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ON QUASI-SIMILARITY AND w-HYPONORMAL
OPERATORS

Abstract. In this paper, it is shown that a Putnam-Fuglede type commutativity theorem
holds for w-hyponormal operators, the normal parts of quasi-similar w-hyponormal operators
are unitarily equivalent and a w-hyponormal spectral operator is normal.
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1. INTRODUCTION

Let H be an infinite dimensional complex Hilbert space and let B(H) denote the
algebra of operators from H to itself (= bounded linear transformations).

Given A,B ∈ B(H), define δA,B : B(H) → B(H) by

δA,B(X) = AX −XB,

for some operator X. Hence, X ∈ kerδA,B(X ∈ kerδA∗,B∗) will denote AX−XB = 0
(A∗X −XB∗ = 0).

The classical Putnam-Fuglede Theorem [16, p. 104] says that if A and B∗ are
normal operators such that AX = XB for some operator X, then also A∗X = XB∗

(if A and B∗ are normal operators, then kerδA,B = kerδA∗,B∗).
Over the years, a number of authors have considered the problem of the extension

of the classical Putnam-Fuglede Theorem to a class (or classes) of operators more
general than the class of normal operators. Here the particular classes which have
drawn a lot of attention are those consisting of either hyponormal or M -hyponormal
or dominant or k-quasi-hyponormal operators. (See [11,13,15,19,23–26,28] and some
of the references there.)

Recently, Jeon, Tanahashi and Uchiyama ( [19, 26]) have shown that
Putnam-Fuglede Theorem holds true in the case of p-hyponormal and log-hyponormal
operators.
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In the first part of this note, we extend these results ( [19, 26]) to the class of
w-hyponormal operators.

For p > 0, recall that ([1, 2, 10, 12, 19]) an operator A is said to be p-hyponormal
if (A∗A)p ≥ (AA∗)p. A p-hyponormal operator is called hyponormal if p = 1,
semi-hyponormal if p = 1

2 . An invertible operator A is called log-hyponormal if
log(A∗A) ≥ log(AA∗).

Let A = U |A| be the polar decomposition of A; then following ([1, 2]), we de-
fine the first Aluthge transform of A by Ã = |A| 12 U |A| 12 and define the second

Aluthge transform of A by ˜̃
A = |Ã| 12 Ũ |Ã| 12 , where Ã = Ũ |Ã| is the polar decom-

position of Ã. An operator A is said to be w-hyponormal if |Ã| ≥ |A| ≥ |Ã∗|.
It is well known that the class of w-hyponormal operators contains both the p-

and log-hyponormal operators. But neither the class of p-hyponormal operators nor
the class of log-hyponormal operators contains the other. Also, if an operator A is

w-hyponormal, then Ã is semi-hyponormal and ˜̃
A is hyponormal.

If an operator A is p-hyponormal, then kerA ⊂ kerA∗, and if A is log-hyponormal,
then kerA = kerA∗. However, if A is w-hyponormal, then it is not known whether the
kernel condition kerA ⊂ kerA∗ holds. It is well known that there exists an example
of a w-hyponormal operator A with the property that kerA is not a subset of kerA∗.
Nevertheless, there are several properties that p-hyponormal operators share with
w-hyponormal operators A or w-hyponormal operators A with kerA ⊂ kerA∗ ([3,5]).

Recall that an operator A ∈ B(H) is said to be dominant if for each λ ∈ C, there
exists a positive number Mλ such that

(A− λ)(A− λ)∗ ≤ Mλ(A− λ)∗(A− λ).

If the constants Mλ are bounded by a positive operator M, then A is said to be
M-hyponormal.

Clearly the following inclusions hold and are known to be proper.

Hyponormal ⊆ p−Hyponormal(0 < p < 1) ⊆ w −Hyponormal ⊆ Paranormal

and
Log − hyponormal ⊆ w −Hyponormal ⊆ Paranormal.

