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NEARLY PERFECT SETS
IN THE n-FOLD PRODUCTS OF GRAPHS

Abstract. The study of nearly perfect sets in graphs was initiated in [2]. Let S ⊆ V (G).
We say that S is a nearly perfect set (or is nearly perfect) in G if every vertex in V (G)− S
is adjacent to at most one vertex in S. A nearly perfect set S in G is called 1-maximal if
for every vertex u ∈ V (G)− S, S ∪ {u} is not nearly perfect in G. We denote the minimum
cardinality of a 1-maximal nearly perfect set in G by np(G). We will call the 1-maximal
nearly perfect set of the cardinality np(G) an np(G) − set. In this paper, we evaluate the
parameter np(G) for some n-fold products of graphs. To this effect, we determine 1-maximal
nearly perfect sets in the n-fold Cartesian product of graphs and in the n-fold strong product
of graphs.
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1. INTRODUCTION

Let G be a simple graph and u ∈ V (G). By NG(u) we denote the open neighbourhood
of u; i.e., NG(u) = {v:uv ∈ E(G)}. We say that the subset A ⊆ V (G) is called
independent in G if NG(x)∩A = ∅ for every vertex x ∈ A. We denote the cardinality
of the maximum independent set in G by α(G). The subset A ⊆ V (G) is called a
perfect dominating set in G if every vertex outside A has exactly one neighbour in
A. We say that the subset S ⊆ V (G) is a nearly perfect set (or is nearly perfect)
in G if every vertex in V (G) − S is adjacent to at most one vertex in S. Note that
the set S = ∅ is a nearly perfect set in an arbitrary graph. A nearly perfect set
S in G is called 1-maximal if for every vertex u ∈ V (G) − S, S ∪ {u} is not nearly
perfect in G. Observe that V (G) is a 1-maximal nearly perfect set in G. We denote the
minimum cardinality of a 1-maximal nearly perfect set in G by np(G). We will call the
1-maximal nearly perfect set of the cardinality np(G) an np(G)−set. Let n ≥ 2. The
n-fold Cartesian product of graphs G1, . . . , Gn is the graph Xn

i=1Gi with V (Xn
i=1Gi) =

V (G1) × · · · × V (Gn) = Xn
i=1V (Gi), where (x1, . . . , xn)(y1, . . . , yn) ∈ E(Xn

i=1Gi) if
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there exists j ∈ {1, 2, . . . , n} such that xjyj ∈ E(Gj) and xi = yi for i 6= j. This is
equivalent to the inductive definition Xn

i=1Gi = (Xn−1
i=1 Gi) × Gn. The n-fold strong

product of graphs G1, . . . , Gn (n ≥ 2) is the graph
⊗n

i=1 Gi with V (
⊗

Xn
i=1Gi) =

V (G1) × · · · × V (Gn) = Xn
i=1V (Gi), where (x1, . . . , xn)(y1, . . . , yn) ∈ E(

⊗n
i=1 Gi) if

(x1, . . . , xn)(y1, . . . , yn) ∈ E(Xn
i=1Gi) or if xiyi ∈ E(Gi) for i = 1, 2, . . . , n. This is

equivalent to the inductive definition
⊗n

i=1 Gi = (
⊗n−1

i=1 Gi)⊗Gn.
For concepts not defined here, see [1].

2. MAIN RESULTS

In [3], the following proposition is proved.

Proposition 1. If Si is a nearly perfect set in Gi for i = 1, 2, then S1 × S2 is a
nearly perfect set in G1 ×G2.

In our further investigations, a nearly perfect set Si in Gi is not empty and Si 6=
V (Gi) for i = 1, 2, . . . , n.

Theorem 1. Let Si ⊆ V (Gi) for i = 1, 2, . . . , n. The subset S = Xn
i=1Si ⊆

V (Xn
i=1Gi) is a nearly perfect set in Xn

i=1Gi if and only if a subset Si is a nearly
perfect set in Gi for each i = 1, 2, . . . , n.

