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APPROXIMATION PROPERTIES
OF SOME TWO-LAYER FEEDFORWARD

NEURAL NETWORKS

Abstract. In this article, we present a multivariate two-layer feedforward neural networks
that approximate continuos functions defined on [0, 1]d. We show that the L1 error of
approximation is asymptotically proportional to the modulus of continuity of the underlying
function taken at

√
d/n, where n is the number of function values used.
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1. INTRODUCTION

Currently analyzed issues related to neural networks have already raised unusually
vast interdisciplinary interest. In the scope of neural network construction, one of the
classical problems is the ability to recognize patterns and to approximate functions.
And as vast and multi-faceted is the neural network issue itself, so multiple are the
approaches to the function approximation issue.

In the late 1980s and early 1990s, several important papers discussing neural net-
works as universal approximators were published ([3,5–8,12]). However, these results
were of purely extentional nature. In following years, the search for constructive
results was launched.

The construction of Kolmogorov networks, for which the initial problem concerned
the non-triviality of an activation function (see [13]) deserves a special emphasis here.
Another research direction deals with sigma-pi networks (see [10, 11]). Examples of
such constructions include the Cardaliaguet-Euvrard operator, utilizing a bell-shaped
function as an activation function (see [1, 2, 4]). The majority of research into the
constructive approach has been dealing with feedforward networks. (Certain similar
results are included in, e.g., [9, 13,14]).
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The uniformity of a neural network seems a natural requirement for the construc-
tion thereof. It is a common belief that if a network is to be of any use, it should
consist of thousands of interconnected basic elements. The uniformity condition may
be understood as the applicability of the same non-decreasing and bounded activation
function to all network elements.

To the best of the author’s knowledge, there is no construction of approximation
functions under the assumptions stated above. In the paper, a construction of a
two-layer feedforward neural network is presented. The rate of convergence in the L1

norm is also estimated.

2. PRELIMINARIES AND A DEFINITION OF A MULTILAYERS
FEEDFORWARD UNIFORM NEURAL NETWORKS

We have to begin with the following notations. In Rd, we consider a natural partial
order, i.e., for α = (α1, . . . , αd) ∈ Rd and β = (β1, . . . , βd) ∈ Rd, we write α ≤ β if
and only if αi ≤ βi for every i = 1, . . . , d.

Throughout the paper, [a] stands for the integral part of a ∈ R. For α =
(α1, . . . , αd) ∈ Rd we set |α| := α1 + . . . + αd, α + 1 := (α1 + 1, . . . , αn + 1),
α − 1 := (α1 − 1, . . . , αn − 1), [α] := ([α1], . . . , [αn]), Jn := {0, 1, . . . , n − 1}d and
J∗n := {1, . . . , n− 1}d.

In what follows, we use the symbol ωf to denote the continuity modulus of f , i.e.

ωf (δ) = sup
x,y∈[0,1]d;‖x−y‖2≤δ

|f(x)− f(y)|,

where ‖ · ‖2 is the standard Euclidean norm in Rd.
For two non-negative sequences, we will use the Landau symbol: an = O(bn) to

mean that there exists a positive constant C such that an ≤ Cbn for large n. We write
an ∼ bn if and only if an = O(bn) and bn = O(an).

Now we recall and introduce definitions of some classes of neural networks.

Definition 2.1. A non-decreasing function σ : R → [0, 1] is called a sigmoidal func-
tion, if limx→−∞ σ(x) = 0 and limx→+∞ σ(x) = 1.

Definition 2.2. Fix m,n, l ∈ N. Let σi for i = 1, . . . , l be a sigmoidal function and
let aki, θi, bkj be real numbers for i = 1, . . . , l, k = 1, . . . , n and j = 1, . . . ,m. Let
Φ: Rm → Rl → Rn be given by

Φk(x) =
l∑

i=1

akiσi

(
θi +

m∑
j=1

bijxj

)
, x = (x1, . . . , xm) ∈ Rm,

where Φk is the k-th coordinate of Φ. We call any function Φ so defined a one-layer
feedforward neural network. We also say that m is the amount of the input units, l
is the number of the hidden units and n is the number of the output units.



Approximation properties of some neural networks 61

Using a matrix notation, Definition 2.2 can be rewritten as follows:

Φ(x) = AΣ(Θ + Bx), x ∈ Rm,

where Σ = [σ1, . . . , σl]T is a vector-valued function with sigmoidal coordinates, Θ =
[θ1, . . . , θl]T is a vector of activation coefficients (biases), A ∈ Mn×l(R) and B ∈
Ml×m(R).

