizing constants Ai =
2/|J3/4(zi)| = 2/|J ′

−1/4(zi)| can easily be computed using the integral formulas given,

e.g., in [13], Ch. 17, Ex. 18. Those formulas can also be used to prove directly that
φi, i = 1, 2, . . . indeed form an orthonormal system.

The left singular functions ψi(y) = Aiy
3/2J−1/4(ziy

2) can now be obtained from
the equation Kφi = σiψi, using representation (3). Again, integral formulas from [13],
Ch.17, Ex.19 can be used to prove directly that ψi, i = 1, 2, . . . form an orthonormal
system.

The calculations are summarized as

Proposition 1. Let zi, i = 1, 2, . . . be the positive zeroes of J−1/4(z) and let Ai =
2/|J3/4(zi)| = 2/|J ′

−1/4(zi)|. The singular values of the SLW operator, considered

as an operator in L2([0, 1], λ1), are equal to σi = z−1
i � i−1 with the corresponding

right singular functions φi(x) = Aix
3/2J3/4(zix

2) and left singular functions ψi(y) =

Aiy
3/2J−1/4(ziy

2).

3. SIEVED QUASI-MAXIMUM LIKELIHOOD ESTIMATORS

As an alternative to the traditional algorithms, described in [8], the SLW problem may
be solved with a sieved quasi-maximum likelihood approach. For a general inverse
problem, with B-spline sieves in the solution space and with discrete, binned data, this
approach was studied in detail in [12]. Following that paper, let [0, 1] = B1∪· · ·∪Bm

be a partition of the data space into disjoint bins. The observed data n = [n1, . . . , nm]
consist of the counts ni of the line segments radii observed in the bins Bi, respectively.

The order p, B-spline sieve in the solution space is defined as follows. First,
a set of equidistant knots is defined by xk = kh, k = −p + 1,−p + 2, . . . , n with
h = 1/(n − p + 1). Notice that x0 = 0 and xn−p+1 = 1, so that, in total, 2p − 2
knots are outside the interval [0, 1]. Then, the order p, B-spline sieve is defined as
Un = Span{uj , j = 1, . . . , n}, with uj(x) = Qp((x− xj−p)/h)1[0,1](x), where

Qp(x) =
1

(p− 1)!

p
∑

i=0

(−1)i

(

p

i

)

(x− i)p−1
+ .
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{uj} is a basis of the linear space of order p (degree p− 1) splines on [0, 1] with n− p
internal, equidistant knots of multiplicity one (cf. [6], Theorem 4.9).

The data binning can also be expressed in terms of sieves. Let vi(y) = 1Bi
(y), i =

1, . . . ,m be indicator functions of the bins Bi. In the observation space one then
has a histogram sieve Vm = Span{vi, i = 1, . . . ,m}. Denote with PV

m and PU
n the

L2([0, 1], λ1) projections onto Vm and Un. Discretization replaces the operator K
with a finite-dimensional operator Kmn = PV

mKPU
n .

Define a m× n matrix C = [cij ] with

cij =

∫

Bi

∫ 1

0

k(x, y)uj(x)dxdy = 〈Kuj , vi〉 ,

where 〈·, ·〉 denotes the inner product in L2([0, 1], λ1). With a parametric set Θn ⊂ R
n,

one then has a Poisson regression model for n

P t
g(n) =

m
∏

i=1

(tgi)
ni(ni!)

−1e−tgi

with g = [g1, . . . , gm]T = Cθ, θ ∈ Θn. The vector g represents the expected
counts in the data space bins, and θ = [θ1, . . . , θn]T represents the projection
PU

n f =
∑n

j=1 θjuj . The vector θ that corresponds to the true f will be denoted

with θ
0, and the true vector of intensities with g0 = [g0

1 , ..., g
0
m]T .

With γ(t) ∈ (0, 1] and with θ̂ = [θ̂1, ..., θ̂n]T , we call

f̂t(x) =

n
∑

j=1

θ̂juj(x)

a quasi-maximum likelihood (QML) B-spline sieve estimator of f if

P t
Cθ̂

(n) ≥ γ(t) sup
θ∈Θn

P t
Cθ(n) .

