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Abstract. The Cartan-Monge geometric approach to the characteristics method for
Hamilton-Jacobi type equations and nonlinear partial differential equations of higher orders
is analyzed. The Hamiltonian structure of characteristic vector fields related with nonlinear
partial differential equations of first order is analyzed, the tensor fields of special structure are
constructed for defining characteristic vector fields naturally related with nonlinear partial
differential equations of higher orders. The generalized characteristics method is developed
in the framework of the symplectic theory within geometric Monge and Cartan pictures. The
related characteristic vector fields are constructed making use of specially introduced tensor
fields, carrying the symplectic structure. Based on their inherited geometric properties, the
related functional-analytic Hopf-Lax type solutions to a wide class of boundary and Cauchy
problems for nonlinear partial differential equations of Hamilton-Jacobi type are studied. For
the non-canonical Hamilton-Jacobi equations there is stated a relationship between their so-
lutions and a good specified functional-analytic fixed point problem, related with Hopf-Lax
type solutions to specially constructed dual canonical Hamilton-Jacobi equations.
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1. INTRODUCTION: GEOMETRIC BACKGROUNDS
OF THE CLASSICAL CHARACTERISTICS METHOD

Solutions to linear partial differential equations, as is well known [16, 22, 27], may be
studied effectively enough using many classical approaches, such as Fourier method,
spectral theory and Green function method. Nevertheless, none of them, regrettably,
may be applied to analyzing solution manifolds of general nonlinear partial differential
equations, even of the first and second orders. Since the classical Cauchy works on
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the problem to the date, few approaches to treating such equations have only been
developed [1, 17, 22, 25–27], among which the famous characteristics method appears
to be the most effective and fruitful. During the last century this method was further
developed by many mathematicians, including P. Lax, H. Hopf, O. A. Oleinik, S.
Kruzhkov, V. Maslov, P. Lions, L. Evans, D. Blackmore [11–15, 22, 25, 27, 30] and
others. It was long ago, too, the deep connection of the characteristics method with
Hamiltonian analysis was observed, reducing the problem to studying some systems
of ordinary differential equations. This aspect was prevailing in works of H. Hopf,
P. Lax and O. Oleinik (see [3, 14, 22]), who in this way described a wide class of so
called generalized solutions to first order nonlinear partial differential equations. The
most known result within this field is attributed to H. Hopf and P. Lax, who first to
find a very interesting variational representation for solutions of first order nonlinear
partial differential equations known as the Hopf–Lax type representation. As these
results were strongly based on some geometric notions, it was natural to analyze the
Cauchy characteristics method from the differential-geometric point of view, initiated
still in the classical works of G. Monge and E. Cartan [28]. Within the framework of
the Monge geometric approach to studying solutions of partial differential equations
in [18] we proposed a generalization of the classical Cauchy characteristic method for
equations of first and higher orders, making use of certain purposefully designed ten-
sor fields, closely related with them. These tensor fields appear very naturally within
an extended Monge approach as some geometric objects, generalizing the classical
Hamilton type equations for characteristic vector fields. Moreover, this geometric ap-
proach together with some Cartan’s compatibility considerations [1,23,28] is naturally
extended to a wide class of nonlinear partial differential equations of first and higher
orders. And even more, if the introduced tensor field is chosen in such a way that
it carries an associated symplectic structure, the corresponding solutions to general-
ized Hamilton-Jacobi equations may be found, in general, effectively in the implicit
functional-analytic Hopf-Lax type form, which is equivalent [19] to some well-posed
fixed point problem.

The characteristics method [1,22,27,30], proposed in XIX century by A. Cauchy,
was later very nontrivially developed by G. Monge, who had introduced the geo-
metric notion of characteristic surface, related with partial differential equations of
first order. The latter, being augmented with a very important notion of characteris-
tic vector fields, appeared to be fundamental [25, 30] for the characteristics method,
whose main essence consists in bringing about the problem of studying solutions to
our partial differential equation to an equivalent one of studying some set of ordinary
differential equations. This way of reasoning succeeded later in development of the
Hamilton-Jacobi theory, making it possible to describe a wide class of solutions to
partial differential equations of first order of the form

H(x;u, ux) = 0, (1.1)

where H ∈ C2(Rn+1 × R
n; R), ||Hx|| 6= 0, is called a Hamiltonian function and

u ∈ C2(Rn; R) is unknown function under search. The equation (1.1) is endowed still
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with a boundary value condition

u|Γϕ
= u0, (1.2)

with u0 ∈ C1(Γϕ; R), defined on some smooth almost everywhere hypersurface

Γϕ := {x ∈ R
n : ϕ(x) = 0, ||ϕx|| 6= 0}, (1.3)

where ϕ ∈ C1(Rn; R) is some smooth function on R
n.

Following to the Monge’s ideas, let us introduce the characteristic surface SH ⊂
R
n+1 × R

n as
SH := {(x;u, p) ∈ R

n+1 × R
n : H(x;u, p) = 0}, (1.4)

where we put, by definition, p := ux ∈ R
n for all x ∈ R

n. The characteristic surface
(1.4) was effectively described by Monge within his geometric approach by means of
the so called Monge cones K ⊂ T (Rn+1) and their duals K∗ ⊂ T ∗(Rn+1) [29, 30].
The corresponding differential-geometric analysis of this Monge scenario was later
done by E. Cartan, who reformulated [28,30] the geometric picture, drown by Monge,
by means of the related compatibility conditions for dual Monge cones and the notion
of integral submanifold ΣH ⊂ SH , naturally assigned to special vector fields on the
characteristic surface SH . In particular, Cartan had introduced on SH the differential
1-form

α(1) := du− 〈p, dx〉, (1.5)

where 〈·, ·〉 is the usual scalar product in R
n, and demanded its vanishing along the

dual Monge conesK∗ ⊂ T ∗(Rn+1), concerning the corresponding integral submanifold
imbedding mapping

π : ΣH :→ SH . (1.6)

This means that the 1-form

π∗α
(1)
1 := du− 〈p, dx〉|ΣH

⇒ 0 (1.7)

for all points (x;u, p) ∈ ΣH of a solution surface ΣH , defined in such a way that
K∗ = T ∗(ΣH). The obvious corollary from the condition (1.7) is the second Cartan
condition

dπ∗α
(1)
1 = π∗dα

(1)
1 = 〈dp,∧dx〉|ΣH

⇒ 0. (1.8)

These two Cartan’s conditions (1.7) and (1.8) should be still augmented with the char-

acteristic surface SH invariance condition for the differential 1-form α
(1)
2 ∈ Λ1(SH)

as
α

(1)
2 := dH|SH

⇒ 0. (1.9)

The conditions (1.7), (1.8) and (1.9), when imposed on the characteristic surface SH ⊂
R
n+1×R

n, make it possible to construct the proper characteristic vector fields on SH ,
whose suitable characteristic strips [29,30] generate the searched solution surface ΣH .
Thereby, having solved the corresponding Cauchy problem related with boundary
value conditions (1.2) and (1.3) for these characteristic vector fields, considered as
ordinary differential equations on SH , one may construct a solution to our partial
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differential equation (1.1). And what is interesting, this solution in many cases may
be represented [19,22] in exact functional-analytic Hopf-Lax type form. The latter is a
natural consequence from the related Hamilton-Jacobi theory, whose main ingredient
consists in proving the fact that the solution to our equation (1.1)) is exactly the
extremal value of some Lagrangian functional, naturally associated [1, 23, 24] with a
given Hamiltonian function.