Proof. Let Si be an arbitrary nonempty subset of V (Gi) for i = 1, 2, . . . , n. Suppose
that there exists j ∈ {1, 2, . . . , n} such that Sj is not nearly perfect in Gj . We will show
that S = Xn

i=1Si is not nearly perfect in Xn
i=1Gi. If Sj is not nearly perfect in Gj , then

there exists a vertex wj ∈ V (Gj)−Sj such that |NGj(wj)∩Sj | ≥ 2. Hence, say uj , vj ∈
NGj(wj)∩Sj . By Si 6= ∅, we can take a vertex wi ∈ Si for each i 6= j. Therefore, the
vertex w = (w1, . . . , wn) ∈ V (Xn

i=1Gi)−S is adjacent to at least two different vertices
(w1, . . . , wj−1, uj , wj+1, . . . , wn) and (w1, . . . , wj−1, vj , wj+1, . . . , wn) in S. Thus, the
set S = Xn

i=1Si is not nearly perfect in Xn
i=1Gi.

The “if” part is proved by induction on n. Proposition 1 guarantees that the
result holds for n = 2. Suppose n > 3 and assume that if Si is nearly perfect in
Gi for i = 1, 2, . . . , n − 1, then Xn−1

i=1 Si is a nearly perfect set in Xn−1
i=1 Gi. The

rest of the proof runs as in the case n = 2, with G1 = Xn−1
i=1 Gi and G2 = Gn.

Thus, (Xn−1
i=1 Si)× Sn = Xn

i=1Si is a nearly perfect set in (Xn−1
i=1 Gi)×Gn = Xn

i=1Gi.
We conclude from the inductive definition of the n-fold Cartesian product that S =
Xn

i=1Si is a nearly perfect set in Xn
i=1Gi, which completes the proof.

Proposition 2. Let Si ⊆ V (Gi) and let Si 6= ∅ for i = 1, 2, . . . , n. The subset
S = Xn

i=1Si ⊆ V (Xn
i=1Gi) is independent in Xn

i=1Gi if and only if the subset Si is
independent in Gi for each i = 1, 2, . . . , n.

Proof. Let Si be an arbitrary nonempty subset of V (Gi) for i = 1, 2, . . . , n and let
S = Xn

i=1Si ⊆ V (Xn
i=1Gi) be independent in Xn

i=1Gi. Suppose that there exists
j ∈ {1, 2, . . . , n} such that Sj is not independent in Gj (Sj 6= ∅). This means that
there exist vertices uj , vj ∈ Sj such that ujvj ∈ E(Gj). Therefore, the vertices
(w1, . . . , wj−1, uj , wj+1, . . . , wn) = wu and (w1, . . . , wj−1, vj , wj+1, . . . , wn) = wv,
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where wi ∈ Si for i = 1, 2, . . . , n, are neighbouring in Xn
i=1Gi. Moreover, vertices

wu,wv ∈ S. Thus, S is not independent in Xn
i=1Gi.

Now, let Si be an arbitrary independent subset of V (Gi) for i = 1, 2, . . . , n. By
the definition of n-fold Cartesian product, it follows that the set S = Xn

i=1Si is
independent in Xn

i=1Gi, as required.

Theorem 2. Let Si ⊆ V (Gi) for i = 1, 2, . . . , n. The subset S = Xn
i=1Si ⊆

V (Xn
i=1Gi) is a 1-maximal nearly perfect independent set in Xn

i=1Gi if and only if
the subset Si is a 1-maximal nearly perfect independent set and a perfect dominating
set in Gi for each i = 1, 2, . . . , n.

Proof. Let Si ⊆ V (Gi) be an arbitrary nonempty set for i = 1, 2, . . . , n. Suppose that
S = Xn

i=1Si is a 1-maximal nearly perfect independent set in Xn
i=1Gi. By Theorem 1

and Proposition 2, Si is independent and nearly perfect in Gi for each i = 1, 2, . . . , n.
We just have to show that the nearly perfect set Si in Gi is 1-maximal and perfect
dominating in Gi for each i = 1, 2, . . . , n.

First we prove that the nearly perfect set Si in Gi is 1-maximal in Gi for i =
1, 2, . . . , n. On the contrary, suppose that there exists j ∈ {1, 2, . . . , n} such that Sj is
not 1-maximal in Gj . From this it follows that there exists a vertex wj ∈ V (Gj)−Sj

such that Sj ∪ {wj} is a nearly perfect set in Gj . Therefore, by Theorem 1, the set
Swj

= S1 × · · · × Sj−1 × (Sj ∪ {wj}) × Sj+1 × · · · × Sn is nearly perfect in Xn
i=1Gi.