As t increases, the discretization indices n and m are increased as well. For
simplicity, the dependence of m and n on t is not marked explicitly in the notation.
The same holds true for the matrix C and several other quantities.

It turns out that, due to discretization effects, it is necessary to modify the matrix
C in order to obtain strongly L2-consistent estimators. As in [12], let G be the Gram
matrix of the functions {uj} and let T := diag(λ1(Bi)). Write the singular value

decomposition T−1/2CG−1/2 = Vdiag(si)W
T , where V and W = [w1

... ...
...wn] are

matrices with orthonormal columns and wi denotes the ith column of W. The num-
bers s1 ≥ s2 ≥ · · · ≥ sn are then the singular values of Kmn, and they approximate
the singular values of K from below (see [12]). A modified or regularized matrix Cr

that replaces C in the definition of the QML estimators is defined as

Cr = T1/2Vdiag(ri)W
T G1/2 ,
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where
ri = max

{

si, C0n
−(p−α)/2

}

and α < p and C0 are some positive parameters. Under suitable assumptions, the
QML B-spline sieve estimators with the matrix Cr in place of C may be proved
to be strongly L2-consistent and the convergence rates can be obtained (Theorems
3 and 4 in [12]). Those results are, however, not directly applicable to the SLW
problem, because of a restrictive assumption of all data bins being of the same size,
i.e., λ1(Bi) = λ1(Bk), i, k = 1, . . . ,m, which is hard to satisfy for the SLW problem
together with assumption C2 in Theorem 3 in [12]. Therefore, in this paper, we first
generalize Theorems 1, 3 and 4 from [12] to cover also the case of non-uniform data
binnings, and only then apply them to the SLW problem.

In the sequel, for a vector x = [x1, . . . , xn] ∈ R
n, ‖x‖ stands for its Euclidean

norm, ‖x‖1 =
∑

i |xi| denotes its `1-norm and C is used as a generic constant.

With some arbitrary m× n matrix A, consider a QML estimator f̂t, constructed
with A in place of C. Let λmin(AT A) be the minimal eigenvalue of AT A and
λmax(G) the maximal eigenvalue of G.

Theorem 1. Assume that:

A1. m ≥ n and log γ(t)−1 = O(m logmt).
A2. g0

i � m−1 and gi � m−1, i = 1, ...,m, for g = Aθ, θ ∈ Θn.
A3. m = o(t) and λmax(G)/λmin(AT A) = O(tβ) for some 0 < β < 1.
A4. ‖Aθ

0 − g0‖1 = o(mλmin(AT A)/λmax(G)).

Then, with probability one, ‖f̂t − f‖L2 → 0 as t → ∞, for all f such that θ
0 ∈ Θn

for sufficiently large n.

Notice that A4 is slightly weaker than the corresponding assumption ‖Aθ
0−g0‖ =

o(m1/2λmin(AT A)/λmax(G)) in [12], because ‖Aθ
0 − g0‖1 ≤ m1/2‖Aθ

0 − g0‖. In
addition to other advantages discussed in the sequel, this small change allows for
a more explicit interpretation of A4, with the minimal bin size involved only (cf.
formula (7) in [12], in which the maximal bin size is used as well). To this end,
set A = C, assume that mini λ1(Bi) � m−1 and recall that λmin(G) � n−1 and
λmax(G) � n−1 ([12], Lemma 2). The first part of Lemma 1 in [12] then gives
mnλmin(CT C) ≥ Cλmin(K∗

mnKmn). Further,

‖Cθ
0 − g0‖1 = ‖PV

mKPU
n f − PV

mKf‖L1 ≤ ‖PV
mKPU

n f − PV
mKf‖L2 =

= O
(

‖PU
n f − f‖L2

) (7)

(cf. [9], p.8, and use the Hölder inequality and the boundedness of PV
m and K).