Below we will construct the proper characteristic vector fields for partial differ-
ential equations of first order (1.1) on the characteristic surface SH , generating the
solution surface ΣH as suitable characteristic strips related with boundary conditions
(1.2) and (1.3), and next generalize the Cartan-Monge geometric approach for partial
differential equations of second and higher orders.

2. THE CHARACTERISTIC VECTOR FIELDS METHOD:
FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS

Consider on the surface SH ⊂ R
n+1 × R

n a characteristic vector field KH : SH →
T (SH) in the form

dx/dτ = aH(x;u, p)
dp/dτ = bH(x;u, p)
du/dτ = cH(x;u, p)







:= KH(x;u, p), (2.1)

where τ ∈ R is a suitable evolution parameter and (x;u, p) ∈ SH . Since, owing to the
Cartan-Monge geometric approach, there hold conditions (1.7), (1.8) and (1.9) along
the solution surface ΣH , we may satisfy them, applying the interior anti-differentiation
operation iKH

: Λ(SH) → Λ(SH) of the Grassmann algebra Λ(SH) of differential

forms [21,23,31] on SH to the corresponding differential forms α
(1)
1 and dα

(1)
1 ∈ Λ(SH):

iKH
α

(1)
1 = 0, iKH

dα
(1)
1 = 0. (2.2)

As a result of simple calculations one finds that

cH = 〈p, aH〉,

β(1) := 〈bH , dx〉 − 〈aH , dp〉|SH
= 0

(2.3)

for all points (x;u, p) ∈ SH . The obtained 1-form β(1) ∈ Λ1(SH) must be, evidently,
compatible with the defining invariance condition (1.9) on SH . This means that there
exists a scalar function µ ∈ C1(SH ; R), such that the condition

µα
(1)
2 = β(1) (2.4)

holds on SH . This gives rise to such final relationships:

aH = µ∂H/∂p, bH = −µ(∂H/∂x+ p∂H/∂u), (2.5)
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which together with the first equality of (2.3) complete the search for the structure
of the characteristic vector fields KH : SH → T (SH):

KH = (µ∂H/∂p; 〈p, µ∂H/∂p〉,−µ(∂H/∂x+ p∂H/∂u))ᵀ. (2.6)

Now we may pose a suitable Cauchy problem for the equivalent set of ordinary dif-
ferential equations (2.1) on SH as follows:

dx/dτ = µ∂H/∂p : x|τ=0
?
= x0(x) ∈ Γϕ, x|τ=t(x) = x ∈ R

n\Γϕ;

du/dτ = 〈p, µ∂H/∂p〉 : u|τ=0 = u0(x0(x)), u|τ=t(x)
?
= u(x);

dp/dτ = −µ(∂H/∂x+ p∂H/∂u) : p|τ=0 = ∂u0(x0(x))/∂x0,

(2.7)

where x0(x) ∈ Γϕ is the intersection point of the corresponding vector field orbit,
starting at a fixed point x ∈ R

n\Γϕ, with the boundary hypersurface Γϕ ⊂ R
n (see

Fig. 1) at the moment of “time” τ = t(x) ∈ R.

S
1

S
2

1
n
-1

S

S 1

S 2

1n-1
S

Γn−1
ϕ

x1

x2

xn

x′0(s) ∈ Γn−1
ϕ x0(s) ∈ Γn−1

ϕ

Fig. 1. The boundary Γn−1
ϕ = {x0 ∈ R

n : ϕ(x0) = 0}. x0(s) ∈ Γn−1
ϕ , s ∈ R

n−1 – local
coordinates

As a result of solving the corresponding “inverse” Cauchy problem (2.7) one finds
the following exact functional-analytic expression for a solution u ∈ C2(Rn; R) to the
boundary value problem (1.2) and (1.3):

u(x) = u0(x0(x)) +

∫ t(x)

0

L̄(x;u, p)dτ, (2.8)
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where, by definition,

L̄(x;u, p) := 〈p, µ∂H/∂p〉 (2.9)

for all (x;u, p) ∈ SH . If the Hamiltonian function H : R
n+1 × R

n → R is nonde-
generate, that is HessH := det(∂2H/∂p∂p} 6= 0 for all (x;u, p) ∈ SH , then the first
equation of (2.7) may be solved with respect to the variable p ∈ R

n as

p = ψ(x, ẋ;u) (2.10)

for (x, ẋ) ∈ T (Rn), where ψ : T (Rn) × R → R
n is some smooth mapping. This gives

rise to the following canonical Lagrangian function expression:

L(x, ẋ;u) := L̄(x;u, p)|p=ψ(x,ẋ;u) (2.11)

and to the resulting solution (2.8):

u(x) = u0(x0(x)) +

∫ t(x)

0

L(x, ẋ;u)dτ. (2.12)

The functional-analytic form (2.12) is already proper for constructing its equivalent
Hopf-Lax type form, being very important for finding so called generalized solutions
[3, 22, 25] to the partial differential equation (1.1). This aspect of the Cartan-Monge
geometric approach we suppose to analyze in detail elsewhere.

3. THE CHARACTERISTIC VECTOR FIELDS METHOD:
SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS

Assume we are given a second order partial differential equation

H(x;u, ux, uxx) = 0, (3.1)

where solution u ∈ C2(Rn; R) and the generalized “Hamiltonian” function H ∈
C2(Rn+1 × R

n ×(Rn ⊗ R
n); R). Putting p(1) := ux, p

(2) := uxx, x ∈ R
n, one can

construct within the Cartan-Monge generalized geometric approach the characteristic
surface

SH := {(x;u, p(1), p(2)) ∈ R
n+1 × R

n × (Rn ⊗ R
n) : H(x;u, p(1), p(2)) = 0} (3.2)

and a suitable Cartan’s set of differential one- and two-forms:

α
(1)
1 := du− 〈p(1), dx〉|ΣH

⇒ 0,

dα
(1)
1 := 〈dx,∧dp(1)〉|ΣH

⇒ 0,

α
(1)
2 := dp(1) − 〈p(2), dx〉|ΣH

⇒ 0,

dα
(1)
2 := 〈dx,∧dp(2)〉|ΣH

⇒ 0,

(3.3)



