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NEARLY PERFECT SETS
IN THE n-FOLD PRODUCTS OF GRAPHS

Abstract. The study of nearly perfect sets in graphs was initiated in [2]. Let S C V(G).
We say that S is a nearly perfect set (or is nearly perfect) in G if every vertex in V(G) — S
is adjacent to at most one vertex in S. A nearly perfect set S in G is called 1-mazimal if
for every vertex u € V(G) — S, SU{u} is not nearly perfect in G. We denote the minimum
cardinality of a l-maximal nearly perfect set in G by n,(G). We will call the 1-maximal
nearly perfect set of the cardinality n,(G) an n,(G) — set. In this paper, we evaluate the
parameter n,(G) for some n-fold products of graphs. To this effect, we determine 1-maximal
nearly perfect sets in the n-fold Cartesian product of graphs and in the n-fold strong product
of graphs.
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1. INTRODUCTION

Let G be a simple graph and u € V(G). By Ng(u) we denote the open neighbourhood
of u; ie.,, Ng(u) = {viuv € E(G)}. We say that the subset A C V(G) is called
independent in G if Ng(z) N A = ) for every vertex z € A. We denote the cardinality
of the maximum independent set in G by «(G). The subset A C V(G) is called a
perfect dominating set in G if every vertex outside A has exactly one neighbour in
A. We say that the subset S C V(G) is a nearly perfect set (or is nearly perfect)
in G if every vertex in V(G) — S is adjacent to at most one vertex in S. Note that
the set S = ) is a nearly perfect set in an arbitrary graph. A nearly perfect set
S in G is called I-mazimal if for every vertex v € V(G) — S, S U {u} is not nearly
perfect in G. Observe that V(G) is a 1-maximal nearly perfect set in G. We denote the
minimum cardinality of a 1-maximal nearly perfect set in G by n,(G). We will call the
1-maximal nearly perfect set of the cardinality n,(G) an n,(G) — set. Let n > 2. The
n-fold Cartesian product of graphs G1, ..., G, is the graph X7 | G; with V(X?_,G;) =
V(Gy) x -+ x V(Gy) = X\ V(G,;), where (z1,...,25)(Y1,--.,Yn) € E(X]_1G;) if
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there exists j € {1,2,...,n} such that z;y; € E(G;) and z; = y; for i # j. This is
equivalent to the inductive definition X7, G; = (X?-'G;) x G,,. The n-fold strong
product of graphs Gu,...,G, (n > 2) is the graph @, G; with V(Q X ,G;) =
V(Gy) x -+ x V(Gy) = X V(G,), where (1,...,2,)(Y1,-..,yn) € E(Qi; Gi) if
(1, yzn) W1,y Yn) € B(XI,G;) or if z;y; € E(G;) for i = 1,2,...,n. This is
equivalent to the inductive definition @7, G; = (R, Gi) @ G.

For concepts not defined here, see [1].

2. MAIN RESULTS

In [3], the following proposition is proved.

Proposition 1. If S; is a nearly perfect set in G; for i = 1,2, then S X Sy is a
nearly perfect set in G1 X Gs.

In our further investigations, a nearly perfect set .S; in G; is not empty and S; #
V(G;) fori=1,2,...,n.

Theorem 1. Let S; C V(G;) for i = 1,2,...,n. The subset S = X ,5; C
V(X_,G;) is a nearly perfect set in X;—1G; if and only if a subset S; is a nearly
perfect set in G; for eachi=1,2,....,n.

Proof. Let S; be an arbitrary nonempty subset of V(G;) for ¢ = 1,2,...,n. Suppose
that there exists j € {1,2,...,n} such that S; is not nearly perfect in G;. We will show
that S = X, S; is not nearly perfect in X, G;. If S; is not nearly perfect in G;, then
there exists a vertex w; € V(G;)—S; such that | Ng;(w;)NS;| > 2. Hence, say u;,v; €
Ngj(wj)NS;. By S; # 0, we can take a vertex w; € S; for each 7 # j. Therefore, the
vertex w = (wy, ..., wy,) € V(XI_,G;)— S is adjacent to at least two different vertices
(Wi, Wj—1, U, Wjg1, ..., Wy) and (wi,. .., Wj—1,Vj, Wjt1,...,Wwy) in S. Thus, the
set § = X7 | S; is not nearly perfect in X7, G;.

