Monika Perl

NEARLY PERFECT SETS IN THE *n*-FOLD PRODUCTS OF GRAPHS

Abstract. The study of nearly perfect sets in graphs was initiated in [2]. Let $S \subseteq V(G)$. We say that S is a *nearly perfect* set (or is *nearly perfect*) in G if every vertex in V(G) - Sis adjacent to at most one vertex in S. A nearly perfect set S in G is called 1-maximal if for every vertex $u \in V(G) - S$, $S \cup \{u\}$ is not nearly perfect in G. We denote the minimum cardinality of a 1-maximal nearly perfect set in G by $n_p(G)$. We will call the 1-maximal nearly perfect set of the cardinality $n_p(G)$ an $n_p(G) - set$. In this paper, we evaluate the parameter $n_p(G)$ for some n-fold products of graphs. To this effect, we determine 1-maximal nearly perfect sets in the n-fold Cartesian product of graphs and in the n-fold strong product of graphs.

Keywords: dominating sets, product of graphs.

Mathematics Subject Classification: 05C69, 05C70.

1. INTRODUCTION

Let G be a simple graph and $u \in V(G)$. By $N_G(u)$ we denote the open neighbourhood of u; i.e., $N_G(u) = \{v: uv \in E(G)\}$. We say that the subset $A \subseteq V(G)$ is called independent in G if $N_G(x) \cap A = \emptyset$ for every vertex $x \in A$. We denote the cardinality of the maximum independent set in G by $\alpha(G)$. The subset $A \subseteq V(G)$ is called a perfect dominating set in G if every vertex outside A has exactly one neighbour in A. We say that the subset $S \subseteq V(G)$ is a nearly perfect set (or is nearly perfect) in G if every vertex in V(G) - S is adjacent to at most one vertex in S. Note that the set $S = \emptyset$ is a nearly perfect set in an arbitrary graph. A nearly perfect set S in G is called 1-maximal if for every vertex $u \in V(G) - S$, $S \cup \{u\}$ is not nearly perfect in G. Observe that V(G) is a 1-maximal nearly perfect set in G. We denote the minimum cardinality of a 1-maximal nearly perfect set in G by $n_p(G)$. We will call the 1-maximal nearly perfect set of the cardinality $n_p(G)$ an $n_p(G) - set$. Let $n \ge 2$. The n-fold Cartesian product of graphs G_1, \ldots, G_n is the graph $\mathbf{X}_{i=1}^n G_i$ with $V(\mathbf{X}_{i=1}^n G_i) =$ $V(G_1) \times \cdots \times V(G_n) = X_{i=1}^n V(G_i)$, where $(x_1, \ldots, x_n)(y_1, \ldots, y_n) \in E(\mathbf{X}_{i=1}^n G_i)$ if there exists $j \in \{1, 2, ..., n\}$ such that $x_j y_j \in E(G_j)$ and $x_i = y_i$ for $i \neq j$. This is equivalent to the inductive definition $\mathbf{X}_{i=1}^n G_i = (\mathbf{X}_{i=1}^{n-1}G_i) \times G_n$. The *n*-fold strong product of graphs $G_1, ..., G_n$ $(n \geq 2)$ is the graph $\bigotimes_{i=1}^n G_i$ with $V(\bigotimes X_{i=1}^n G_i) =$ $V(G_1) \times \cdots \times V(G_n) = X_{i=1}^n V(G_i)$, where $(x_1, ..., x_n)(y_1, ..., y_n) \in E(\bigotimes_{i=1}^n G_i)$ if $(x_1, ..., x_n)(y_1, ..., y_n) \in E(\mathbf{X}_{i=1}^n G_i)$ or if $x_i y_i \in E(G_i)$ for i = 1, 2, ..., n. This is equivalent to the inductive definition $\bigotimes_{i=1}^n G_i = (\bigotimes_{i=1}^{n-1} G_i) \otimes G_n$. For concepts not defined here, see [1].

2. MAIN RESULTS

In [3], the following proposition is proved.

Proposition 1. If S_i is a nearly perfect set in G_i for i = 1, 2, then $S_1 \times S_2$ is a nearly perfect set in $G_1 \times G_2$.

In our further investigations, a nearly perfect set S_i in G_i is not empty and $S_i \neq V(G_i)$ for i = 1, 2, ..., n.