Definition 2.3. By a feedforward two-layer neural network we mean any superposi-
tion of two feedforward one-layer neural networks.

Likewise, one can define a feedforward n-layer neural network as a superposition
of n one-layer neural networks.

Remark 2.4. We can write any two-layer network in the following way:

Φ(x) = AΣ2(Θ2 + BΣ1(Θ1 + Cx)). (1)

Indeed, assume that Φ1 : Rm1 → Rl1 → Rn1 and Φ2 : Rm2 → Rl2 → Rn2 are two
feedforward one-layer neural networks given by:

Φ1(x) = A1Σ1(Θ1 + B1x), x ∈ Rm1 ,

Φ2(x) = A2Σ2(Θ2 + B2x), x ∈ Rm2 .

Then
Φ2 ◦ Φ1(x) = A2Σ2

(
Θ2 + B2A1Σ1(Θ1 + B1x)

)
.

Now, to obtain desired equality (1), it suffices to set A2 := A, B1 := C and B :=
B2A1.

Let us note that Φ2 ◦Φ1 calls for some comment. This superposition makes sense
in the case of n1 = m2, which means that the number of output units of the first
network is equal to the number of input units of the second network. We can write

Φ2 ◦ Φ1 : Rm1 → Rl1 → Rl2 → Rn2 ,

where m1 is the number of input units, l1 is the number of units of first hidden layer,
l2 the number of units of second hidden layer and n2 is the number of output units.

Definition 2.5. Assume that the same sigmoidal function σ appears in every layer
Σk (k = 1, . . . , n) of a feedforward n-layer neural network, i.e.,

Σ1 = (σ, . . . , σ), Σ2 = (σ, . . . , σ), . . . , Σn = (σ, . . . , σ).

We say that such network is a uniform neural network.

3. THE MAIN RESULT

Take a sigmoidal function σ. Let us fix natural numbers n, s, r such that s ≥ 1, r > d
and α ∈ Jn. We now define the function σn

α : [0, 1]d → R by

σn
α(x) := σ

(
ns

(
1
2
− d +

d∑
k=1

σ
(
nr
(
xk −

αk

n

))))
, x = (x1, . . . , xd) ∈ [0, 1]d.
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Now we are in a position to construct the desired operators. We use the symbol
C([0, 1]d) to denote the set of all real-valued continuous functions defined on [0, 1]d.

Definition 3.1. Fix a sigmoidal function σ. Let us define a sequence of operators
{Bn}∞n=1 on C([0, 1]d). For every n ∈ N, f ∈ C([0, 1]d) and x ∈ [0, 1]d we set

Bnf(x) :=
∑

α∈Jn

σn
α(x)

∑
β∈Jn;α−1≤β≤α

(−1)|α−β|f
(β

n

)
. (2)

The above sequence is in fact a sequence of correspondent two layers feedforward
uniform neural networks with a 1− d outputs.

Remark 3.2. One can easily deduce from (2) that

Bnf(x) =
∑

β∈Jn

f
(β

n

) ∑
α∈Jn;β≤α≤β+1

(−1)|α−β|σn
α(x).

The formula for Bn closely resembles the Bernstein operator for polynomials.

The main result of this paper is the following theorem.

Theorem 3.3. Let f be a continuous function on [0, 1]d, and let σ be a sigmoidal
function such that 1 − σ(ns) = O( 1

nr ) and σ(−ns) = O( 1
nr ). Then there exists a

sequence ξn(σ) ≥ 0 such that

‖Bnf − f‖L1 ≤ ωf

(√d

n

)
+ ‖f‖∞ξn(σ)

and limn→∞ ξn(σ) = 0. Moreover, ξn(σ) = O( 1
nr−d ).

4. THE PROOF OF THE MAIN RESULT

Before we go into the proof of the main theorem, let us start with some usual lemmas
and remarks.

Remark 4.1. ∑
α∈Jn;α≤nx

∑
β∈Jn;α−1≤β≤α

(−1)|α−β|f
(β

n

)
= f

( [nx]
n

)
.

Proof of Remark.∑
α∈Jn;α≤nx

∑
β∈Jn;α−1≤β≤α

(−1)|α−β|f
(β

n

)
=

∑
β∈Jn;β≤nx

f
(β

n

) ∑
α∈Jn;α≤nx;β≤α≤β+1

(−1)|α−β| =

=
∑

β∈Jn;β≤[nx]

f
(β

n

) ∑
β+γ∈Jn;β+γ≤[nx];0≤γ≤1

(−1)|γ|.