So, every vertex outside Swj
has at most one neighbour in Swj

. Thus, it has at
most one neighbour in S∪{xwj} ⊆ Swj , where xwj = (x1, . . . , xj−1, wj , xj+1, . . . , xn).
Moreover, every vertex from Swj −S has at most one neighbour in S, since S is nearly
perfect in Xn

i=1Gi. By the assumption that Si is independent in Gi for i = 1, 2, . . . , n,
we see that for every vertex xi ∈ Si, NGi

(xi) ∩ Si = ∅ for i = 1, 2, . . . , n. For this
reason the vertex xwj

= (x1, . . . , xj−1, wj , xj+1, . . . , xn) ∈ Swj
− S does not have

neighbours in Swj − S. From the above, it follows that S ∪ {xwj} is a nearly perfect
set in Xn

i=1Gi. This contradicts the 1-maximality of S.
Now, we prove that Si is a perfect dominating set in Gi for i = 1, 2, . . . , n. On

the contrary, suppose that there exists j ∈ {1, 2, . . . , n} such that Sj is not perfect
dominating in Gj , i.e., there is a vertex uj ∈ V (Gj)−Sj such that |NGj

(uj)∩Sj | 6= 1.
Since Sj is a nearly perfect set in Gj , we see that there must be |NGj

(uj)∩Sj | = 0. Let
ui ∈ V (Gi)− Si for every i 6= j. In Xn

i=1Gi, u = (u1, u2, . . . , un) ∈ Xn
i=1(V (Gi)− Si)

does not have neighbours in S. From the definition of the n-fold Cartesian product,
it follows that the vertex u can have neighbours only in a set A1 ∪ A2, where A1 =
V (G1)×· · ·×V (Gj−1)×{uj}×V (Gj+1)×· · ·×V (Gn) and A2 = {u1}×· · ·×{uj−1}×
(V (Gj)− Sj)×{uj+1}× · · · × {un}. But vertices of A1 do not have neighbours in S,
because |NGj (uj) ∩ Sj | = 0, and vertices of A2 do not have neighbours in S either,
because A2 is a subset of Xn

i=1(V (Gi)− Si). Thus, S ∪ {u} is a nearly perfect set in
Xn

i=1Gi, which contradicts the 1-maximality of S.
Now, let Si be a 1-maximal nearly perfect independent set in Gi. From Theorem 1

and Proposition 2, it follows that S is a nearly perfect independent set in Xn
i=1Gi. It

only remains to show that the nearly perfect set S in Xn
i=1Gi is 1-maximal in Xn

i=1Gi.
The proof is by induction on n. Let n = 2 and let (y1, y2) be an arbitrary vertex
outside S1 × S2. Without loos of generality, we have two cases to consider.
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1. Let y2 ∈ S2. From the 1-maximality of S1 (as a subset of G1), it follows that
S1 ∪ {y1} is not nearly perfect in G1. Hence, we can find a vertex v ∈ V (G1) −
(S1 ∪ {y1}) having at least two neighbours in {(y1, y2)} ∪ {(s1, y2)|s1 ∈ S1} which
is obviously a subset of S1 × S2 ∪ {(y1, y2)}. Consequently, S1 × S2 ∪ {(y1, y2)} is
not nearly perfect in G1 ×G2.

2. Let y1 ∈ V (G1) − S1 and y2 ∈ V (G2) − S2. By assumption, there are vertices
s1 ∈ NG1(y1) ∩ S1 and s2 ∈ NG2(y2) ∩ S2. In G1 × G2, (y1, s2) has at least two
neighbours in S1×S2∪{(y1, y2)}, i.e., (y1, y2) and (s1, s2). Thus, S1×S2∪{(y1, y2)}
is not nearly perfect in G1 ×G2.