Theorem 1. Let $S_i \subseteq V(G_i)$ for i = 1, 2, ..., n. The subset $S = X_{i=1}^n S_i \subseteq V(\mathbf{X}_{i=1}^n G_i)$ is a nearly perfect set in $\mathbf{X}_{i=1}^n G_i$ if and only if a subset S_i is a nearly perfect set in G_i for each i = 1, 2, ..., n.

Proof. Let S_i be an arbitrary nonempty subset of $V(G_i)$ for i = 1, 2, ..., n. Suppose that there exists $j \in \{1, 2, ..., n\}$ such that S_j is not nearly perfect in G_j . We will show that $S = X_{i=1}^n S_i$ is not nearly perfect in $\mathbf{X}_{i=1}^n G_i$. If S_j is not nearly perfect in G_j , then there exists a vertex $w_j \in V(G_j) - S_j$ such that $|N_{G_j}(w_j) \cap S_j| \ge 2$. Hence, say $u_j, v_j \in N_{G_j}(w_j) \cap S_j$. By $S_i \neq \emptyset$, we can take a vertex $w_i \in S_i$ for each $i \neq j$. Therefore, the vertex $\mathbf{w} = (w_1, \ldots, w_n) \in V(\mathbf{X}_{i=1}^n G_i) - S$ is adjacent to at least two different vertices $(w_1, \ldots, w_{j-1}, u_j, w_{j+1}, \ldots, w_n)$ and $(w_1, \ldots, w_{j-1}, v_j, w_{j+1}, \ldots, w_n)$ in S. Thus, the set $S = X_{i=1}^n S_i$ is not nearly perfect in $\mathbf{X}_{i=1}^n G_i$.

The "if" part is proved by induction on n. Proposition 1 guarantees that the result holds for n = 2. Suppose n > 3 and assume that if S_i is nearly perfect in G_i for i = 1, 2, ..., n - 1, then $X_{i=1}^{n-1}S_i$ is a nearly perfect set in $\mathbf{X}_{i=1}^{n-1}G_i$. The rest of the proof runs as in the case n = 2, with $G_1 = \mathbf{X}_{i=1}^{n-1}G_i$ and $G_2 = G_n$. Thus, $(X_{i=1}^{n-1}S_i) \times S_n = X_{i=1}^n S_i$ is a nearly perfect set in $(\mathbf{X}_{i=1}^{n-1}G_i) \times G_n = \mathbf{X}_{i=1}^n G_i$. We conclude from the inductive definition of the *n*-fold Cartesian product that $S = X_{i=1}^n S_i$ is a nearly perfect set in $\mathbf{X}_{i=1}^{n-1}G_i$, which completes the proof. \Box

Proposition 2. Let $S_i \subseteq V(G_i)$ and let $S_i \neq \emptyset$ for i = 1, 2, ..., n. The subset $S = X_{i=1}^n S_i \subseteq V(\mathbf{X}_{i=1}^n G_i)$ is independent in $\mathbf{X}_{i=1}^n G_i$ if and only if the subset S_i is independent in G_i for each i = 1, 2, ..., n.

Proof. Let S_i be an arbitrary nonempty subset of $V(G_i)$ for i = 1, 2, ..., n and let $S = X_{i=1}^n S_i \subseteq V(\mathbf{X}_{i=1}^n G_i)$ be independent in $\mathbf{X}_{i=1}^n G_i$. Suppose that there exists $j \in \{1, 2, ..., n\}$ such that S_j is not independent in G_j $(S_j \neq \emptyset)$. This means that there exist vertices $u_j, v_j \in S_j$ such that $u_j v_j \in E(G_j)$. Therefore, the vertices $(w_1, ..., w_{j-1}, u_j, w_{j+1}, ..., w_n) = \mathbf{w}_u$ and $(w_1, ..., w_{j-1}, v_j, w_{j+1}, ..., w_n) = \mathbf{w}_v$,

where $w_i \in S_i$ for i = 1, 2, ..., n, are neighbouring in $\mathbf{X}_{i=1}^n G_i$. Moreover, vertices $\mathbf{w}_u, \mathbf{w}_v \in S$. Thus, S is not independent in $\mathbf{X}_{i=1}^n G_i$.

Now, let S_i be an arbitrary independent subset of $V(G_i)$ for i = 1, 2, ..., n. By the definition of *n*-fold Cartesian product, it follows that the set $S = X_{i=1}^n S_i$ is independent in $\mathbf{X}_{i=1}^n G_i$, as required.