An operator X ∈ B(H) is called a quasiaffinity if X is both injective and has a dense
range. Two operators A and B are said to be quasi-similar if there exist quasiaffinities
X and Y such that X ∈ kerδA,B and Y ∈ kerδB,A.

The operator A is said to be pure if there exists no non-trivial reducing subspace
N of H such that the restriction of A to N (A |N ) is normal and is said to have a
normal direct summand if it is not pure.

Recall that every A ∈ B(H) has a direct sum decomposition A = A1⊕A2, where A1

and A2 are normal and pure parts, respectively. Of course, in the sum decomposition,
either A1 or A2 may be absent. Given X ∈ B(H), let ranX and (kerX)⊥ denote the
closure of the range and the orthogonal complement of the kernel of X.

Jeon and Duggal [12] have shown that the normal parts of quasi-similar
p-hyponormal operators are unitarily equivalent, a p-hyponormal operator compactly
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quasi-similar to an isometry is unitary and a p-hyponormal operator which is also a
spectral operator turns out to be normal.

Jeon, Tanahashi and Uchiyama [19] proved that results similar to those in [12]
hold true for the class of log-hyponormal operators.

In the second part of this paper, we carry on with these results to the more
general case of w-hyponormal operators and show that similar results still hold true.
The major tools used to show these results is the second Aluthge transform and the
kernel condition kerA ⊂ kerA∗.

2. A PUTNAM-FUGLEDE TYPE THEOREM
FOR W -HYPONORMAL OPERATORS

In this section, we start by proving a Putnam-Fuglede type commutativity theorem
for w-hyponormal operators.

Theorem 1. If A and B∗ are w-hyponormal operators with kerA ⊂ kerA∗ and
kerB∗ ⊂ kerB such that X ∈ kerδA,B for some operator X, then X ∈ kerδA∗,B∗ ,
ranX reduces A, (kerX)⊥ reduces B and A |ranX and B |(kerX)⊥ are unitarily equiv-
alent normal operators.

To prove Theorem 1, we need the following lemma.

Lemma 2. ([3, Theorem 2.4]). If A is w-hyponormal, then Ã is semi-hyponormal

and ˜̃
A is hyponormal.

Proof of Theorem 1. Decompose A and B∗ into normal and pure parts as A = A1⊕A2

and B∗ = B∗
1 ⊕B∗

2 . Let X = [Xij ]2i,j=1 and

˜̃
X22 = |Ã2|

1
2 |A2|

1
2 X22|B∗

2 |
1
2 |B̃∗

2 |
1
2 .

Now since X22 ∈ kerδA2,B2 , it follows that ˜̃
X22 ∈ kerδffA2,(

ffB∗
2 )∗

, where ˜̃
A2 and ˜̃

B∗
2 ( =

˜̃(B2)∗ ) are hyponormal operators by Lemma 2. Applying Putnam-Fuglede Theorem

for hyponormal operators, ˜̃
X22 ∈ kerδffA∗2 ,

ffB∗
2

, ran
˜̃
X22 reduces ˜̃

A2, (ker
˜̃
X22)⊥ reduces˜̃

B2, and ˜̃
A2 |

ran
ggX22

and ˜̃
B∗

2 |(ker
ggX22)⊥

are unitarily equivalent normal operators. In

particular, ˜̃
A2 and ˜̃

B∗
2 have normal direct summands. Now by an argument similar

to that used in the proof of the converse of Lemma 1 of [10], it is seen that A2 and

B∗
2 have normal direct summands. Since A2 and B∗

2 are pure, ˜̃
X22 = 0 and hence

X22 = 0. Using a similar argument to the operator equations X21 ∈ kerδA2,B1 and
X12 ∈ kerδA1,B2 , we get that X21 = 0 = X12. Applying Putnam-Fuglede Theorem
to the operator equation X11 ∈ kerδA1,B1 , X11 ∈ kerδA∗1 ,B∗

1
and consequently X ∈

kerδA∗,B∗ and the result follows.
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Corollary 3. Let X ∈ kerδA,B for some operator X. If either A is a pure
w-hyponormal operator and B∗ is w-hyponormal or A is w-hyponormal and B∗ is
a pure w-hyponormal operator with kerA ⊂ kerA∗ and kerB∗ ⊂ kerB, then X = 0.