On the geometric structure of characteristic vector fields 95

vanishing upon the corresponding solution submanifold ΣH ⊂ SH . The set of differ-
ential forms (3.3) should be augmented with the characteristic surface SH invariance
differential 1-form

α
(1)
3 := dH|SH

⇒ 0, (3.4)

vanishing, respectively, upon the characteristic surface SH .
Let the characteristic vector field KH : SH → T (SH) on SH is given by expressions

dx/dτ = aH(x;u, p(1), p(2))
du/dτ = cH(x;u, p(1), p(2))

dp(1)/dτ = b
(1)
H (x;u, p(1), p(2))

dp(2)/dτ = b
(2)
H (x;u, p(1), p(2))



















:= KH(x;u, p(1), p(2)), (3.5)

for all (x;u, p(1), p(2)) ∈ SH . To find the vector field (3.5) it is necessary to satisfy the
Cartan compatibility conditions in the following geometric form:

iKH
α

(1)
1 |ΣH

⇒ 0, iKH
dα

(1)
1 |ΣH

⇒ 0, (3.6)

iKH
α

(1)
2 |ΣH

⇒ 0, iKH
dα

(1)
2 |ΣH

⇒ 0,

where, as above, iKH
: Λ(SH) → Λ(SH) is the internal differentiation of differential

forms along the vector field KH : SH → T (SH). As a result of conditions (3.6) one
finds that

cH = 〈p(1), aH〉, b
(1)
H = 〈p(2), aH〉,

β
(1)
1 := 〈aH , dp

(1)〉 − 〈b
(1)
H , dx〉|SH

⇒ 0,

β
(1)
2 := 〈aH , dp

(2)〉 − 〈b
(2)
H , dx〉|SH

⇒ 0,

(3.7)

being satisfied upon SH identically. The conditions (3.7) must be augmented still with

the characteristic surface invariance condition (3.4). Notice now that 1-form β
(1)
1 = 0

owing to the second condition of (3.7) and the third condition of (3.3). Thus, we need
now to make compatible the basic scalar 1-form (3.4)) with the vector-valued 1-form

β
(1)
2 ∈ Λ(SH) ⊗ R

n. To do this let us construct, making use of the β
(1)
2 , the following

parametrized set of, respectively, scalar 1-forms:

β
(1)
2 [µ] := 〈µ̄(1|0) ⊗ aH , dp

(2)〉 − 〈b
(2)
H , µ̄(1|0) ⊗ dx〉|SH

⇒ 0, (3.8)

where µ̄(1|0) ∈ C1(SH ; Rn) is any smooth vector-valued function on SH . The compat-
ibility condition for (3.8) and (3.4) gives rise to the next relationships:

µ̄(1|0) ⊗ aH = ∂H/∂p(2),

〈µ̄(1|0), b
(2)
H 〉 = −(∂H/∂x+ p(1)∂H/∂u+ 〈∂H/∂p(1), p(2)〉),

(3.9)

holding on SH . Take now such a dual vector function µ(1|0) ∈ C1(SH ; Rn) that
〈µ(1|0), µ̄(1|0)〉 = 1 for all points of SH . Then from (3.9) one finds easily that

aH = 〈µ(1|0), ∂H/∂p(2)〉,

b
(2)
H = −µ(1|0),∗ ⊗ (∂H/∂x+ p(1)∂H/∂u+ 〈∂H/∂p(1), p(2)〉).

(3.10)
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Combining now the first two relationships of (3.7) with the found above relation-
ships (3.10) we get the final form for the characteristic vector field (3.5):

KH = (aH ; 〈p(1), aH〉, 〈p(2), aH〉,−µ(1|0),∗ ⊗ (∂H/∂x+ p(1)∂H/∂u

+ 〈∂H/∂p(1), p(2)〉))ᵀ,
(3.11)

where aH = 〈µ(1|0), ∂H/∂p(2)〉 and µ(1|0) ∈ C1(SH ; Rn) is some smooth vector-valued
function on SH . Thereby, we may construct as earlier solutions to our partial differen-
tial equation of second order (3.1) by means of solving the equivalent Cauchy problem
for the set of ordinary differential equations (3.5) on the characteristic surface SH .

4. THE CHARACTERISTIC VECTOR FIELDS METHOD:
PARTIAL DIFFERENTIAL EQUATIONS OF HIGHER ORDERS

Consider a general nonlinear partial differential equation of higher order m ∈ Z+ as

H(x;u, ux, uxx, . . . , umx) = 0, (4.1)

where there is assumed that H ∈ C2(Rn+1 × (Rn)⊗m(m+1)/2; R). Within the general-
ized Cartan-Monge geometric characteristics method we need to construct the related
characteristic surface SH as

SH := {(x;u, p(1), p(2), . . . , p(m)) ∈ R
n+1 × (Rn)⊗m(m+1)/2 :

H(x;u, p(1), p(2), . . . , p(m)) = 0}, (4.2)

where we put p(1) := ux ∈ R
n, p(2) := uxx ∈ R

n⊗R
n, . . . , p(m) ∈ (Rn)⊗m for x ∈ R

n.
The corresponding solution manifold ΣH ⊂ SH is defined naturally as the integral
submanifold of the following set of one- and two-forms on SH :

α
(1)
1 := du− 〈p(1), dx〉|ΣH

⇒ 0,

dα
(1)
1 := 〈dx,∧dp(1)〉|ΣH

⇒ 0,

α
(1)
2 := dp(1) − 〈p(2), dx〉|ΣH

⇒ 0,

dα
(1)
2 := 〈dx,∧dp(2)〉|ΣH

⇒ 0, (4.3)

. . . . . . . . . . . . . . . . . . . . . .

α(1)
m := dp(m−1) − 〈p(m), dx〉|ΣH

⇒ 0,

dα(1)
m := 〈dx,∧dp(m)〉|ΣH

⇒ 0,

vanishing upon ΣH . The set of differential forms (4.3) is augmented with the deter-
mining characteristic surface SH invariance condition

α
(1)
m+1 := dH|SH

⇒ 0. (4.4)



On the geometric structure of characteristic vector fields 97

Proceed now to constructing the characteristic vector field KH : SH → T (SH) on
the hypersurface SH within the developed above generalized characteristics method.
Take the expressions

dx/dτ = aH(x;u, p(1), p(2), . . . , p(m))
du/dτ = cH(x;u, p(1), p(2), . . . , p(m)

dp(1)/dτ = b
(1)
H (x;u, p(1), p(2), . . . , p(m))

dp(2)/dτ = b
(2)
H (x;u, p(1), p(2), . . . , p(m)),

. . . . . . . . . . . . . . . . . . . . . . . . . . .

dp(m)/dτ = b
(m)
H (x;u, p(1), p(2), . . . , p(m)),



































:= KH(x;u, p(1), p(2)), (4.5)

for (x;u, p(1), p(2), . . . , p(m)) ∈ SH and satisfy the corresponding Cartan compatibility
conditions in the following geometric form:

iKH
α

(1)
1 |ΣH

⇒ 0, iKH
dα

(1)
1 |ΣH

⇒ 0, (4.6)

iKH
α

(1)
2 |ΣH

⇒ 0, iKH
dα

(1)
2 |ΣH

⇒ 0,

. . . . . . . . . . . . ..

iKH
α(1)
m |ΣH

⇒ 0, iKH
dα(1)

m |ΣH
⇒ 0.