Theorem 2. Let $S_i \subseteq V(G_i)$ for i = 1, 2, ..., n. The subset $S = X_{i=1}^n S_i \subseteq V(\mathbf{X}_{i=1}^n G_i)$ is a 1-maximal nearly perfect independent set in $\mathbf{X}_{i=1}^n G_i$ if and only if the subset S_i is a 1-maximal nearly perfect independent set and a perfect dominating set in G_i for each i = 1, 2, ..., n.

Proof. Let $S_i \subseteq V(G_i)$ be an arbitrary nonempty set for i = 1, 2, ..., n. Suppose that $S = X_{i=1}^n S_i$ is a 1-maximal nearly perfect independent set in $\mathbf{X}_{i=1}^n G_i$. By Theorem 1 and Proposition 2, S_i is independent and nearly perfect in G_i for each i = 1, 2, ..., n. We just have to show that the nearly perfect set S_i in G_i is 1-maximal and perfect dominating in G_i for each i = 1, 2, ..., n.

First we prove that the nearly perfect set S_i in G_i is 1-maximal in G_i for i = 1, 2, ..., n. On the contrary, suppose that there exists $j \in \{1, 2, ..., n\}$ such that S_j is not 1-maximal in G_j . From this it follows that there exists a vertex $w_j \in V(G_j) - S_j$ such that $S_j \cup \{w_j\}$ is a nearly perfect set in G_j . Therefore, by Theorem 1, the set $S_{w_j} = S_1 \times \cdots \times S_{j-1} \times (S_j \cup \{w_j\}) \times S_{j+1} \times \cdots \times S_n$ is nearly perfect in $\mathbf{X}_{i=1}^n G_i$. So, every vertex outside S_{w_j} has at most one neighbour in S_{w_j} . Thus, it has at most one neighbour in $S \cup \{\mathbf{x}_{w_j}\} \subseteq S_{w_j}$, where $\mathbf{x}_{w_j} = (x_1, \ldots, x_{j-1}, w_j, x_{j+1}, \ldots, x_n)$. Moreover, every vertex from $S_{w_j} - S$ has at most one neighbour in S, since S is nearly perfect in $\mathbf{X}_{i=1}^n G_i$. By the assumption that S_i is independent in G_i for $i = 1, 2, \ldots, n$, we see that for every vertex $x_i \in S_i$, $N_{G_i}(x_i) \cap S_i = \emptyset$ for $i = 1, 2, \ldots, n$. For this reason the vertex $\mathbf{x}_{w_j} = (x_1, \ldots, x_{j-1}, w_j, x_{j+1}, \ldots, x_n) \in S_{w_j} - S$ does not have neighbours in $S_{w_j} - S$. From the above, it follows that $S \cup \{\mathbf{x}_{w_j}\}$ is a nearly perfect set in $\mathbf{X}_{i=1}^n G_i$. This contradicts the 1-maximality of S.

Now, we prove that S_i is a perfect dominating set in G_i for i = 1, 2, ..., n. On the contrary, suppose that there exists $j \in \{1, 2, ..., n\}$ such that S_j is not perfect dominating in G_j , i.e., there is a vertex $u_j \in V(G_j) - S_j$ such that $|N_{G_j}(u_j) \cap S_j| \neq 1$. Since S_j is a nearly perfect set in G_j , we see that there must be $|N_{G_j}(u_j) \cap S_j| = 0$. Let $u_i \in V(G_i) - S_i$ for every $i \neq j$. In $\mathbf{X}_{i=1}^n G_i$, $\mathbf{u} = (u_1, u_2, ..., u_n) \in X_{i=1}^n(V(G_i) - S_i)$ does not have neighbours in S. From the definition of the *n*-fold Cartesian product, it follows that the vertex \mathbf{u} can have neighbours only in a set $A_1 \cup A_2$, where $A_1 =$ $V(G_1) \times \cdots \times V(G_{j-1}) \times \{u_j\} \times V(G_{j+1}) \times \cdots \times V(G_n)$ and $A_2 = \{u_1\} \times \cdots \times \{u_{j-1}\} \times$ $(V(G_j) - S_j) \times \{u_{j+1}\} \times \cdots \times \{u_n\}$. But vertices of A_1 do not have neighbours in S, because $|N_{G_j}(u_j) \cap S_j| = 0$, and vertices of A_2 do not have neighbours in S either, because A_2 is a subset of $X_{i=1}^n(V(G_i) - S_i)$. Thus, $S \cup \{\mathbf{u}\}$ is a nearly perfect set in $\mathbf{X}_{i=1}^n G_i$, which contradicts the 1-maximality of S.