Consequently, with A = C and mini λ1(Bi) � m−1, it is sufficient for A4 that
‖PU

n f−f‖L2 = o(λmin(K∗
mnKmn)), which shows that A4 is indeed a crucial feasibility

condition, as discussed in detail in [12].
Assume that

Θn ⊂
{

θ ∈ R
n :

n
∑

i=1

i2a(wT
i G1/2

θ)2 < M

}

(8)
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with some positive constants M and a. Condition (8) may be interpreted as a discrete
version of the requirement that the Fourier coefficients of f with respect to right
singular functions of K decay at a certain rate; cf. a related discussion in [12]. The
following theorem is a generalized version of Theorem 3 in that paper. The assumption
of all data bins being of the same size is replaced with a condition on the smallest bin
size only. The largest bin size is allowed to decrease at an arbitrary rate. Moreover, the
generalized theorem covers a broader range of the operator regularization parameter α.

Denote by W p
2 the Sobolev space of functions on [0, 1] with square integrable p-th

derivative and let ‖K‖HS be the Hilbert-Schmidt norm.

Theorem 2. Let f̂t be a QML order p, B-spline sieve estimator of f constructed
with the matrix Cr in place of C, with parametric sets satisfying (8) and with data
binning such that C1 ≤ mλ1(Bi) ≤ C2m

∆, i = 1, . . . ,m, with some C1, C2 > 0 and
∆ ∈ (0, 1). Assume that the singular values σi of K decay as i−b and that:

B1. m ≥ n and log γ(t)−1 = O(m logmt).
B2. g0

i � m−1 and gi � m−1, i = 1, ...,m, for g = Cθ, θ ∈ Θn.
B3. ‖K − Kmn‖HS = O(n−r) with some r > 0.

If either (“weak regularization regime”)

B4. 0 < α < p− 2r, m∆ = o(n2ar/b−(p−α)), m∆+1 = o(n2ar/b+p−α) and mnp−α =
O(tβ) for some β ∈ (0, 1),

or (“strong regularization regime”)

B4’. p − 2r ≤ α < p, m∆ = o(n(p−α)(a−b)/b), m∆+1 = o(n(p−α)(a+b)/b) and
mnp−α = O(tβ) for some β ∈ (0, 1),

then, with probability one, ‖f̂t−f‖L2 → 0 as t→ ∞, for all f ∈ Sp
2 such that θ

0 ∈ Θn

for sufficiently large n.

Because m ≥ n, the weak regularization regime is possible only if

p− 2ar

b
− ∆ < α < p− max

{

2r,∆ + 1 − 2ar

b

}

(9)

and with

a >
b

2r
(∆ + max{2r, 1/2}) , (10)

which ensures that (9) gives a non-empty interval for α.
Similarly, the strong regularization regime is possible only if

p− 2r ≤ α < p− b

a+ b
max

{

∆ + 1,∆
a+ b

a− b

}

(11)

and with

a ≥ b

2r
max{∆ + 2r,∆ − 2r + 1}. (12)

With p ≤ 2r, only the strong regime is possible and α > 0 provides a lower bound
for α. In this case, one has a non-empty interval for α only if a > b(∆ + p)/p.
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With ∆ = 0 in the strong regularization regime, one obtains Theorem 3 from [12]
as a special case.

For a fixed value of a, which implicitly defines the size of the function class to
which f may belong, the parameters α and β and the discretization rates may be op-
timized to produce the fastest convergence rates. The following theorem describes the
dependence of the convergence rate on the parameter α and allows, in any particular
application, to choose α in the optimal way. For simplicity, only the case m � n is
covered. It can be shown, however, that n = o(m) does not lead to any improvements.
Note that, with m � n, the last part of B4 and B4’ becomes m � n � tβ/(p−α+1).

Define the mean integrated square error of f̂t as MISE(f̂t) = E‖f̂t − f‖2
L2 .

Theorem 3. Under the assumptions of Theorem 2, with m � n � tβ/(p−α+1) and
with any positive D, MISE(f̂t) = O(t−s log t) as t → ∞, uniformly for f ∈ W p

2 such
that ‖Dpf‖L2 ≤ D and θ

0 ∈ Θn for sufficiently large n.
In the weak regularization regime, s = 1 − β = α/(p + 1), if α ≤ 2ra/b − p − ∆

and s = 1−β = [2ra− b∆− b(p−α)]/[2ra− b∆+ b(p−α)+ 2b] for larger α. In both
cases s increases with α.