As a result of suitable calculations in (4.6) one gets the following expressions:

cH = 〈p(1), aH〉, b
(1)
H = 〈p(2), aH〉,

β
(1)
1 : = 〈aH , dp

(1)〉 − 〈b
(1)
H , dx〉|SH

⇒ 0,

β
(1)
2 : = 〈aH , dp

(2)〉 − 〈b
(2)
H , dx〉|SH

⇒ 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4.7)

β(1)
m : = 〈aH , dp

(m)〉 − 〈b
(m)
H , dx〉|SH

⇒ 0,

being satisfied upon SH identically.

It is now easy to see that all of 1-forms β
(1)
j ∈ Λ1(SH)⊗ (Rn)⊗j , j = 1,m− 1 are

vanishing identically upon SH owing to the relationships (4.3). Thus, as a result we
obtain the only relationship

β(1)
m := 〈aH , dp

(m)〉 − 〈b
(m)
H , dx〉|SH

⇒ 0, (4.8)

which should be compatibly combined with that of (4.4). To do this suitably with
the tensor structure of the 1-forms (4.8), we take a smooth tensor function µ̄(m−1|0) ∈
C1(SH ; (Rn)⊗(m−1)) on SH and construct the parametrized set of scalar 1-forms

β(1)
m [µ] := 〈µ̄(m−1|0) ⊗ aH , dp

(m)〉 − 〈b
(m)
H , µ̄(m−1|0) ⊗ dx〉|SH

⇒ 0, (4.9)

which may be now identified with the 1-form (4.4). This gives rise right away to the
relationships

µ̄(m−1|0) ⊗ aH = ∂H/∂p(m),

〈µ̄(m−1|0), b
(m)
H 〉 = −(∂H/∂x+ p(1)∂H/∂u+ 〈∂H/∂p(1), p(2)〉 + . . .

+ 〈∂H/∂p(m−1), p(m)〉),

(4.10)
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holding on SH .
Now we may take such a dual tensor-valued function µ(m−1|0) ∈

C1(SH ; (Rn)⊗(m−1)) on SH that 〈µ(m−1|0), µ̄(m−1|0)〉 = 1 for all points of SH . Then
from (4.10) we easily get the searched unknown expressions

aH = 〈µ(m−1|0), ∂H/∂p(m)〉,

b
(m)
H = −µ(1|0),∗ ⊗ (∂H/∂x+ p(1)∂H/∂u+ 〈∂H/∂p(1), p(2)〉 + . . .

. . .+ 〈∂H/∂p(m−1), p(m)〉).

(4.11)

The obtained above result (4.11) combined with suitable expressions from (4.7) give
rise to the following final form for the characteristic vector field (4.5):

KH = (aH ; 〈p(1), aH〉, 〈p(2), aH〉, . . . , 〈p(m), aH〉,

− µ(m−1|0),∗ ⊗ (∂H/∂x+ p(1)∂H/∂u

+ 〈∂H/∂p(1), p(2)〉 + . . .+ 〈∂H/∂p(m−1), p(m)〉))ᵀ,

(4.12)

where aH = 〈µ(m−1|0), ∂H/∂p(m)〉 and µ(m−1|0) ∈ C1(SH ; (Rn)⊗(m−1)) is some
smooth tensor-valued function on SH . The resulting set (4.5) of ordinary differential
equations on SH makes it possible to construct exact solutions to our partial differen-
tial equation (4.1) in a suitable functional-analytic form, being often very useful for
analyzing its properties important for applications. On these and related questions
we plan to stop in detail elsewhere later.

Namely, if for instance a first order differential equation is given as

H(x;u, ux) = 0, (4.13)

where x ∈ R
n, H ∈ C1(R2n+1; R), ||Hux

|| 6= 0, the characteristics vector fields on the
related Monge hypersurface

SH := {(x;u, p) ∈ R
n × R

n+1 : H̄(x;u, p) := H(x;u, π)|π=ψ(x;u,p) = 0} (4.14)

are represented [18] as follows:

dx

dτ
= µ(1|1) ∂H̄

∂p
,
dp

dτ
= −µ(1|1),∗(

∂H̄

∂x
+ ψ

∂H̄

∂u
),
du

dτ
= 〈ψ, µ(1|1) ∂H̄

∂p
〉. (4.15)

Here µ(1|1) := (∂ψ/∂p)∗,−1 ∈ C1(R2n+1; Rn ⊗ R
n) is a nondegenerate smooth tensor

field on the hipersurface SH , related to its parametrization π := ψ(x;u, p) ∈ R
n, and

τ ∈ R is an evolution parameter.
Vector field (4.15) ensures [18] the tangency to the hyper-surface SH ⊂ R

n ×
R
n+1 and the projection compatibility condition with the dual Monge cone K∗ upon

the corresponding solution hypersurface S̄H ⊂ R
n+1 (see Fig. 2), generated by the

characteristic strips ΣH ⊂ SH through smoothly embedded sets Σ ⊂ SH , consisting of
points carrying the solutions to our problem (4.13). Similar results were also obtained
in [18] for both partial differential equations of higher orders and systems.
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x1

xn

u

x0(s)
Γn−1
ϕ

Σ̄ = (Γn−1
ϕ , u0)

S̄H

K∗

K
n

K∗(x;u)

(x, u)

n(x;u)

K(x;u)

Fig. 2. Geometric Monge method. The boundary conditions: Σ̄ =
`

Γn−1
ϕ , u0

´

⊂ S̄H ,
u0 ∈ C1(Γn−1

ϕ ; R), S̄H :=
˘

(x, u) ∈ R
n+1 : u = ψ(x)

¯

– the boundary problem solution
hypersurface

In general, the problem (4.13) is endowed with some boundary condition on a
smooth hypersurface Γϕ ⊂ R

n as

u|Γϕ
= u0, (4.16)

where u0 ∈ C1(Γϕ; R) is a given function. The hypersurface Γϕ ⊂ R
n may be, for

simplicity, defined as

Γϕ := {x ∈ R
n : ϕ(x) = 0}, (4.17)

where ϕ : R
n → R is a smooth mapping endowed with some local coordinates s(x) ∈

R
n−1 in the corresponding open neighborhoods Oε(x) ⊂ Γϕ of all points x ∈ Γϕ

at some ε > 0. Thus, we are interested in constructing analytical solutions to the
boundary problem (4.13), (4.16) and (4.17) and studying their properties. This and
related aspects of this problem will be discussed in detail below.