Thus, S1 × S2 is a 1-maximal nearly perfect set in G1 ×G2.
Suppose n > 2 and assume the result holds for all sequences of graphs with less

than n elements. Hence, Xn−1
i=1 Si is a 1-maximal nearly perfect set in Xn−1

i=1 Gi. We can
apply the reasoning used in the case n = 2 with G′

1 = Xn−1
i=1 Gi and G′

2 = Gn. Since
Sn is a 1-maximal nearly perfect set in Gn, (Xn−1

i=1 Si) × Sn is a 1-maximal nearly
perfect set in (Xn−1

i=1 Gi) × Gn. By the inductive definition of the n-fold Cartesian
product, S = Xn

i=1Si is a 1-maximal nearly perfect set in Xn
i=1Gi, which proves the

theorem.

Corollary 1. If Si is an α(Gi)-set for each i = 1, 2, . . . , n, then np(Xn
i=1Gi) ≤

|Xn
i=1Si| =

∏n
i=1 |Si| =

∏n
i=1 α(Gi).

Corollary 2. If Si is an independent np(Gi) − set and a perfect dominating set in
Gi for each i = 1, 2, . . . , n, then np(Xn

i=1Gi) ≤ |Xn
i=1Si| =

∏n
i=1 |Si| =

∏n
i=1 np(Gi).

It has been proved in [2] that the np(P3k+1)− sets and np(C3k)− sets, for k ≥ 1,
are independent and perfect dominating in P3k+1 and C3k, respectively.

Theorem 2 leads immediately to the following conclusion.

Corollary 3. If np(Xn
i=1Gi) = 1, then np(Gi) = 1 for each i = 1, 2, . . . , n.

It is easily seen that np(Gi) = 1 for each i = 1, 2, . . . , n does not always imply
np(Xn

i=1Gi) = 1. For example, let G1 be a graph such that V (G1) = {x0, x1, x2, x3}
and E(G1) = {x0x1, x1x2, x2x3, x3x1} and let G2 be a cycle on three vertices. Then
np(Gi) = 1 for each i = 1, 2 but np(G1 ×G2) = 2.

Theorem 3. Let Si ⊆ V (Gi), for i = 1, 2, . . . , n. If S = Xn
i=1Si ⊆ V (

⊗n
i=1 Gi)

is a nearly perfect set in
⊗n

i=1 Gi, then Si is a nearly perfect set in Gi for each
i = 1, . . . , n.

Proof. Our proof starts with the observation that
⊗n

i=1 Gi is an overgraph of Xn
i=1Gi

and V (
⊗n

i=1 Gi) = V (Xn
i=1Gi). Consequently, if S ⊆ V (

⊗n
i=1 Gi) = V (Xn

i=1Gi) is
a nearly perfect set in

⊗n
i=1 Gi, then S is also a nearly perfect set in Xn

i=1Gi. By
Theorem 1, we obtain the desired conclusion.

Theorem 4. If Si ⊆ V (Gi) is an independent nearly perfect set in Gi for each
i = 1, 2, . . . , n, then S = Xn

i=1Si ⊆ V (
⊗n

i=1 Gi) is a nearly perfect set in
⊗n

i=1 Gi.

Proof. The proof is by induction on n. The proof for the case n = 2 was given in [3].
Assume that Xn−1

i=1 Si is nearly perfect in
⊗n−1

i=1 Gi. We can apply the reasoning used



Nearly perfect sets in the n-fold products of graphs 87

in the case n = 2 with G′
1 =

⊗n−1
i=1 Gi and G′

2 = Gn. Since Sn is a nearly perfect
set in Gn, (Xn−1

i=1 Si) × Sn is a nearly perfect set in (
⊗n−1

i=1 Gi) ⊗ Gn. We conclude
from the inductive definition of the n-fold strong product that S = Xn

i=1Si is a nearly
perfect set in

⊗n
i=1 Gi, as required.

Theorem 5. If Si ⊆ V (Gi) is a 1-maximal nearly perfect independent set in Gi for
each i = 1, . . . , n, then S = Xn

i=1Si ⊆ V (
⊗n

i=1 Gi) is a 1-maximal nearly perfect set
in

⊗n
i=1 Gi.