Theorem 1 holds in particular for w-hyponormal A(B∗) and hyponormal B∗(A).
A generalisation to a dominant operator A is given in the following Corollary.

Corollary 4. If X ∈ kerδA,B for some dominant operator A, a w-hyponormal op-
erator B∗ with kerB∗ ⊂ kerB and X ∈ B(H), then X ∈ kerδA∗,B∗ , ranX reduces
A, (kerX)⊥ reduces B and A |ranX and B |(kerX)⊥ are unitarily equivalent normal
operators.

Proof. Decompose A and B∗ into normal and pure parts and Let X =
[Xij ]2i,j=1. Apply Theorem 1 of [13] to X21 ∈ kerδA2,B1 and A2X22|B∗

2 |
1
2 |B̃∗

2 |
1
2 =

X22|B∗
2 |

1
2 |B̃∗

2 |
1
2 (˜̃

B∗
2)∗. Then apply Theorem 1 to X12 ∈ kerδA1,B2 and the proof

follows.

3. THE NORMAL PARTS OF QUASI-SIMILAR
W -HYPONORMAL OPERATORS

Douglas ( [9]) proved that quasi-similar normal operators are unitarily equivalent.
This result was extended by Conway ( [8]), who proved that the normal parts of
quasi-similar subnormal operators are unitarily equivalent. In the same paper, Con-
way gave an example which shows that the pure parts of quasi-similar subnormal
operators are not necessarily quasi-similar. While working on the class of hyponor-
mal operators, Clary [7] proved that quasi-similar hyponormal operators are unitarily
equivalent. This result was further extended by Williams [29] to a more general class
of dominant operators. Recently Jeon and Duggal ( [12]) and Jeon and others ( [19])
extended the result of Conway ( [8]) to the class of p-hyponormal and log-hyponormal
operators, respectively. Let us recall that the classes of p or log-hyponormal operators
and dominant operators are independent of each other.

In this section, we extend the results of ( [12]) and ( [19]) to a more general class
of w-hyponormal operators.

Theorem 5. Let A and B be quasi-similar w-hyponormal operators with kerA ⊂
kerA∗ and kerB ⊂ kerB∗, respectively. Let A = A1 ⊕ A2 and B = B1 ⊕ B2, where
A1, B1 and A2, B2 are the normal and pure parts, respectively. Then A1 and B1

are unitarily equivalent. Furthermore, there exist bounded operators X∗ and Y ∗ with
dense ranges such that X∗ ∈ ker δA2,B2 and Y ∗ ∈ ker δB2,A2 .

To prove the theorem, we need the following results which we will state as Lemmas.

Lemma 6. ([3, Theorem 2.6]). Let A be w-hyponormal with kerA ⊂ kerA∗. If Ã is
normal, then Ã = A.
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The following lemma is well known and a proof is included for completeness.

Lemma 7. Let A be w-hyponormal with kerA ⊂ kerA∗ and B be a normal operator.
If there exists an operator X ∈ B(H) with a dense range such that X ∈ kerδA,B, then
A is normal.

Proof. Decompose A = A1 ⊕A2 into its normal and pure parts, respectively. Let A2

= U2|A2|, Ã2 = |A2|
1
2 U |A2|

1
2 and ˜̃

A2 = |Ã2|
1
2 Ũ |Ã2|

1
2 .

A2 being pure, it is injective and |A2|
1
2 is a quasiaffinity. Also since A1 is normal, ˜̃

A

= ˜̃
A1 ⊕

˜̃
A2 = A1 ⊕

˜̃
A2.

Now if we let T = |Ã2|
1
2 |A2|

1
2 , then by a simple computation, ˜̃

A2T = TA2 and T is
a quasiaffinity.