The “if” part is proved by induction on n. Proposition 1 guarantees that the
result holds for n = 2. Suppose n > 3 and assume that if .S; is nearly perfect in
G; for i = 1,2,...,n — 1, then X;’:_llSi is a nearly perfect set in X?;llGi. The
rest of the proof runs as in the case n = 2, with G, = X?;llGi and Gy = G,.
Thus, (X';'S;) x S,, = X2, S; is a nearly perfect set in (X!'['G;) x G\, = X!, G
We conclude from the inductive definition of the n-fold Cartesian product that S =
X ,S; is a nearly perfect set in X' ;G;, which completes the proof. O

Proposition 2. Let S; C V(G;) and let S; # 0 for i = 1,2,...,n. The subset
S =X",S; CV(X;,G,) is independent in X 1G; if and only if the subset S; is
independent in G; for each i =1,2,...,n.

Proof. Let S; be an arbitrary nonempty subset of V(G;) for i = 1,2,...,n and let
S = X",S; C V(X_,G;) be independent in X7 ;G;. Suppose that there exists
Jj € {1,2,...,n} such that S; is not independent in G; (S; # (). This means that
there exist vertices wj,v; € S; such that u;v; € E(G;). Therefore, the vertices
(Wi W1, Ujy Wyig1, -, Wy) = Wy and (Wi, ..o, Wj—1, V5, Wjg1,. .., W) = Wy,



Nearly perfect sets in the n-fold products of graphs 85

where w; € S; for ¢ = 1,2,...,n, are neighbouring in X7 ;G;. Moreover, vertices
Wy, W, € S. Thus, S is not independent in X7 ;G;.

Now, let S; be an arbitrary independent subset of V(G;) for i = 1,2,...,n. By
the definition of n-fold Cartesian product, it follows that the set S = X.,95; is
independent in X' ; G;, as required. O

Theorem 2. Let S; C V(G;) for i = 1,2,...,n. The subset S = X ,5; C
V(X 1G;) is a 1-mazimal nearly perfect independent set in X G, if and only if
the subset S; is a 1-maximal nearly perfect independent set and a perfect dominating
set in G; for eachi=1,2,... n.

Proof. Let S; C V(G;) be an arbitrary nonempty set for ¢ = 1,2, ..., n. Suppose that
S = X7 ,S; is a 1-maximal nearly perfect independent set in X7 ;G;. By Theorem 1

and Proposition 2, S; is independent and nearly perfect in G; for each i =1,2,...,n.
We just have to show that the nearly perfect set S; in G; is 1-maximal and perfect
dominating in G; for each i =1,2,... n.

First we prove that the nearly perfect set S; in G; is 1-maximal in G; for i =
1,2,...,n. On the contrary, suppose that there exists j € {1,2,...,n} such that S; is
not l-maximal in G;. From this it follows that there exists a vertex w; € V(G;) — 5;
such that S; U {w;} is a nearly perfect set in G;. Therefore, by Theorem 1, the set
Sw; = 81 % -+ x 851 x (S5U{w;}) x Sjy1 x -+ x Sy is nearly perfect in X7, G;.
So, every vertex outside Swj has at most one neighbour in Swj. Thus, it has at
most one neighbour in SU{x,,; } C Sy, where xy, = (z1,...,2j_1,w;,Tj11,...,Tn).
Moreover, every vertex from S,,; —S has at most one neighbour in .S, since S is nearly
perfect in X}' | G;. By the assumption that S; is independent in G; for i = 1,2,...,n,
we see that for every vertex z; € S;, Ng,(z;) N S; = 0 for i = 1,2,...,n. For this
reason the vertex X,, = (21,...,%j-1,W;j,Tj11,...,2Tn) € Sy, — S does not have
neighbours in Sy, — 5. From the above, it follows that S U {x,,;} is a nearly perfect
set in X', G;. This contradicts the 1-maximality of S.

Now, we prove that S; is a perfect dominating set in G; for i = 1,2,...,n. On
the contrary, suppose that there exists j € {1,2,...,n} such that S; is not perfect
dominating in Gy, i.e., there is a vertex u; € V(G;)—S; such that [Ng, (uj)NS;| # 1.
Since S is a nearly perfect set in Gij, we see that there must be |Ng, (u;)NS;| = 0. Let
u; € V(G;) —S; for every i # j. In X7 G, u = (ug,ug,...,u,) € X1 (V(Gi) — Si)
does not have neighbours in S. From the definition of the n-fold Cartesian product,
it follows that the vertex u can have neighbours only in a set A; U Ay, where A; =
V(Gl) XX V(Gj_l) X {uj} X V(Gj+1) X X V(Gn) and A2 = {ul} XX {Uj_l} X
(V(Gj) = S;) x {ujp1} x -+ x {u,}. But vertices of A; do not have neighbours in S,
because |Ng, (u;) N S| = 0, and vertices of As do not have neighbours in S either,
because A is a subset of X[*,(V(G;) — S;). Thus, S U {u} is a nearly perfect set in
X 1G;, which contradicts the 1-maximality of S.