In the strong regularization regime, s = 1−β = α/(p+1) and s increases with α, if
α ≤ [p(a−b)−b∆]/(a+b), and s = 1−β = [(p−α)(a−b)−b∆]/[(p−α)(a+b)+b(2−∆)]
and s decreases with α, for larger values of α.

Setting ∆ = 0 in the strong regularization regime, one obtains Theorem 4 in [12]
as a special case.

The first part of assumption B2 essentially means that all data bins should be
approximately equally populated, which usually leads to a non-uniform binning in
the data space. In the sequel, a special binning will be constructed for the SLW
problem, suitable for functions f that are bounded and cut away from zero. For such
functions, if B1 = [0, y1] and Bi = (yi−1, yi], i = 2, . . . ,m with ym = 1, one gets

g0
i =

∫

Bi

∫ 1

0

2y1{y<x}f(x)dydx � H(yi) −H(yi−1)

with H(y) = y2(3 − 2y). Hence, if bi are selected to satisfy H(bi) = i/m, then
g0

i � m−1 for i = 1, . . . ,m. Notice that H ′(y) takes its maximal value 3/2 at y = 1/2
and H ′(0) = H ′(1) = 0. This means that the central bins are the smallest ones and
mini λ1(Bi) � m−1, as postulated in Theorem 2. The size of the largest bins tends,
however, to zero at a slower rate (λ1(B1) � m−1/2), which means that ∆ = 1/2
should be set in Theorems 2 and 3 and shows that the work invested in generalizing
the theorems was indeed necesary, in order to make them applicable to the SLW
problem with functions f bounded and cut away from zero.

It then follows from Lemma 1 (see the Appendix) that, with the special binning

defined by H(·), ‖K−Kmn‖HS = O(n−1/4). In this setup, the properties of f̂t in the
SLW problem can be summarized as

Corollary 1. Let a QML order p, B-spline sieve estimator f̂t for f in the SLW
problem be constructed with the matrix Cr in place of C, with data binning defined
by the function H(·) and with parametric sets satisfying (8) and such that 0 < c ≤
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∑n
j=1 θjuj(x) ≤ d for some constants c and d and for x ∈ [0, 1]. Assume that B1

holds true and that f ∈ Sp
2 is bounded and cut away from zero and such that θ

0 ∈ Θn

for sufficiently large n. Then the best rates are obtained in the strong regularization
regime:

1. If 2 < a ≤ 4p, then MISE(f̂t) = O(t−(a−2)/(a+4) log t), with m � n � t4/(a+4) and
α = p− 1/2.

2. If a > 4p, then MISE(f̂t) = O(t−[p(a−1)−1/2]/[(p+1)(a+1)] log t), with m � n �
t1/(p+1) and α = [p(a− 1) − 1/2]/(a+ 1).

In both cases f̂t is strongly L2-consistent.

Whether the rates given in Corollary are minimax is an open question, because no
lower bounds for the minimax risk are known for the non-standard class of functions
to which f is assumed to belong.

If f might be arbitrarily close to zero or unbounded, the special binning defined
through the function H(·) need not, of course, lead to all g0

i of the same order.
“Approximately equally populated data bins” remains, however, a paradigm in ap-
plications to real data sets.

It should be noticed that with uniform data binning one obtains ‖K−Kmn‖HS =
O(n−1/2), which leads to faster convergence rates. With r = 1/2 and ∆ = 0, the
weak regime is possible with a > 1 and p − a < α < p − 1, (cf. (9) and (10)), and
the strong regime is possible with a > 1 and p− 1 ≤ α < p− 1/(a+ 1), (cf. (11) and
(12)). Then, s = (a − 1)/(a + 3), if a < 2p + 1, and s = p(a − 1)/[(p + 1)(a + 1)], if
a ≥ 2p+ 1, and the rates are again obtained in the strong regime. It is, however, not
quite clear how to express any natural conditions on f that may ensure B2 with the
uniform data binning.