Also if we let Z = IH ⊕ T , then clearly Z is also a quasiaffinity such that ˜̃
AZ = ZA,

where ˜̃
A is a hyponormal operator.

Thus ˜̃
AZX = ZAX = ZXB and by ( [24]), ˜̃

A is normal. Hence by Lemma 6, we get
the result.

With these results, we are now ready to prove the Theorem.

Proof of Theorem 5. By the given hypotheses, there exist quasiaffinities X and Y say
such that X ∈ ker δA,B and Y ∈ ker δB,A. Let X = [Xij ]2i,j=1 and Y = [Yij ]2i,j=1

with respect to decompositions of A and B respectively. Then by a simple matrix
calculation, we obtain X21 ∈ kerδA2,B1 and Y21 ∈ kerδB2,A1 . Next we show that
X21 = 0 = Y21. Let M = ran(X21), then the subspace M is invariant under A2 and
by Theorem 1, X21 ∈ kerδA∗2 ,B∗

1
and M reduces A2. Let A1

2 = A2 |M , then by Lemma
5 of [27], A1

2 is w-hyponormal. Now define X1
21 : H → M by X1

21x = X21x for each
x ∈ H. Then X1

21 has a dense range and satisfies the equation X1
21 ∈ kerδA1

2,B1
. By

Lemma 7, A1
2 is normal, which contradicts the fact that A2 is pure and hence X21 = 0.

Similarly Y21 = 0. Thus X11 and Y11 are injective and since X11 ∈ kerδA1,B1 and
Y11 ∈ kerδB1,A1 , by Lemma 1.1 of [29], A1 and B1 are unitarily equivalent. Also notice
that X22 and Y22 have dense ranges and that X22 ∈ kerδA2,B2 and Y22 ∈ kerδB2,A2 .
Hence the proof is complete.

From the Theorem, we immediately obtain the following corollaries.

Corollary 8. If A and B are quasi-similar w-hyponormal operators with kerA ⊂
kerA∗, then σe(A) = σe(B).

Proof. Decompose A and B into its normal and pure parts, respectively. Now by the
Theorem and [31, Corollary 2.9], the proof follows.

Remark. As an application, we are able to answer Clary [7] and Conway’s [8] famous
question affirmatively.

Corollary 9. If a w-hyponormal operator A with kerA ⊂ kerA∗ is quasi-similar to
a normal operator B, then A and B are unitarily equivalent normal operators.
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Corollary 10. If A and B are quasi-similar w-hyponormal operators with kerA ⊂
kerA∗, then B is pure whenever A is pure.

In Theorem 1, if X is a quasiaffinity, then ranX = H and (kerX)⊥ = H. Accord-
ingly, the following corollary is true.

Corollary 11. If A and B∗ are w-hyponormal operators with kerA ⊂ kerA∗ and
kerB∗ ⊂ kerB such that X ∈ kerδA,B for some quasiaffinity operator X, then A and
B are unitarily equivalent normal operators.

Remark. First, observe that from Corollary 11, we immediately recapture Corol-
lary 9.

Also in Theorem 1, if X is a quasiaffinity, then X ∈ kerδA,B implies X ∈
kerδA∗,B∗ , where A is w-hyponormal operator with kerA ⊂ kerA∗ and B is a normal
operator.

However, in the sequel, we wish to give an alternative proof (as a generalisation
of Corollary 9) of this result.

Theorem 12. Let A be w-hyponormal with kerA ⊂ kerA∗ and B be a normal
operator. If there exists a quasiaffinity X ∈ B(H) such that X ∈ kerδA,B, then
X ∈ kerδA∗,B∗ .

We will need the following results.

Lemma 13. ([20]). If B is a normal operator on H, then⋂
(B − λ)H = {0} for λ ∈ C.

Lemma 14. ([21]). Let A, B ∈ B(H) be such that 0 ≤ B ≤ T (A − λ)(A − λ)∗ for
each λ ∈ C, where T is a positive real number. Then for every x ∈ B

1
2 H, there exists

a bounded function f : C −→ H such that (A− λ)f(λ) ≡ x.