Now, let S; be a 1-maximal nearly perfect independent set in GG;. From Theorem 1
and Proposition 2, it follows that S is a nearly perfect independent set in X7 ;G;. It
only remains to show that the nearly perfect set S in X7 ; G, is l-maximal in X", G;.
The proof is by induction on n. Let n = 2 and let (y1,y2) be an arbitrary vertex
outside S; x S3. Without loos of generality, we have two cases to consider.
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1. Let yo € Ss. From the l-maximality of S; (as a subset of Gy), it follows that
S1 U {y1} is not nearly perfect in G;. Hence, we can find a vertex v € V(Gy) —
(S1U{y1}) having at least two neighbours in {(y1,y2)} U {(s1,92)|s1 € S1} which
is obviously a subset of S1 x S2 U {(y1,¥2)}. Consequently, S1 x S2 U {(y1,y2)} is
not nearly perfect in G; X Gs.

2. Let y3 € V(G1) — S1 and y2 € V(G2) — Se. By assumption, there are vertices
51 € Ng, (yl) N S; and s9 € NG2(y2) NSy. In G; x Gs, (y1,82) has at least two
neighbours in 1 x SoU{(y1,92)}, i-e., (y1,92) and (s1, s2). Thus, S1xSaU{(y1,92)}
is not nearly perfect in G; x Gs.

Thus, S; x S3 is a 1-maximal nearly perfect set in G; x Gs.

Suppose n > 2 and assume the result holds for all sequences of graphs with less
than n elements. Hence, X f:_ll S; is a 1-maximal nearly perfect set in X?;ll G;. We can
apply the reasoning used in the case n = 2 with G} = X?:_llGi and G, = G,,. Since
S, is a l-maximal nearly perfect set in G, (X''S;) x S, is a l-maximal nearly
perfect set in (X?2'G;) x G,,. By the inductive definition of the n-fold Cartesian
product, S = X ,S; is a 1-maximal nearly perfect set in X" ;G;, which proves the
theorem. O

Corollary 1. If S; is an «(G;)-set for each i = 1,2,...,n, then n,(X;_,G;) <

X7y 8il = TLizy 1] = [Tiy a(Gh).

Corollary 2. If S; is an independent n,(G;) — set and a perfect dominating set in

G, for eachi=1,2,...,n, then n,( X1 G;) < | X, S| =TT, 1Si] = 12, np(Gi).
It has been proved in [2] that the n,(Psg1+1) — sets and n,(Csi) — sets, for k > 1,

are independent and perfect dominating in P31 and Csg, respectively.
Theorem 2 leads immediately to the following conclusion.

Corollary 3. If n,(X;—1G;) =1, then n,(G;) =1 for each i =1,2,...,n.

It is easily seen that n,(G;) = 1 for each ¢ = 1,2,...,n does not always imply
np(Xi_,G;) = 1. For example, let G; be a graph such that V(G1) = {zo,z1, 22,23}
and FE(G1) = {xox1, x122, T2x3, 2321 } and let G5 be a cycle on three vertices. Then
ny(G;) =1 for each i = 1,2 but n,(G1 x Ga) = 2.

Theorem 3. Let S; C V(G;), fori = 1,2,...,n. If S = X,5; C V(Q;_, Gi)
is a nearly perfect set in Q._, G;, then S; is a nearly perfect set in G; for each
1=1,...,n.

Proof. Our proof starts with the observation that @, G; is an overgraph of X7, G;
and V(Q;—, G;) = V(X]_,G;). Consequently, if S C V(Q;, Gi) = V(X[_,G;) is
a nearly perfect set in @, G;, then S is also a nearly perfect set in X]_;G;. By
Theorem 1, we obtain the desired conclusion. O]

Theorem 4. If S; C V(G;) is an independent nearly perfect set in G; for each
i=1,2,...,n, then S = X" S, CV(Q_, G;) is a nearly perfect set in ., G;.