5. BOUNDARY PROBLEM ANALYSIS

Consider the set of characteristic equations (4.15) on the hypersurface SH ⊂ R ×
R
n+1, which start at points (x0;u0, p0) ∈ Σ under the additional condition that the
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corresponding projection Σ → Σ̄ upon the subspace R
n+1 (see Fig. 2) coincides with

the boundary set (Γϕ;u0) ⊂ R
n+1, that is

Σ̄ := (Γϕ;u0), (5.1)

where u0 ∈ C1(Γϕ; R) is our boundary condition.
Condition (5.1) evidently assumes that the set Σ ⊂ SH may be defined as follows:

Σ = (Σ̄; p0) (5.2)

with some p0 ∈ C1(Γϕ; Rn) being yet an unknown smooth mapping. For it to be
determined we need to ensure, for all points Σ ⊂ SH , the above mentioned Cartan
compatibility conditions, that is the conditions

du|Σ = 〈p, dx〉|Σ, 〈dψ,∧dx〉|Σ = 0, (5.3)

where Σ ⊂ SH is given by (5.2). As a result of (5.3), one easily finds that

{

∂u0(s)/∂s− 〈ψ(x0(s);u0(x0(s)), p0(s)), ∂x0(s)/∂s〉 = 0,

H̄(x0(s);u0(x0(s)), p0(s)) = 0
(5.4)

for all points x0 := x0(s) ∈ Γϕ, s ∈ R
n−1. Here we took into account that any point

x ∈ Γϕ is parametrized by means of the corresponding local coordinates s = s(x0) ∈
R
n−1, defined in the corresponding ε-vicinities Oε(x) ⊂ Γϕ, ε > 0.

The system of relationships (5.4) must be solvable for a mapping p0 : Γϕ → R
n at

all points x0 ∈ Γϕ, which gives rise to the determinant condition

det

[(

∂ψ

∂p

)∗
∂x0

∂s
;

(

∂H̄

∂p

)ᵀ]∣

∣

∣

∣

(x0;u0,p0)

6= 0 (5.5)

owing to the implicit function theorem [2]. If condition (5.5) is satisfied at points

(x0;u0, p
(j)
0 ) ∈ SH , where j = 1, N for some N ∈ Z+ and all points (x0;u0) ∈ Σ̄,

the system of equation (5.4) possesses exactly N ∈ Z+ different smooth solution

p
(j)
0 ∈ C1(Γϕ; Rn), j = 1, N, thereby determining corresponding Cauchy data (5.2)

for characteristic vector fields (4.15). It is clear enough that our boundary problem
(4.13), (4.16) and (4.17) possesses, in general, many solutions of different functional
classes, depending on the kind of the boundary conditions chosen. For instance, as
it was studied and analyzed in [19, 22, 27], this boundary problem may also possess
so-called generalized solutions, which under some additional conditions allow the so
called Hopf-Lax inf-type extremality form, being often very useful for studying their
asymptotic and other qualitative properties.

The important problem of constructing functional-analytic solutions to our equa-
tion (4.13) under boundary conditions (4.16) and (4.17) will be discussed in detail
below.
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6. THE HOPF-LAX TYPE INF-TYPE FUNCTIONAL-ANALYTIC
REPRESENTATION

Assume now that p0 ∈ C1(Γϕ; Rn) is a smooth solution to system (5.4), thereby
defining completely the required Cauchy data Σ ⊂ SH for characteristic vector fields
(4.15). Thus, making use of suitable classical methods for solving these ordinary
differential equations, one can, in particular, find that the function u ∈ C2(Rn; R) for
each attained point x = x(t) ∈ R

n may be represented in the analytical form

u(x(t)) = u(x(0)) +

∫ t

0

〈ψ(τ), µ(1|1) ∂H̄

∂p
(τ)〉dτ (6.1)

at any “time” t ∈ R. Since, by definition, x(0) := x0(s) ∈ Γϕ and u(x(0)) := u0(x0(s)),
s ∈ R

n−1, solution (6.1) is rewritten as

u(x(t)) = u0(x0(s)) +

∫ t

0

〈ψ(τ), µ(1|1) ∂H̄

∂p
(τ)〉dτ (6.2)

for any t ∈ R, where the integrand function in (6.2) is assumed to be found analyti-
cally.

Now, for vector field equations (4.15), pose the following “inverse” Cauchy problem

x|τ=t(x) = x ∈ R
n, x|τ=0 = x0(s[x0;x]) ∈ Γϕ (6.3)

for some local parameter s[x0;x] ∈ R
n−1 at the moment of “time” t(x) ∈ R corre-

sponding to an arbitrary reachable point x ∈ R
n as shown on Figure 3. Here we, in

particular, assumed that the evolution mapping (Γϕ,R) 3 (x0, τ)→x(τ ; x0) := x ∈
R
n is invertible for almost all reachable points x ∈ R

n and, accordingly, for each so
found point x0(s[x0;x]) ∈ Γϕ, x ∈ R

n one may suitably determine the unique point
p0(s[x0;x]) ∈ R

n, x ∈ R
n. As a result, owing to conditions (6.3), one may write down

the following expression:

u(x) = u0(x0([x0;x])) +

∫ τ=t(x)

τ=0

L(τ |x0(s[x0;x]);x)dτ, (6.4)

where L : R × (Γϕ × R
n) → R is the so called “quasi-Lagrangian” function:

L(τ |x0([x0;x]);x) := 〈p(τ), µ(1|1) ∂H̄

∂p
(τ)〉, (6.5)

which is defined by solutions to characteristic vector field equations (4.15) under
conditions (6.3). The expression (6.4), on integrating it with respect to parameter
τ ∈ [0, t(x)] ⊂ R, reduces to the analytical form

u(x) = u0(x0(s[x0;x])) + P(x0([x0;x]);x), (6.6)

where points x0(s(x)) ∈ Γϕ, x ∈ R
n, and, by definition, the “kernel” function is as

follows:

P(x0(s[x0;x]);x) :=

∫ τ=t(x)

τ=0

L(τ |x0([x0;x]);x)dτ. (6.7)
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x

u

p

Σ̄

S̄H

(x, u(x))

(x0(s), u0(x0(s))

SHcharacteristic strip

ΣH

KH

Σ = (Σ̄, p0)

(x0(s);u0(x0(s)), p0(s))

(x;u(x), p = ux(x))