Proof of Theorem 12. Decompose A = A1 ⊕ A2 into normal and pure parts, respec-

tively. By Lemma 2, ˜̃
A is hyponormal and using Lemma 7, there exists a quasiaffinity

W such that ˜̃
AW = WA. Hence˜̃

AWX = WAX = WXB

and ˜̃
AZ = ZB, where Z = WX and Z is a quasiaffinity. Thus Z∗ ˜̃

A
∗

= B∗Z∗, where
Z∗ is also a quasiaffinity.
Now let

x ∈ ( ˜̃A∗ ˜̃
A− ˜̃

A
˜̃
A
∗
)

1
2 H,

then by Lemma 14, there exists a bounded function f : C −→ H such that ( ˜̃A∗
−

λ)f(λ) ≡ x, for each λ ∈ C.
Hence

Z∗x = Z∗( ˜̃A∗
− λ)f(λ) = (B∗ − λ)f(λ)Z∗ ∈ ran(B∗ − λ),

for each λ ∈ C. By Lemma 13, Z∗x = 0 and x = 0. Hence by Lemma 6 and
Putnam-Fuglede Theorem, the result follows.
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4. W -HYPONORMAL OPERATORS QUASI-SIMILAR
TO SPECTRAL OPERATORS

A spectral operator (in the sense of Dunford) is an operator with a countable additive
resolution of the identity defined on the Borel sets of the complex plane. If A is
spectral, then it has the canonical decomposition A = R + S, where R and S are its
scalar and radical parts, respectively. For details of spectral operators, see [14,15,17,
18,22].

In [22] (or [15]), it is shown that an M -hyponormal spectral operator is normal.
However, Example 2 of [24] shows that a dominant operator may be quasinilpotent
and hence spectral, without necessarily being normal.

Recently, Jean and Duggal ([12]) have shown that a p-hyponormal spectral oper-
ator is normal.

In this section, we try to extend this result to a more general case of w-hyponormal
operators.

The following result is Lemma 2 of [15] (see also [22]).

Lemma 15. Let A be an M -hyponormal operator and suppose there exists an operator
X with a dense range and a spectral operator B such that X ∈ kerδA,B. Then there
exist a positive operator P , a normal operator N and a quasinilpotent operator Q such
that (A−N)P = PQ and AN = NA.

From the Lemma, the following Corollary ([15, Corollary 4]) is immediate.

Corollary Q. If X ∈ kerδA,B, where B is spectral, A is hyponormal and X has a
dense range, then A is normal, B is a scalar operator and is similar to A.

The following result is an extension of Corollary Q above.

Theorem 16. Let A be w-hyponormal with kerA ⊂ kerA∗ and B be a spectral
operator. If there exists an operator X ∈ B(H) with a dense range such that X ∈
kerδA,B, then A is normal, B is a scalar operator and is similar to A.

Proof. Decompose A = A1 ⊕ A2 into normal and pure parts, respectively. Then, as

in the proof of Lemma 7, there exists a quasiaffinity Z such that ˜̃
AZ = ZA, where ˜̃

A
is a hyponormal operator.

Thus ˜̃
AZX = ZAX = ZXB and, by Corollary Q ˜̃

A is normal. Hence by Lemma 6,
A is normal, B is a scalar and is similar to A.

Corollary 17. Let A be w-hyponormal with kerA ⊂ kerA∗ and B be a spectral
operator. If there exists a quasiaffinity X ∈ B(H) such that X ∈ kerδA,B, then A is
normal, B is a scalar operator and is similar to A.

Corollary 18. ([12, Theorem 11], [19, Theorem 12]). Let A be log or p-hyponormal
and B be a spectral operator. If there exists a quasiaffinity X ∈ B(H) such that
X ∈ kerδA,B, then A is normal, B is a scalar operator and is similar to A.
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