Now, let S_i be a 1-maximal nearly perfect independent set in G_i . From Theorem 1 and Proposition 2, it follows that S is a nearly perfect independent set in $\mathbf{X}_{i=1}^n G_i$. It only remains to show that the nearly perfect set S in $\mathbf{X}_{i=1}^n G_i$ is 1-maximal in $\mathbf{X}_{i=1}^n G_i$. The proof is by induction on n. Let n = 2 and let (y_1, y_2) be an arbitrary vertex outside $S_1 \times S_2$. Without loos of generality, we have two cases to consider.

- 1. Let $y_2 \in S_2$. From the 1-maximality of S_1 (as a subset of G_1), it follows that $S_1 \cup \{y_1\}$ is not nearly perfect in G_1 . Hence, we can find a vertex $v \in V(G_1) (S_1 \cup \{y_1\})$ having at least two neighbours in $\{(y_1, y_2)\} \cup \{(s_1, y_2)|s_1 \in S_1\}$ which is obviously a subset of $S_1 \times S_2 \cup \{(y_1, y_2)\}$. Consequently, $S_1 \times S_2 \cup \{(y_1, y_2)\}$ is not nearly perfect in $G_1 \times G_2$.
- 2. Let $y_1 \in V(G_1) S_1$ and $y_2 \in V(G_2) S_2$. By assumption, there are vertices $s_1 \in N_{G_1}(y_1) \cap S_1$ and $s_2 \in N_{G_2}(y_2) \cap S_2$. In $G_1 \times G_2$, (y_1, s_2) has at least two neighbours in $S_1 \times S_2 \cup \{(y_1, y_2)\}$, i.e., (y_1, y_2) and (s_1, s_2) . Thus, $S_1 \times S_2 \cup \{(y_1, y_2)\}$ is not nearly perfect in $G_1 \times G_2$.

Thus, $S_1 \times S_2$ is a 1-maximal nearly perfect set in $G_1 \times G_2$.

Suppose n > 2 and assume the result holds for all sequences of graphs with less than n elements. Hence, $X_{i=1}^{n-1}S_i$ is a 1-maximal nearly perfect set in $\mathbf{X}_{i=1}^{n-1}G_i$. We can apply the reasoning used in the case n = 2 with $G'_1 = \mathbf{X}_{i=1}^{n-1}G_i$ and $G'_2 = G_n$. Since S_n is a 1-maximal nearly perfect set in G_n , $(X_{i=1}^{n-1}S_i) \times S_n$ is a 1-maximal nearly perfect set in $(\mathbf{X}_{i=1}^{n-1}G_i) \times G_n$. By the inductive definition of the n-fold Cartesian product, $S = X_{i=1}^n S_i$ is a 1-maximal nearly perfect set in $\mathbf{X}_{i=1}^n G_i$, which proves the theorem. \Box

Corollary 1. If S_i is an $\alpha(G_i)$ -set for each i = 1, 2, ..., n, then $n_p(\mathbf{X}_{i=1}^n G_i) \leq |X_{i=1}^n S_i| = \prod_{i=1}^n |S_i| = \prod_{i=1}^n \alpha(G_i)$.

Corollary 2. If S_i is an independent $n_p(G_i)$ – set and a perfect dominating set in G_i for each i = 1, 2, ..., n, then $n_p(\mathbf{X}_{i=1}^n G_i) \leq |X_{i=1}^n S_i| = \prod_{i=1}^n |S_i| = \prod_{i=1}^n n_p(G_i)$.

It has been proved in [2] that the $n_p(P_{3k+1}) - sets$ and $n_p(C_{3k}) - sets$, for $k \ge 1$, are independent and perfect dominating in P_{3k+1} and C_{3k} , respectively.

Theorem 2 leads immediately to the following conclusion.

Corollary 3. If $n_p(\mathbf{X}_{i=1}^n G_i) = 1$, then $n_p(G_i) = 1$ for each i = 1, 2, ..., n.

It is easily seen that $n_p(G_i) = 1$ for each i = 1, 2, ..., n does not always imply $n_p(\mathbf{X}_{i=1}^n G_i) = 1$. For example, let G_1 be a graph such that $V(G_1) = \{x_0, x_1, x_2, x_3\}$ and $E(G_1) = \{x_0x_1, x_1x_2, x_2x_3, x_3x_1\}$ and let G_2 be a cycle on three vertices. Then $n_p(G_i) = 1$ for each i = 1, 2 but $n_p(G_1 \times G_2) = 2$.