Fig. 3. Geometric Monge method. The characteristic surface:
SH =

˘

(x;u, p) ∈ R
2n+1 : H(x;u, p) = 0

¯

and initial conditions for the vector field
KH : SH → T (SH), satisfying the Cartan’s compatibility conditions: du−〈p, dx〉

|KH ,Γ
n−1
ϕ

=0

iff S̄H ||K∗ and there exist data Σ = (Σ̄, p0) defining the characteristic strip ΣH

Expression (6.6) does solve equation (4.13) under boundary conditions (4.16) and
may be effective enough for applications, if kernel-function (6.7) is constructed ana-
lytically. But, in general, if ∂H̄/∂u 6= 0 identically on SH , quasi-Lagrangian function
(6.5) depends effectively on the yet unknown solution u ∈ C2(Rn; R), which makes
expressions (6.7) and (6.6) senseless. Since the latter expressions, obviously, strongly
depend on a choice of the parametrisation π := ψ(x;u, p) ∈ R

n, (x;u, p) ∈ SH ,
at which the tensor field µ(1|1) = (∂ψ/∂p)∗,−1 ∈ C1(R2n+1; Rn ⊗ R

n) is under our
disposition, one may propose a partial remedy to this problem.

Namely, to make optimum use of this possibility, let us additionally assume that
our tensor field µ(1|1) = (∂ψ/∂p)∗,−1 ∈ C1(R2n+1; Rn ⊗ R

n) carries the associated
symplectic structure. This means, speaking more generally, the existence of such
a “symplectic” element Ψ := (ψ1, ψ2)

ᵀ ∈ C2(Rn × R
n+1;T ∗(T ∗(Rn))) that for all



On the geometric structure of characteristic vector fields 103

(x, p) ∈ T ∗(Rn) ' R
n × R

n the following equality holds

(

dx
dτ
dp
dτ

)

= −ϑ

(

∂H̄
∂x + ψ ∂H̄∂u

∂H̄
∂p

)

, (6.8)

where the co-symplectic operator ϑ : T ∗(T ∗(Rn)) → T (T ∗(Rn)) of the form

ϑ :=

(

0 −µ(1|1)

µ(1|1),∗ 0

)

(6.9)

is defined as ϑ = Ω−1 under the condition that the symplectic matrix

Ω := Ψ′ − Ψ′,∗ =

(

∂ψ1

∂x −
∂ψ∗

1

∂x
∂ψ1

∂p −
∂ψ∗

2

∂x
∂ψ2

∂x −
∂ψ∗

1

∂p
∂ψ2

∂p −
∂ψ∗

2

∂p

)

(6.10)

is nondegenerate. This, in particular, gives rise to the next important corollary: char-
actersitic vector field system (4.15) is Hamiltonian, allowing the natural Lagrangian
extremality interpretation:

δ

δx

τ=t(x)
∫

τ=0

L̃(x, ẋ;u)dτ = 0, (6.11)

holding over the set of all smooth curves x ∈ C2([0, t(x)]; Rn), x(0) = x0 ∈ Γϕ,
x(t(x)) = x ∈ R

n\Γϕ. Here, by definition, we put ẋ := dx/dτ for τ ∈ [0, t(x)],

L̃(x, ẋ;u) := 〈ψ1, ẋ〉 + 〈ψ2, ṗ〉 − H̄(x;u, p)
∣

∣

p=α(x,ẋ;u)
, (6.12)

ṗ := dp/dτ, where the vector p := α(x, ẋ;u) ∈ R
n solves the following system of

equations, equivalent to (6.8):

(∂ψ1

∂x −
∂ψ∗

1

∂x )ẋ+ (∂ψ1

∂p −
∂ψ∗

2

∂x )ṗ = ∂H̄
∂x + ψ ∂H̄∂u ,

(∂ψ2

∂x −
∂ψ∗

1

∂p )ẋ+ (∂ψ2

∂p −
∂ψ∗

2

∂p )ṗ = ∂H̄
∂p

(6.13)

at points (x, ẋ;u) ∈ R
2n × R.

Lagrangian extremality condition (6.11) makes it possible to introduce a new “mo-
mentum” variable p̃ ∈ R

n, canonically conjugated with the variable x ∈ R
n as follows:

p̃ := ∂L̃/∂ẋ. (6.14)

This gives rise to a new canonical Hamiltonian system for conjugated variables (x, p̃) ∈
R
n × R

n and a new Hamiltonian function H̃ : R
2n+1→R, completely equivalent to

system (6.8)
dx
dτ = ∂H̃

∂p̃ ,
dp̃
dτ = − (∂H̃∂x + ψ ∂H̃∂u )

∣

∣

∣

p=α̃(x,;u,p̃)
(6.15)
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together with the compatibility equation

du/dτ = 〈α̃(x;u, p̃), β̃(x;u, p̃)〉, (6.16)

where, by definition, we put

α̃(x;u, p̃) := α(x, ẋ;u)|ẋ=β̃(x;u,p̃) , p := α̃(x;u, p̃) := α(x, ẋ;u)|ẋ=β̃(x;u,p̃) ,

H̃(x; p̃|u) := H(x;u, p) + 〈p̃− ψ1, β̃〉 − 〈ψ2, dα̃/dτ〉|p:=α̃(x;u,p̃) ,
(6.17)

based on the following relationships

p̃ = ∂L̃(x, ẋ;u)/∂ẋ
∣

∣

∣

ẋ=β̃(x;u,p̃)
, (6.18)

owing to the implicit function theorem, applied to (6.14) with respect to the variable
ẋ ∈ R

n.
Now we are in a position to write down the following Hamilton-Jacobi equation on

the canonical transformations “generating” function ũ ∈ C2(Rn×R; R), corresponding
to expressions (6.15) and (6.17):

∂ũ

∂τ
+ H̃(x;

∂ũ

∂x
|u) = 0, (6.19)

where the sought-for function u ∈ C2(Rn; R) satisfies equation (6.16).
Assume now for a while that the function u ∈ C2(Rn; R) is constant along vector

field (6.8), that is
du/dτ = 〈α̃(x;u, p̃), β̃(x;u, p̃)〉 = 0 (6.20)

for all (x;u, p̃) ∈ R
n × R

n+1. The condition (6.20) involves some constraints on the
“symplectic” vector Ψ = (ψ1, ψ2)

ᵀ ∈ C2(Rn×R
n+1; Rn×R

n), which may be satisfied
by means of choosing a suitable parametrization π := ψ(x;u, p) ∈ R

n, (x;u, p) ∈
SH , of the characterstic hypersurface SH . Proceed now to solving the canonical
Hamilton-Jacobi equation (6.19) under some Cauchy data ũ|t=0 = ũ0 ∈ C2(Γϕ; R).
This problem may be solved easily enough via the standard Hopf-Lax type [19, 22]
scheme. Namely, consider inverse Cauchy problem (6.3) for canonical Hamilton
equations (6.15) of the form

dx

dτ
=
∂H̃

∂p̃
,
dp̃

dτ
= −(

∂H̃

∂p̃
+ α̃

∂H̃

∂u
), (6.21)

where the parameter τ ∈ [0, t(x)] ∈ R. Then the corresponding solution to
Hamilton-Jacobi equation (6.19) possesses the functional-analytical Hopf-Lax type
form