Also notice that, for “small” a (or “large” p), the convergence rates depend neither
on the order of the splines, nor on the smoothness of f , both expressed in terms of p.
This may be attributed to discretization effects (cf. a related discussion in [12]) and
considered a drawback of the maximum likelihood approach to the analysis of binned
data.

4. NUMERICAL EXAMPLE

The QML B-spline sieve estimators may be computed by means of the EMDS al-
gorithm, described in detail in [11, 12]. In order to illustrate this approach and to
compare its performance with more traditional methods, the SLW problem with data
taken from Table 11.3 in [8], p. 298, was solved. The data formed an artificial sample
of 1,000 points, grouped in 13 intervals of equal lengths, and were generated from a
Rayleigh density. For the present example the range was rescaled to the (0, 1) interval.
Additionally, to make our results comparable with those in Table 11.3, the unfolded
function was normalized to be a probability density function.

In the implementation of the EMDS algorithm, a discrete approximation of the
folding operator was needed. Let Bi = (bi−1, bi], i = 1, . . . ,m, b0 = 0, bm = 1,
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be the data bins. For the EMDS implementation, the domain of the solution was
also partitioned into a (large) number of subintervals (aj−1, aj ], j = 1, . . . , s, a0 = 0,
as = 1. The discrete approximation of the operator was then represented by a matrix

[c̄ji], with c̄ji = 2
∫ bj

bj−1

∫ aj

ai−1
y1{y<x}(y)dxdy, and elementary calculation gave c̄ij in

the form:

0 if ai ≤ bj−1

1
3a

3
i + 2

3b
3
j−1 − b2j−1ai if bj−1 < ai ≤ bj , ai−1 ≤ bj−1

1
3 (a3

i − a3
i−1) − b2j−1(ai − ai−1) if bj−1 < ai ≤ bj , ai−1 > bj−1

ai(b
2
j − b2j−1) − 2

3 (b3j − b3j−1) if ai > bj , ai−1 ≤ bj−1

1
3 (b3j − a3

i−1) − b2j−1(bj − ai−1)

+(ai − bj)(b
2
j − b2j−1) if ai > bj , bj−1 < ai−1 ≤ bj

(ai − ai−1)(b
2
j − b2j−1) if ai−1 > bj .

Figure 1 shows the true function (smooth, solid line), the solution obtained with
the EMDS algoritm with a sieve spanned by 13 cubic B-splines (solid, step-like line)
and the solution obtained with a two-step algorithm proposed in [1] (dotted line).
The latter is based on the last column in Table 11.3 in [8], and was also rescaled to
the (0, 1) interval.

Fig. 1. True Rayleigh density (solid), the QML estimator (solid, step-like) and the
Barthel-Klimanek-Stoyan estimator (dotted). The step-like representation of the QML esti-

mator is due to its implementation via the EMDS algorithm

The parameters used in the EMDS algorithm (cf. [12]) were: s = 100, J = 19,
a = 2 and edf = 13. Cr = C was set and the edf parameter was selected to minimize
a GCV-like criterion, as described in [11, 12]. It should be noticed that edf = 13
means that no so-called projection smoothing was applied.
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Although the QML solution is clearly much more accurate than that obtained in
[8] with the method of Barthel ([1]), more extensive simulation studies are needed to
further investigate the potential of the QML approach to the SLW problem.

5. APPENDIX

Proof of Theorem 1. It may be proved (see [9], Corollary to Proposition 1) that, under
A1 and A2, for ε > 0 and t > 6m

P
(

‖θ̂ − θ
0‖ > ε

)

≤ F exp
[

−
(

4Cε2mλmin(AT A) −O(‖Aθ
0 − g0‖1)

)

t
]

,

where F = F (m, t) and logF = O(m logmt). Using that, a minor modification of the
proof to Theorem 1 from [12] gives the thesis.