Theorem 3. Let $S_i \subseteq V(G_i)$, for i = 1, 2, ..., n. If $S = X_{i=1}^n S_i \subseteq V(\bigotimes_{i=1}^n G_i)$ is a nearly perfect set in $\bigotimes_{i=1}^n G_i$, then S_i is a nearly perfect set in G_i for each i = 1, ..., n.

Proof. Our proof starts with the observation that $\bigotimes_{i=1}^{n} G_i$ is an overgraph of $\mathbf{X}_{i=1}^{n} G_i$ and $V(\bigotimes_{i=1}^{n} G_i) = V(\mathbf{X}_{i=1}^{n} G_i)$. Consequently, if $S \subseteq V(\bigotimes_{i=1}^{n} G_i) = V(\mathbf{X}_{i=1}^{n} G_i)$ is a nearly perfect set in $\bigotimes_{i=1}^{n} G_i$, then S is also a nearly perfect set in $\mathbf{X}_{i=1}^{n} G_i$. By Theorem 1, we obtain the desired conclusion.

Theorem 4. If $S_i \subseteq V(G_i)$ is an independent nearly perfect set in G_i for each i = 1, 2, ..., n, then $S = X_{i=1}^n S_i \subseteq V(\bigotimes_{i=1}^n G_i)$ is a nearly perfect set in $\bigotimes_{i=1}^n G_i$.

Proof. The proof is by induction on n. The proof for the case n = 2 was given in [3]. Assume that $X_{i=1}^{n-1}S_i$ is nearly perfect in $\bigotimes_{i=1}^{n-1}G_i$. We can apply the reasoning used

in the case n = 2 with $G'_1 = \bigotimes_{i=1}^{n-1} G_i$ and $G'_2 = G_n$. Since S_n is a nearly perfect set in G_n , $(X_{i=1}^{n-1}S_i) \times S_n$ is a nearly perfect set in $(\bigotimes_{i=1}^{n-1}G_i) \otimes G_n$. We conclude from the inductive definition of the *n*-fold strong product that $S = X_{i=1}^n S_i$ is a nearly perfect set in $\bigotimes_{i=1}^n G_i$, as required.

Theorem 5. If $S_i \subseteq V(G_i)$ is a 1-maximal nearly perfect independent set in G_i for each i = 1, ..., n, then $S = X_{i=1}^n S_i \subseteq V(\bigotimes_{i=1}^n G_i)$ is a 1-maximal nearly perfect set in $\bigotimes_{i=1}^n G_i$.

Proof. By Theorem 4, S is a nearly perfect set in $\bigotimes_{i=1}^{n} G_i$. The proof is completed by showing that the nearly perfect set S in $\bigotimes_{i=1}^{n} G_i$ is 1-maximal in $\bigotimes_{i=1}^{n} G_i$. The proof is by induction on n. The result for the case n = 2 was given in [3]. Assume that $X_{i=1}^{n-1}S_i$ is a 1-maximal nearly perfect set in $\bigotimes_{i=1}^{n-1} G_i$. We can apply the reasoning used in the case n = 2 with $G'_1 = \bigotimes_{i=1}^{n-1} G_i$ and $G'_2 = G_n$. Since S_n is a nearly perfect set in G_n , $(X_{i=1}^{n-1}S_i) \times S_n$ is a 1-maximal nearly perfect set in $(\bigotimes_{i=1}^{n-1}G_i) \otimes G_n$. We conclude from the inductive definition of the n-fold strong product that $S = X_{i=1}^n S_i$ is a 1-maximal nearly perfect set in $\bigotimes_{i=1}^{n} G_i$, and the proof is complete. \Box

Corollary 4. If S_i is an $\alpha(G_i)$ -set for each i = 1, 2, ..., n, then $n_p(\bigotimes_{i=1}^n G_i) \leq |X_{i=1}^n S_i| = \prod_{i=1}^n |S_i| = \prod_{i=1}^n \alpha(G_i)$.

Corollary 5. If S_i is an independent $n_p(G_i)$ – set for each i = 1, 2, ..., n, then $n_p(\bigotimes_{i=1}^n G_i) \leq |X_{i=1}^n S_i| = \prod_{i=1}^n |S_i| = \prod_{i=1}^n n_p(G_i).$

The results from [2] and Corollary 5 give $n_p(P_{3k+1} \otimes C_{3l}) \leq n_p(P_{3k+1}) \cdot n_p(C_{3l}) = (k+1) \cdot l.$

Theorem 5 leads evidently to the following conclusion.