(3)
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Notice that if β < [nx] (β ≤ [nx] but β 6= [nx]), then there exists i ∈ {1, . . . , d} such
that βi < [nxi] and this implies that βi + 1 ≤ [nxi], too. So the sum∑

β+γ∈Jn;β+γ≤[nx];0≤γ≤1

(−1)|γ|

consists of elements of the form

(−1)|(γ1,...,γi−1,0,γi+1,...,γd)| + (−1)|(γ1,...,γi−1,1,γi+1,...,γd)| = 0.

Therefore, sum (3) is reduced to a single component for β = [nx]. Then there is only
one γ = (0, . . . , 0) that satisfies all conditions β +γ ∈ Jn, β +γ ≤ [nx] and 0 ≤ γ ≤ 1.

Thus (3) is equal to f( [nx]
n ), which completes the proof of the remark.

Lemma 4.2. Let σ be a sigmoidal function such that 1−σ(ns) = O( 1
nr ). Then there

exists a sequence ξ1
n(σ) ≥ 0 such that∫

[0,1]d

∑
α∈Jn;α≤nx

(
1− σn

α(x)
)
dx ≤ ξ1

n(σ)

and limn→∞ ξ1
n(σ) = 0. Moreover, ξ1

n(σ) = O( 1
nr−d ).

Proof. Let [β
n , β+1

n ]d = [β1
n , β1+1

n ] × . . . × [βd

n , βd+1
n ]. Observe that [0, 1]d =⋃

β∈Jn
[β
n , β+1

n ]d. Now∫
[0,1]d

∑
α∈Jn;α≤nx

(1− σn
α(x))dx =

∫
[0,1]d

∑
α∈Jn;
α≤nx

(
1−σ

(
ns

(
1
2
− d+

d∑
k=1

σ
(
nr
(
xk−

αk

n

)))))
dx=

=
∑

β∈Jn

∫
[ β

n , β+1
n ]d

∑
α∈Jn;α≤[nx]=β

(
1− σ

(
ns

(
1
2
− d +

d∑
k=1

σ
(
nr
(
xk −

αk

n

)))))
dx =

=
∑

β∈Jn

∑
α∈Jn;α≤β

∫
[ β

n , β+1
n ]d

(
1− σ

(
ns

(
1
2
− d +

d∑
k=1

σ
(
nr
(
xk −

αk

n

)))))
dx =

=
∑

β∈Jn

∑
α∈Jn;α≤β

∫
[ β−α

n , β−α+1
n ]d

(
1− σ

(
ns
(1

2
− d +

d∑
k=1

σ(nrtk)
)))

dt =

=
∑

γ∈Jn

d∏
l=1

(n− γl)
∫

[ γ
n , γ+1

n ]d

(
1− σ

(
ns
(1

2
− d +

d∑
k=1

σ(nrtk)
)))

dt =

=
∑

γ∈J∗n

d∏
l=1

(n− γl)
∫

[ γ
n , γ+1

n ]d

(
1− σ

(
ns
(1

2
− d +

d∑
k=1

σ(nrtk)
)))

dt

︸ ︷︷ ︸
S1

+

+
∑

γ∈Jn\J∗n

d∏
l=1

(n− γl)
∫

[ γ
n , γ+1

n ]d

(
1− σ

(
ns
(1

2
− d +

d∑
k=1

σ(nrtk)
)))

dt

︸ ︷︷ ︸
S2

.
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Denote

T1 := max
{

0, sup
{

x : σ(x) < 1− 1
4d

}}
.

Therefore, if x > T1, then σ(x) ≥ 1− 1
4d .