Proof of Theorem 2. It will be proved that the assumptions of Theorem 1 are satisfied
with A = Cr. Using Lemma 1 in [10] and then the Ostrowski theorem, as in [12],
notice first that

λmin(CT
r Cr) = s2min (Cr) ≥ Cmin

i
λ1 (Bi) s

2
min

(

Vdiag(ri)W
T G1/2

)

=

= Cm−1λmin

(

G1/2Wdiag(r2i )WT G1/2
)

≥ C(mn)−1n−(p−α),

where smin(·) stands for the minimal singular value of a matrix. This gives

mnλmin

(

CT
r Cr

)

≥ Cn−(p−α) . (13)

Assumption A3 takes the form

m = o(t) and n−1 = O
(

tβλmin

(

CT
r Cr

))

,

which is satisfied, because of (13) and the last part of B4 or B4’.
For A4, using (7) and the approximation rate n−p of functions from W p

2 with
order p, B-splines (Theorems 6.27 and 2.59 in [6]), write

‖Crθ
0 − g0‖1 ≤ ‖Cθ

0 − g0‖1 + ‖(Cr − C)θ0‖1 ≤
≤ O

(

‖PU
n f − f‖L2

)

+m1/2‖(Cr − C)θ0‖ =

= O(n−p) +m1/2‖(Cr − C)θ0‖ .

In view of (13), it is then sufficient for A4 that m1/2‖(Cr − C)θ0‖ = o(n−(p−α)).
Denote δi = ri − si. Then, using the assumption on the data bins size and (8),

m1/2‖(Cr − C)θ0‖ ≤ C
1/2
2 m∆/2‖diag(δi)W

T G1/2
θ

0‖ ≤ Cm∆/2

[

max
1≤i≤n

δ2i
i2a

]1/2

and, reasoning as in the proof of Theorem 3 in [12], one obtains that it is sufficient for
A4 that m∆np−α−2aγ/b = o(1) with γ = min{(p− α)/2, r}, which is clearly satisfied
in both weak and strong regularization regime.
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In order to show that the second part of A2 holds true with A = Cr (as needed
for an application of Theorem 1) if it is true with A = C (as assumed in the second
part of B2) notice that

m‖(Cr − C)θ‖ ≤ Cm(∆+1)/2n−(p−α)/2−aγ/b

and (cf. [12]) it is sufficient to show that m∆+1 = o(np−α+2aγ/b), which is obviously
true in both regularization regimes. This completes the proof.

Proof of Theorem 3. Write

MISE(f̂t) = ‖f−PU
n f‖2

L2+E‖f̂t−PU
n f‖2

L2 = O
(

n−2p
)

+

∫ ∞

0

P
(

‖f̂t − PU
n f‖2

L2 > x
)

dx

and, because ‖f̂t − PU
n f‖2

L2 ≤ λmax(G)‖θ̂ − θ
0‖2 ≤ Cn−1‖θ̂ − θ

0‖2 (cf. [12], p. 214
and Lemma 2), one obtains

P
(

‖f̂t − PU
n f‖2

L2 > x
)

≤ P
(

‖θ̂ − θ
0‖ > C(nx)1/2

)

≤

≤ O (m logmt) exp
[

−
(

4C1xn
−(p−α) −O

(

m1/2‖(Cr − C)θ0‖ + n−p
))

t
]

,

as in the proofs of Theorems 1 and 2. Further (cf. the proof of Theorem 2 above and
of Theorem 3 in [12]),

m1/2‖(Cr − C)θ0‖ ≤ Cm∆/2n−[(p−α)/2+γa/b] = Cn−[(p−α)/2+γa/b−∆/2],

with γ = min{(p− α)/2, r}. Hence,

P
(

‖f̂t − PU
n f‖2

L2 > x
)

≤ exp
[

−
(

4C1xn
−(p−α) − C2mt

−1 logmt− C3n
−δ

)

t
]

(14)

and δ = min{p, (p − α)/2 + ra/b − ∆/2} in the weak regularization regime, and
δ = min{p, (p− α)(a+ b)/(2b) − ∆/2} in the strong regularization regime.

Consider the strong regime first. If α ≤ [p(a − b) − b∆]/(a + b), then δ = p and,
reasoning as in the proof of Theorem 4 in [12], one obtains s = min{αβ/(p − α +
1), 1 − β}, which is maximal if s = 1− β = α/(p+ 1). If α > [p(a− b)− b∆]/(a+ b),
then δ = (p−α)(a+ b)/(2b)−∆/2 and, reasoning as before, one obtains s = min{1−
β, β[(p − α)(a − b)/(2b) − ∆/2]/(p − α + 1)}. Balancing the two terms, one obtains
the optimal s in the form given in the theorem and it is elementary to check that this
optimal s decreases with increasing α.