Corollary 6. If $n_p(G_i) = 1$ for i = 1, 2, ..., n, then $n_p(\bigotimes_{i=1}^n G_i) = 1$.

It is easy to check that $n_p(\bigotimes_{i=1}^n G_i) = 1$ does not always imply $n_p(G_i) = 1$, for i = 1, 2, ..., n. For example, $n_p(K_2 \otimes K_2) = 1$ but $n_p(K_2) = 2$.

Theorem 6. Let $S_i \subseteq V(G_i)$ for i = 1, 2, ..., n. If $S = X_{i=1}^n S_i \subseteq V(\bigotimes_{i=1}^n G_i)$ is a 1-maximal nearly perfect set in $\bigotimes_{i=1}^n G_i$ and S contains an isolated vertex of $\bigotimes_{i=1}^n G_i$, then S_i is a 1-maximal nearly perfect set in G_i for each i = 1, 2, ..., n.

Proof. Our proof starts with the observation that if S is a 1-maximal nearly perfect set in $\bigotimes_{i=1}^{n} G_i$, then $S \neq \emptyset$ and, in consequence, $S_i \neq \emptyset$ for every i = 1, 2, ..., n. Therefore, by Theorem 3, S_i is a nearly perfect set in G_i for each i = 1, 2, ..., n. It suffices to prove that the nearly perfect set S_i in G_i is 1-maximal for each i = 1, 2, ..., n. It suffices to prove that the nearly perfect set S_i in G_i is 1-maximal for each i = 1, 2, ..., n. Suppose, contrary to our claim, that there exists $j \in \{1, 2, ..., n\}$ such that S_j is not 1-maximal in G_j . Thus, there exists a vertex $w_j \in V(G_j) - S_j$ such that $S_j \cup \{w_j\}$ is a nearly perfect set in G_j . Since S contains an isolated vertex of $\bigotimes_{i=1}^{n} G_i$, say $\mathbf{x} = (x_1, ..., x_n) \in S$, we conclude that x_i (as a vertex of G_i) does not have neighbours in S_i , for i = 1, 2, ..., n. Therefore, the vertex $\mathbf{x}_{w_j} = (x_1, ..., x_{j-1}, w_j, x_{j+1}, ..., x_n) \in S_1 \times \cdots \times \{w_j\} \times S_{j+1} \times \cdots \times S_n = S_{w_j}$ does not have neighbours in S_{w_j} . By the definition of the *n*-fold strong product, it follows that the vertex \mathbf{x}_{w_j} has neighbours in a set $\{x_1\} \times \cdots \times \{x_{j-1}\} \times N_{G_j}(w_j) \times \{x_{j+1}\} \times \cdots \times \{x_n\}$ only. But $\{x_1\} \times \cdots \times \{x_{j-1}\} \times (S_j \cup \{w_j\}) \times \{x_{j+1}\} \times \cdots \times \{x_n\}$ is a nearly perfect set in the induced subgraph $\langle \{x_1\} \times \cdots \times \{x_{j-1}\} \times V(G_j \times \{x_{j+1}\} \times \cdots \times \{x_n\}) \bigotimes_{i=1}^n G_i$ since $S_j \cup \{w_j\}$ is a nearly perfect in G_j . From the above it follows that for every vertex $\mathbf{y} = (y_1, \ldots, y_n)$ outside $S \cup \{\mathbf{x}_{w_j}\}$ the inequality $|N_{\bigotimes_{i=1}^n G_i}(\mathbf{y}) \cap (S \cup \{\mathbf{x}_{w_j}\})| \leq 1$ holds. Hence $S \cup \{\mathbf{x}_{w_j}\}$ is a nearly perfect set in $\bigotimes_{i=1}^n G_i$, which contradicts the 1-maximality of S.

Acknowledgments

The author thanks the reviewer for his numerous helpful suggestions.

REFERENCES

- [1] R. Diestel, Graph Theory, Springer-Verlag, New York, 1997.
- [2] J.E. Dunbar, F.C. Harris, S.M. Hedetniemi, S.T. Hedetniemi, A.A. McRae, R.C. Laskar, Nearly perfect sets in graphs, Discrete Mathematics 138 (1995), 229–246.
- [3] M. Kwaśnik, M. Perl, Nearly perfect sets in products of graphs, Opuscula Mathematica 24/2 (2004), 177–180.

Monika Perl mperl@ps.pl

Szczecin University of Technology Institute of Mathematics al. Piastów 48/49, Szczecin, Poland

Received: August 27, 2004.