Let γ = (γ1, . . . , γd) ∈ J∗n then γj ∈ {1, . . . , n − 1} for j = 1, . . . , d. Assume that
t ∈ [ γ

n , γ+1
n ]; then nrtj ∈ [γjn

r−1, (γj + 1)nr−1], so nrtk ≥ nr−1 and, because σ is

non-decreasing, we get: σ(nrtk) ≥ σ(nr−1) ≥ 1 − 1
4d for n > T

1
r−1
1 . Therefore, if

n > T
1

r−1
1 , then we can estimate

∑d
k=1 σ(nrtj) ≥ d(1− 1

4d ) = d− 1
4 and we obtain

1−σ

(
ns

(
1
2
− d +

d∑
k=1

σ(nrtj)
))

≤ 1−σ

(
ns

(
1
2
− d + d− 1

4

))
= 1−σ

(
ns

4

)
. (4)

Then by (4), for every n > T
1

r−1
1 , there is

S1 =
∑

γ∈J∗n

d∏
l=1

(
n− γl

)∫
[ γ

n , γ+1
n ]d

(
1− σ

(
ns
(1

2
− d +

d∑
k=1

σ
(
nrtk

))))
dt ≤

≤ (n− 1)dnd 1
nd

(
1− σ

(
ns
(1

2
− d +

d∑
k=1

σ
(
nr
))))

≤

≤(n− 1)d

(
1− σ

(
ns

(
1
2
− d + d

(
1− 1

4d

))))
=(n− 1)d

(
1− σ

(ns

4

))
=: ξ11

n (σ).

Note a simple fact.
We get limn→∞ ξ11

n (σ) = 0. Moreover, there is

nr−dξ11
n (σ) = nr−d(n− 1)d

(
1− σ

(
ns

4

))
≤ nr

(
1− σ

(
ns

4

))
.

The assumption of Lemma 4.2 implies that
limn→∞ nr(1− σ(ns

4 )) = 0, so limn→∞ nr−dξ11
n (σ) = 0 and ξ11

n (σ) = O( 1
nr−d ).

Next we estimate

S2 =
∑

γ∈Jn\J∗n

d∏
l=1

(n− γl)
∫

[ γ
n , γ+1

n ]d

(
1− σ

(
ns
(1

2
− d +

d∑
k=1

σ(nrtk)
)))

dt ≤

≤
∑

γ∈Jn\J∗n

d∏
l=1

(n− γl)
∫

[0, 1
n ]d

(
1− σ

(
ns
(1

2
− d +

d∑
k=1

σ(nrtk)
)))

dt.
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The last inequality is satisfied, because the function σ is non-decreasing. Notice
that the number of components of the sum S2 is equal to nd− (n− 1)d and

∏d
l=1(n−

γl) ≤ nd for every γ = (γ1, . . . , γd) ∈ Jn. Therefore,

S2≤ (nd − (n− 1)d)nd

∫
[0, 1

n ]d

(
1− σ

(
ns
(1

2
− d +

d∑
k=1

σ(nrtk)
)))

dt =

= (nd − (n− 1)d)ndn−dr

∫
[0,nr−1]d

(
1− σ

(
ns
(1

2
− d +

d∑
k=1

σ(yk)
)))

dy =

= (nd − (n− 1)d)n−d(r−1)

(∫
[0,nr−1]d\[T1,nr−1]d

(
1− σ

(
ns
(1
2
− d +

d∑
k=1

σ(yk)
)))

dy+

+
∫

[T1,nr−1]d

(
1− σ

(
ns
(1

2
− d +

d∑
k=1

σ(yk)
)))

dy

)
.

If yk > T1, k = 1, . . . , d, then
∑d

k=1 σ(yk) ≥ d − 1
4 because of the definition of

T1. So σ(ns( 1
2 − d +

∑d
k=1 σ(yk))) ≤ σ(ns

4 ) if y = (y1, . . . , yd) ∈ [T1, n
r−1]d. Because

σ ≥ 0, by the above consideration, we can continue the estimation for S2:

S2 ≤ (nd − (n− 1)d)n−d(r−1)

(∫
[0,nr−1]d\[T1,nr−1]d

dy +
∫

[T1,nr−1]d

(
1− σ

(ns

4
))

dy

)
=

= (nd − (n− 1)d)
(

1−
(

1− T1

nr−1

)d

+
(

1− T1

nr−1

)d(
1− σ

(ns

4
)))

=: ξ12
n (σ).

Now we estimate

nr−dξ12
n (σ)=nr−d

(
nd − (n− 1)d

)(
1−

(
1− T1

nr−1

)d

+
(
1− T1

nr−1

)d(
1− σ

(ns

4
)))

∼

∼ nr−dnd−1

(
T1

nr−1
+
(

1− σ
(ns

4

)))
= T1 +

1
n

nr

(
1− σ

(
ns

4

))
.

Again, by the assumption of Lemma 4.2, we obtain nr−dξ12
n (σ) ∼ T1, which means

that ξ12
n (σ) = O( 1

nr−d ).
Now we set ξ1

n(σ) := ξ11
n (σ)+ξ12

n (σ), which completes the proof of Lemma 4.2.