ũ(x, t|u) = inf
y∈Γϕ

{ũ0(y) + P̃(t, x; y|u)}, (6.22)

following right away from the expression analogous to (6.6), where, by definition, the
“kernel”

P̃(t, x; y|u) :=

t
∫

0

L̃(τ ; y, x|u)dτ (6.23)
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is obtained from the Lagrangian function

L̃(τ ; y, x|u) = L̃(x, ẋ;u)
∣

∣

∣

x=x̃(τ ;y,x|u)
, L̃(x, ẋ;u) := 〈p̃,

∂H̃

∂p̃
〉 − H̃(x;u, p̃), (6.24)

calculated on solutions to equations (6.21) under conditions (6.3). Then, owing to
conditions (6.24), (6.17) and (6.16), the equality

H̃(x; p̃|u) = H(x;u, p) + 〈p̃− ψ1, β̃〉 − 〈ψ2, dα̃/dτ〉|τ=t(x) , (6.25)

holds for suitable x0 = x0(x) ∈ Γϕ and τ = t(x) ∈ R. Moreover, as H(x;u, p) = 0 for
all points (x; p|u) ∈ T ∗(R

n
) × R, equality (6.25) reduces to

H̃(x;u, p̃) = 〈ũx − ψ1, β̃〉 − 〈ψ2, dα̃/dτ〉|τ=t(x) , (6.26)

which will be later used for determining the sought-for solution u ∈ C2(Rn; R) in
an implicit form. To do this much more effectively, we consider expression (6.22) at
t = t(x) ∈ R obtained in the following functional analytic form:

ũ(x, t(x)|u) = inf
y∈Γϕ

{ũ0(y) + P̃(t(x), x; y|u)}, (6.27)

taking into account boundary condition (4.16) for the corresponding solution u ∈
C2(Rn; R) of the Hamilton-Jacobi equation (4.13) at x0 = x0(x|u) ∈ Γϕ for all reach-
able points x ∈ R\Γϕ. The Cauchy data ũ0 ∈ C2(Γϕ; R) may be taken, in general,
arbitrarily, but so that infimum (6.27) exists and the conditions

p̃0(x0) = ∂ũ(x0, τ |u)/∂x|τ=0 = ∂L̃(x, ẋ;u)/∂ẋ
∣

∣

∣

τ=0
(6.28)

hold, if equations (6.15) and (6.20) are satisfied. Therefore, if the point ȳ := y(x|u) ∈
Γϕ is such that

inf
y∈Γϕ

{ũ0(y) + P̃(t(x), x; y|u)} = ũ0(ȳ) + P̃(t(x), x; ȳ|u), (6.29)

then the trajectory of the point y(x|u) = x0(x|u) ∈ Γϕ along vector field (6.21) will
necessary satisfy condition (6.20), which makes it possible to write down the following
implicit expression for the sought-for solution u ∈ C2(Rn; R):

u(x) = u0(y(x|u(x))), (6.30)

where ȳ := y(x|u) ∈ Γϕ satisfies the following determining relationship

p̃0(ȳ) + ∂P̃(t(x), x; ȳ|u)/∂y = 0, (6.31)

stemming from condition (6.28). Thereby, we may formulate the obtained result as
the following theorem.
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Theorem 1. Implicit expression (6.30) gives rise to a functional-analytic solution
to boundary problem (4.13) and (4.16), depending on the given boundary data u0 ∈
C2(Γϕ; R).

Based on the derivation of the above result, we may conclude that the statement of
the above theorem holds, in general, for any nontrivial smooth Hamiltonian function
H ∈ C2(R2n+1; R), for which the following two conditions

rankΩ = 2n, rank(
∂

∂p
[ϑ11(

∂H̄

∂x
+ ψ

∂H̄

∂u
) + ϑ12

∂H̄

∂p
]) = n (6.32)

are satisfied almost everywhere on T ∗(Rn)×R. Conditions (6.32) should hold simulta-
neously with that of (6.20), giving rise to implicit solution (6.29) to Hamilton-Jacobi
equation (4.13) under boundary condition (4.14).

It is now easy to see that expression (6.30) is equivalent to some fixed point
problem P (u) = u, u ∈ C2(Rn; R), for the associated nonlinear mapping P :
C2(Rn; R) →C2(Rn; R), where, by definition,

P (u)(x) := u0(y(x|u(x))) (6.33)

for all reachable points x ∈ R
n. This observation may be formulated as the following

important theorem.

Theorem 2. A solution to functional-analytic fixed point problem (6.33) solves si-
multaneously boundary problem (4.16) to generalized Hamilton-Jacobi equation (4.13).

7. THE STRUCTURE OF HOPF-LAX TYPE FUNCTIONAL-ANALYTIC
SOLUTIONS TO GENERALIZED HAMILTON-JACOBI EQUATIONS

Consider the following generalized nonlinear Hamilton-Jacobi equation

∂u/∂t+H(x, t;u, ux) = 0 (7.1)

with a Hamiltonian function H ∈ C2(Rn+1 ×R
n+1; R) and pose the Cauchy problem

u|t=0 = u0, (7.2)

where u0 ∈ C1(Rn; R) and t ∈ R is an evolution parameter. For investigating
functional-analytic solutions to Hamiton-Jacobi equation (7.1) we will apply the
generalized characteristics method, proposed above. Namely, consider the following
non-canonical Hamiltonian vector field on the cotangent space T ∗(Rn+1) 3 (x, t; p, σ),
generated by a non-degenerate Hamiltonian function H ∈ C2(R2n+2; R), where the
function u ∈ C2(Rn+1; R) is a priori assumed to solve equation (7.1) under condition
(7.2), that is

(

dx
dτ
dp
dτ

)

=

(

0 µ(1|1)

−µ(1|1),∗ 0

)(

∂H̄
∂x + ψ ∂H̄∂u

∂H̃
∂p

)

, (7.3)

dσ

dτ
= −

(

∂H̄

∂t
+ σ

∂H̄

∂u

)

,
dt

dτ
= 1,
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where the tensor field µ(1|1) := (∂ψ/∂p)∗,−1 ∈ C1(R2n+2; Rn ⊗ R
n) is chosen with

respect to a suitable parametrization π := ψ(x, t;u, p), (x, t;u, p) ∈ SH , of the char-
acteristic surface