In the weak regularization regime, if α ≤ 2ra/b − p − ∆, then δ = p and one
obtains s = α/(p + 1), as in the strong regime. If α > 2ra/b − p − ∆, then δ =
(p−α)/2 + ra/b−∆/2 and the last term in the exponent in (14) becomes negligible,
if

x > n(p−α)/2−ra/b+∆/2 log t = t−β[ra/b−∆/2−(p−α)/2]/(p−α+1) log t.

As in [12], this leads to s = min{1 − β, β[ra/b− ∆/2 − (p− α)/2]/(p− α+ 1)} and,
after balancing the two terms, to the optimal s in the form given in the theorem.
Clearly, the optimal s increases with increasing α. This completes the proof.
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Proof of Corollary 1. The first part of B2 is, of course, fulfilled with the binning
defined through the function H(·). For its second part, write

gi =
n

∑

j=1

cijθj =

∫

Bi

∫ 1

0

2y1{y<x}

n
∑

j=1

θjuj(x)dxdy

and notice that this is again of the same order as H(bi)−H(bi−1) � m−1. With a > 2,
the weak regularization regime is possible with max{0, p− a/2 + 1/2} < α < p− 1/2,
(cf. (9) and (10)), and the strong regime is possible with p−1/2 ≤ α < p−3/[2(a+1)],
(cf. (11) and (12)). The conclusion then follows from considering two cases, in which
[p(a− 1) − 1/2]/(a+ 1) does, or does not belong to that interval, respectively.

Lemma 1. Let ∆x be the mesh size of the set of x-knots and ∆y = maxj(yj − yj−1)
be the size of the largest data bin. Then, ‖K−Kmn‖2

HS = O(∆x+∆y) as m,n −→ ∞.

Proof. The degenerated kernel kmn of the finite-dimensional operator Kmn is the
orthogonal projection in L2([0, 1]2, λ2) of k(y, x) = 2y1{y<x} onto the space spanned
by tensor-product splines uj(x)1Bi

(y), where j = 1, . . . , n and i = 1, . . . ,m. With
Bi = (yi−1, yi], one obtains

‖K − Kmn‖2
HS =

m
∑

i=1

∫ 1

0

∫ yi

yi−1

(k − kmn)2dydx.

Define r(i) := max{k : xk ≤ yi−1} and s(i) := min{k : xk ≥ yi}. The best
L2-approximation is not worse than

k̃(y, x) =
m

∑

i=1

n
∑

j=1

aijuj(x)1Bi
(y),

with aij = 0, if j < r(i) + p and aij = yi−1, if j ≥ r(i) + p. Notice that uj(x) is zero
outside the interval [xj−p, xj ] and recall that B-splines uj form a partition of unity;

that is
∑

j uj = 1. Define S
(1)
i := Bi × [0, xr(i)], S

(2)
i := Bi × [xr(i), xs(i)+p−1] and

S
(3)
i = Bi × [xs(i)+p−1, 1]. In S

(1)
i , both k and k̃ are zero. In S

(2)
i , both k and k̃ are

between 0 and yi. In S
(3)
i , k̃(y, x) = yi−1 and yi−1 ≤ k(y, x) ≤ yi. Consequently,

‖K − Kmn‖2
HS ≤

m
∑

i=1

[

∫ yi

yi−1

∫ xs(i)+p−1

xr(i)

y2
i dxdy +

∫ yi

yi−1

∫ 1

xs(i)+p−1

(yi − yi−1)
2dxdy

]

≤

≤
m

∑

i=1

(yi − yi−1)
[

(xs(i)+p−1 − xr(i)) + (yi − yi−1)
2
]

≤

≤
m

∑

i=1

(yi − yi−1)
[

∆y + (p+ 1)∆x + ∆2
y

]

= O(∆x + ∆y),

which completes the proof.
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