Lemma 4.3. Let σ be a sigmoidal function such that σ(−ns) = O( 1
nr ). Then there

exists a sequence ξ2
n(σ) ≥ 0 such that∫

[0,1]d

∑
α∈Jn;¬(α≤nx)

σn
α(x)dx ≤ ξ2

n(σ)

and limn→∞ ξ2
n(σ) = 0. Moreover, ξ2

n(σ) = O( 1
nr−d ).
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Proof. There is∫
[0,1]d

∑
α∈Jn;¬(α≤nx)

σn
α(x)dx =

∫
[0,1]d

∑
α∈Jn;¬(α≤nx)

σ

(
ns

(
1
2
−d+

d∑
k=1

σ
(
nr
(
xk−

αk

n

))))
dx =

=
∑

β∈Jn

∫
[ β

n , β+1
n ]d

∑
α∈Jn;¬(α≤nx)

σ

(
ns

(
1
2
− d +

d∑
k=1

σ
(
nr
(
xk −

αk

n

))))
dx =

=
∑

β∈Jn

∑
α∈Jn;¬(α≤β)

∫
[ β

n , β+1
n ]d

σ

(
ns

(
1
2
− d +

d∑
k=1

σ
(
nr
(
xk −

αk

n

))))
dx =

=
∑

β∈Jn

∑
α∈Jn;¬(α≤β)

∫
[ β−α

n , β−α+1
n ]d

σ

(
ns
(1
2
− d +

d∑
k=1

σ
(
nrtk

)))
dt =

=
∑

β∈Jn

∑
β−γ∈Jn;¬(0≤γ)

∫
[ γ

n , γ+1
n ]d

σ

(
ns
(1
2
− d +

d∑
k=1

σ
(
nrtk

)))
dt = . . .

Let i = 1, . . . , 2d−1. Then i can be represented in the binary system. i = (id, . . . , i1)2,
where ij = [ i

2j−1 ](mod2); i.e., we can write i =
∑d

j=1 2j−1ij , where ij = 0, 1 for every
j = 1, . . . , d. Now denote γ ∈ Jn(i) if and only if γj ∈ {0, . . . , n − 1} for ij = 0 and
γj ∈ {−(n−1), . . . ,−1} for ij = 1 by j = 1, . . . , d. Additionally, γ ∈ J∗n(i) if and only
if γj ∈ {0, . . . , n−1} for ij = 0 and γj ∈ {−(n−1), . . . ,−2} for ij = 1 by j = 1, . . . , d.
We now may continue the estimating process:

. . . =
2d−1∑
i=1

∑
β∈Jn

∑
β−γ∈Jn;γ∈Jn(i)

∫
[ γ

n , γ+1
n ]d

σ
(
ns
(1

2
− d +

d∑
k=1

σ(nrtk)
))

dt ≤

≤
2d−1∑
i=1

nd
∑

γ∈Jn(i)

∫
[ γ

n , γ+1
n ]d

σ
(
ns
(1

2
− d +

d∑
k=1

σ(nrtk)
))

dt =

=
2d−1∑
i=1

(
nd

∑
γ∈J∗n(i)

∫
[ γ

n , γ+1
n ]d

σ
(
ns
(1

2
− d +

d∑
k=1

σ(nrtk)
))

dt

︸ ︷︷ ︸
S1(i)

+

+ nd
∑

γ∈Jn(i)\J∗n(i)

∫
[ γ

n , γ+1
n ]d

σ
(
ns
(1

2
− d +

d∑
k=1

σ(nrtk)
))

dt

︸ ︷︷ ︸
S2(i)

)
.

Now for a given i = 1, . . . , 2d − 1, denote:

|i| := i1 + . . . + id,

T2(i) := min
{

0, inf
{

x : σ(x) > 1− 3
4|i|

}}
.
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Therefore, if x < T2(i), then σ(x) ≤ 1− 3
4|i| .