SH := {(x, t;u, p, σ) ∈ R
2n+2 : σ + H̄(x, t;u, p) = 0,

H̄(x, t;u, p) := H(x, t;u, π)|π=ψ(x,t;u,p) ,

compatible with the Cartan condition

du/dτ = 〈ψ, µ(1|1) ∂H̃

∂p
〉 − H̄(x, t;u, p). (7.4)

Since flow (7.3) is Hamiltonian, it may be represented [8, 21] dually in the related
Lagrangian variatonal form:

δ

δx

τ=t
∫

τ=0

L(x, t; ẋ|u)dτ

∣

∣

∣

∣

∣

∣ x(0) = x0 ∈ R
n

x(t) = x ∈ R
n

= 0 (7.5)

for any t ∈ R and fixed points x(0) = x0 ∈ R
n and x(t) = x ∈ R

n. Here, as before,
we use the notation ẋ := dx/dτ, τ ∈ R, and

L(x, t; ẋ|u) := 〈ψ, µ(1|1) ∂H̄

∂p
〉 − H̄(x, t;u, p)

∣

∣

∣

∣

p:=α(x,t;ẋ|u)

(7.6)

the corresponding quasi-Lagrangian function, and denoted, by definition, p :=
α(x, t; ẋ|u), and ṗ = dp/dτ, solving implicitly the system of equations

ẋ− µ(1|1) ∂H̃

∂p
= 0, ṗ+ µ(1|1),∗

(

∂H̄

∂x
+ ψ

∂H̄

∂u

)

= 0 (7.7)

under the inverse Cauchy data

x|τ=t = x ∈ R
n, x|τ=0 = x0(x, t) ∈ R

n, p|τ=0 = p0(x, t) ∈ R
n (7.8)

for any fixed point (x, t) ∈ R
n+1. Note also, that the first equation of (7.8) is always

uniquely solvable with respect to the variable p ∈ R
n, owing to the nondegeneracy

condition

rank(
∂

∂p
[〈ψ, µ(1|1) ∂H̄

∂p
〉]) = n, (7.9)

assumed earlier. Based now on Lagrangian variational form (7.5), one may construct
the following functional-analytical Hopf-Lax type representation for the solution of
Hamilton-Jacobi equation under condition (7.14):

u(x, t) = inf
y∈Rn

{u0(y) + P(x, t; y|u)}, (7.10)
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where, by definition, the “kernel” function

P(x, t; y|u) :=

τ=t
∫

τ=0

L(x, t; ẋ|u)dτ (7.11)

is calculated on solutions to Hamiltonian equations (4.9) under conditions (7.7). In the
case when ∂H/∂u 6= 0 identically on SH , we need to make the next step to skirt this
problem, as expression (7.10) becomes senseless, depending on the unknown solution
u ∈ C2(Rn+1; R). Assume now that the parametrization π := ψ(x, t;u, p) ∈ R

n,
(x, t;u, p) ∈ SH , of the characteristic surface SH is chosen so as to make expression
(7.4) vanish identically:

du/dτ = 〈ψ, µ(1|1) ∂H̃

∂p
〉 − H̄(x, t;u, p)

∣

∣

∣

∣

∣

SH

= 0. (7.12)

Since infimum (7.10) is then attained at some point x0 = ȳ := y(x, t|u) ∈ R
n for an

arbitrary but fixed point (x, t|u) ∈ R
n+1 × R and constant value u = u0(ȳ) ∈ R, we

may write down two important relationships:

∂u0(ȳ)/∂y := ψ(x(τ), τ ;u(τ), p(τ))|τ=0 = ψ(ȳ, 0, u0(ȳ), p0(ȳ|u)), (7.13)

where the initial vector p0(x, t) := p0(ȳ|u) ∈ R
n depends on the chosen constant value

u = u0(ȳ) ∈ R, and
u(x, t) = u0(y(x, t|u(x, t)), (7.14)

holding for all (x, t) ∈ R
n. Thereby, having solved equation (7.13) with respect to

the critacal point ȳ := y(x, t|u) ∈ R
n, one can directly write down the solution

to Hamilton-Jacobi equation (7.1) with Cauchy data (7.2) for all (x, t) ∈ R
n+1 in

implicit functional-analytic form (7.14). Expression (7.14) is, evidently, equivalent
to the fixed point problem P (u) = u, u ∈ C2(Rn+1; R), for te associated nonlinear
mapping P : C2(Rn × R; R) →C2(Rn × R; R), where, by definition,

P (u)(x, t) := u0(y(x, t|u(x, t)) (7.15)

for all reachable points (x, t) ∈ R
n+1. The result obtained above may be formulated

as the following theorem.

Theorem 3. A solution to functional-analytic fixed point problem (7.15) solves si-
multaneously Cauchy problem (7.1) to generalized Hamilton-Jacobi equation (7.2).

Fixed point problem (7.15), in general, is solved [2] under some weak enough con-
ditions on operator (7.15), but its solution, as is well known [2, 22, 27], is not often
unique, thus more of its additional properties are to be studied. We hope to investigate
such and related problems in detail elsewhere.

As an example, consider the canonical Hamilton-Jacobi equation

ut + ||ux||
2/2 = 0, (7.16)
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where || · || is the standard norm in the Euclidean space E
n := (Rn, 〈·, ·〉), and try to

construct its exact functional-analytic [19,20,22] generalized solutions u : E
n×R+ →

R, satisfying the Cauchy condition

u|t=+0 = u0 (7.17)

for a given function u0 : E
n → R. One can easily enough to state, making use of

the characteristics method [19, 22, 29, 30], that equation (7.16) possesses for smooth
Cauchy data u0 ∈ C1(En; R) an exact functional-analytic generalized solution in the
form

u(x, t) = u0(y) +
1

2t
||x− y||2, (7.18)

where a vector y := y(x, t) ∈ E
n for all (x, t) ∈ E

n × R+ satisfies the following
determining equation

∂u0(y)/∂y − (x− y)/t = 0. (7.19)

It was proved in [3, 19, 22] that in a more general case of convex and below semicon-
tinuous Cauchy data u0 ∈ BSC(c)(R

n; R) the expression (7.19) allows the completely
equivalent to (7.20) so called Hopf-Lax type representation

u(x, t) = inf
y∈En

{u0(y) +
1

2t
||x− y||2}, (7.20)

being a generalized [22] solution to the Hamilton-Jacobi equation (7.16). So-
lution (7.18) satisfies [19] the following natural asymptotic “viscosity” property:
limt→∞ u(x, t) = infy∈En{u0(y)} for almost all x ∈ E

n. In general, Cauchy prob-
lem (7.16) and (7.17) with functions u0 ∈ BSC(En; R)∩C1(En; R) possesses a unique
functional-analytic representation for its generalized solutions satisfying the standard
viscosity property.
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