Proof. By Theorem 4, S is a nearly perfect set in
⊗n

i=1 Gi. The proof is completed
by showing that the nearly perfect set S in

⊗n
i=1 Gi is 1-maximal in

⊗n
i=1 Gi. The

proof is by induction on n. The result for the case n = 2 was given in [3]. Assume that
Xn−1

i=1 Si is a 1-maximal nearly perfect set in
⊗n−1

i=1 Gi. We can apply the reasoning
used in the case n = 2 with G′

1 =
⊗n−1

i=1 Gi and G′
2 = Gn. Since Sn is a nearly perfect

set in Gn, (Xn−1
i=1 Si)× Sn is a 1-maximal nearly perfect set in (

⊗n−1
i=1 Gi)⊗Gn. We

conclude from the inductive definition of the n-fold strong product that S = Xn
i=1Si

is a 1-maximal nearly perfect set in
⊗n

i=1 Gi, and the proof is complete.

Corollary 4. If Si is an α(Gi)-set for each i = 1, 2, . . . , n, then np(
⊗n

i=1 Gi) ≤
|Xn

i=1Si| =
∏n

i=1 |Si| =
∏n

i=1 α(Gi).

Corollary 5. If Si is an independent np(Gi) − set for each i = 1, 2, . . . , n, then
np(

⊗n
i=1 Gi) ≤ |Xn

i=1Si| =
∏n

i=1 |Si| =
∏n

i=1 np(Gi).

The results from [2] and Corollary 5 give np(P3k+1⊗C3l) ≤ np(P3k+1) ·np(C3l) =
(k + 1) · l.

Theorem 5 leads evidently to the following conclusion.

Corollary 6. If np(Gi) = 1 for i = 1, 2, . . . , n, then np(
⊗n

i=1 Gi) = 1.

It is easy to check that np(
⊗n

i=1 Gi) = 1 does not always imply np(Gi) = 1, for
i = 1, 2, . . . , n. For example, np(K2 ⊗K2) = 1 but np(K2) = 2.

Theorem 6. Let Si ⊆ V (Gi) for i = 1, 2, . . . , n. If S = Xn
i=1Si ⊆ V (

⊗n
i=1 Gi)

is a 1-maximal nearly perfect set in
⊗n

i=1 Gi and S contains an isolated vertex of⊗n
i=1 Gi, then Si is a 1-maximal nearly perfect set in Gi for each i = 1, 2, . . . , n.

Proof. Our proof starts with the observation that if S is a 1-maximal nearly perfect
set in

⊗n
i=1 Gi, then S 6= ∅ and, in consequence, Si 6= ∅ for every i = 1, 2, . . . n.

Therefore, by Theorem 3, Si is a nearly perfect set in Gi for each i = 1, 2, . . . , n.
It suffices to prove that the nearly perfect set Si in Gi is 1-maximal for each i =
1, 2, . . . , n. Suppose, contrary to our claim, that there exists j ∈ {1, 2, . . . , n} such
that Sj is not 1-maximal in Gj . Thus, there exists a vertex wj ∈ V (Gj) − Sj such
that Sj ∪ {wj} is a nearly perfect set in Gj . Since S contains an isolated vertex
of

⊗n
i=1 Gi, say x = (x1, . . . , xn) ∈ S, we conclude that xi (as a vertex of Gi)

does not have neighbours in Si, for i = 1, 2, . . . , n. Therefore, the vertex xwj
=

(x1, . . . , xj−1, wj , xj+1, . . . , xn) ∈ S1×· · ·×{wj}×Sj+1×· · ·×Sn = Swj
does not have

neighbours in Swj . By the definition of the n-fold strong product, it follows that the
vertex xwj has neighbours in a set {x1}×· · ·×{xj−1}×NGj (wj)×{xj+1}×· · ·×{xn}
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only. But {x1}×· · ·×{xj−1}×(Sj∪{wj})×{xj+1}×· · ·×{xn} is a nearly perfect set
in the induced subgraph 〈{x1}×· · ·×{xj−1}×V (Gj×{xj+1}×· · ·×{xn}〉Nn

i=1 Gi
since

Sj ∪ {wj} is a nearly perfect in Gj . From the above it follows that for every vertex
y = (y1, . . . , yn) outside S ∪ {xwj

} the inequality |NNn
i=1 Gi

(y) ∩ (S ∪ {xwj
})| ≤ 1

holds. Hence S ∪ {xwj} is a nearly perfect set in
⊗n

i=1 Gi, which contradicts the
1-maximality of S.
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