Proof. The proof is by induction on n. The proof for the case n = 2 was given in [3].
Assume that X 1_751 S; is nearly perfect in ®?;11 G;. We can apply the reasoning used
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in the case n = 2 with G = ®:.:11 G,; and G}, = G,,. Since S, is a nearly perfect
set in G,,, (Xf;llSi) x S, is a nearly perfect set in (®?:_11 G;) ® G,. We conclude
from the inductive definition of the n-fold strong product that S = X', S; is a nearly
perfect set in @, G;, as required. O

Theorem 5. If S; C V(G;) is a 1-mazximal nearly perfect independent set in G; for
eachi=1,...,n, then S = X"1S; C V(Q;—, G;) is a I-mazimal nearly perfect set
m ®?:1 Gi-

Proof. By Theorem 4, S is a nearly perfect set in @, G;. The proof is completed
by showing that the nearly perfect set S in @ ; G; is 1-maximal in @, G;. The
proof is by induction on n. The result for the case n = 2 was given in [3]. Assume that
Xf:_llSi is a 1-maximal nearly perfect set in ®?:_11 G;. We can apply the reasoning
used in the case n = 2 with G| = ®?:_11 G; and G}, = G,,. Since S, is a nearly perfect
set in G,,, (Xf:jl S;) x Sy, is a 1-maximal nearly perfect set in (®;:11 G;) ® G,,. We
conclude from the inductive definition of the n-fold strong product that S = X*,S;
is a 1-maximal nearly perfect set in @, G;, and the proof is complete. O

Corollary 4. If S; is an «(G;)-set for each i = 1,2,....n, then ny(Q;_; G;) <
| X7 S:] = H?:1 1Si| = H:L:1 a(G).

Corollary 5. If S; is an independent n,(G;) — set for each i = 1,2,...,n, then
np(Qiey Gi) < |X71Si| = T2, 1Sil = [Tz, nu(Gi)-

The results from [2] and Corollary 5 give ny,(Psg+1 ® Cs;) < nyp(Pagy1) - np(Cap) =
(k+1)-L
Theorem 5 leads evidently to the following conclusion.

Corollary 6. Ifn,(G;) =1 fori=1,2,...,n, then n,(Q;_, Gi) = 1.

It is easy to check that n,(Q;_; G;) = 1 does not always imply n,(G;) = 1, for
i=1,2,...,n. For example, n,(K> ® K3) =1 but n,(K3) = 2.

Theorem 6. Let S; C V(G;) fori =1,2,....n. If S = XS5, C V(Q;_, Gi)
is a 1-mazimal nearly perfect set in @, G; and S contains an isolated vertex of
Q- G;, then S; is a I-mazimal nearly perfect set in G; for eachi=1,2,...,n.

Proof. Our proof starts with the observation that if S is a 1-maximal nearly perfect
set in @, Gi, then S # 0 and, in consequence, S; # 0 for every i = 1,2,...n.
Therefore, by Theorem 3, S; is a nearly perfect set in G; for each i = 1,2,...,n.
It suffices to prove that the nearly perfect set S; in G; is 1-maximal for each i =
1,2,...,n. Suppose, contrary to our claim, that there exists j € {1,2,...,n} such
that S; is not 1-maximal in G;. Thus, there exists a vertex w; € V(G;) — S; such
that S; U {w;} is a nearly perfect set in G;. Since S contains an isolated vertex

of @ G, say x = (z1,...,2,) € S, we conclude that z; (as a vertex of Gj)
does not have neighbours in S;, for ¢ = 1,2,...,n. Therefore, the vertex x,,, =
(1,0 T, Wy Tjg1,y ey T) € S1 XX {wj} X Sjp1 X% Sy, = Sy, does not have

neighbours in S,,;. By the definition of the n-fold strong product, it follows that the
vertex X,,; has neighbours in a set {z1} x---x{z;_1} x Ng, (w;) x {zj41} x---x{2n}
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only. But {z1}x---x{zj_1} x (S;U{w,}) x{z41} x---x{x,} is a nearly perfect set
in the induced subgraph ({z1}x- - x{z; 1} x V(G x{zj1} x - -x{zn})@n ¢, since
S; U{w;} is a nearly perfect in G;. From the above it follows that for every vertex
Yy = (y1,...,yn) outside S U {xy,} the inequality [Ngnr ¢, (y) N (S U {xu,;})] <1
holds. Hence S U {x,,} is a nearly perfect set in ®;_; G;, which contradicts the
1l-maximality of S. O
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