Let γ = (γ1, . . . , γd) ∈ J∗n(i); then γj ∈ {0, 1, . . . , n− 1} for ij = 0
and γj ∈ {−n + 1, . . . ,−3,−2} for ij = 1. Assume that t ∈ [ γ

n , γ+1
n ] then nrtj ∈

[γjn
r−1, (γj + 1)nr−1]. If γj ≥ 0, then nrtj ≤ (γj + 1)nr−1 and σ(nrtj) ≤ σ((γj +

1)nr−1) ≤ 1, because σ is non-decreasing and bounded by 1. Moreover, there is #{j :
γj ≥ 0} = d− |i|. If γj ≤ −2, then nrtj ≤ −nr−1 and σ(nrtj) ≤ σ(−nr−1) ≤ 1− 3

4|i|

for n > (−T2(i))
1

r−1 . Therefore, we can estimate
∑d

k=1 σ(nrtj) ≤ d−|i|+|i|(1− 3
4|i| ) =

d− 3
4 and we come to

σ

(
ns
(1

2
− d +

d∑
k=1

σ
(
nrtj

)))
≤ σ

(
ns
(1

2
− d + d− 3

4

))
= σ

(
− ns

4

)
, (5)

when n > (−T2(i))
1

r−1 . Then by (5), for every n > (−T2(i))
1

r−1 , there holds

S1(i) = nd
∑

γ∈J∗n(i)

∫
[ γ

n , γ+1
n ]d

σ

(
ns
(1

2
− d +

d∑
k=1

σ
(
nrtk

)))
dt ≤

≤ nd
∑

γ∈J∗n(i)

∫
[ γ

n , γ+1
n ]d

σ

(
−ns

4

)
dt ≤

≤ nd
∑

γ∈J∗n(i)

n−dσ

(
−ns

4

)
≤

≤ nd−|i|(n− 1)|i|σ
(
−ns

4

)
=: ξ21

n (i)(σ).

Thus limx→∞ ξ21
n (i)(σ) = 0.

Moreover, there is

nr−dξ21
n (i)(σ) = nr−dnd−|i|(n− 1)|i|σ

(
−ns

4

)
≤ nrσ

(
−ns

4

)
.

By the assumption of Lemma 4.3, we obtain limn→∞ nrσ
(−ns

4

)
= 0, so

limn→∞ nr−dξ21
n (i)(σ) = 0 and ξ21

n (i)(σ) = O
(

1
nr−d

)
.

Next, observe that

S2(i) = nd
∑

γ∈Jn(i)\J∗n(i)

∫
[ γ

n , γ+1
n ]d

σ

(
ns
(1

2
− d +

d∑
k=1

σ
(
nrtk

)))
dt ≤

≤ nd
∑

γ∈Jn(i)\J∗n(i)

∫
[− 1

n ,0]d
σ

(
ns
(1

2
− d + d− |i|+

∑
k=1,...,d;ik=1

σ
(
nrtk

)))
dt.
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Since the function σ is non-decreasing, the latter inequality holds true. Note that
#(Jn(i) \ J∗n(i)) = nd − nd−|i|(n− 1)|i|. Therefore, we may proceed as follows:

S2(i) ≤ (nd − nd−|i|(n− 1)|i|)nd

∫
[− 1

n ,0]d
σ

(
ns
(1
2
− d + d− |i|+

∑
k=1,...,d;ik=1

σ(nrtk)
))

dt=

= (nd − nd−|i|(n− 1)|i|)ndn−dr

∫
[−nr−1,0]d

σ

(
ns
(1

2
− |i|+

∑
k=1,...,d;ik=1

σ(yk)
))

dy=

= (nd − nd−|i|(n− 1)|i|)n−d(r−1)·

·

(∫
[−nr−1,0]d\[−nr−1,T2(i)]d

σ

(
ns
(1

2
− |i|+

∑
k=1,...,d;ik=1

σ(yk)
))

dy+

+
∫

[−nr−1,T2(i)]d
σ

(
ns
(1

2
− |i|+

∑
k=1,...,d;ik=1

σ(yk)
))

dy

)
≤

≤ (nd − nd−|i|(n− 1)|i|)n−d(r−1)

(∫
[−nr−1,0]d\[−nr−1,T2(i)]d

dy+

+
∫

[−nr−1,T2(i)]d
σ

(
ns
(1

2
− |i|+ |i|

(
1− 3

4|i|
)))

dy

)
,

because σ ≤ 1 and σ(yk) ≤ 1− 3
4|i| if yk < T2(i), which is the case in the last integral.

We can continue the estimation for S2(i) :

S2(i) ≤
(
nd − nd−|i|(n− 1)|i|

)
n−d(r−1)

(
nd(r−1) −

(
nr−1 + T2(i)

)d+

+
(
nr−1 + T2(i)

)d
σ

(
− ns

4

))
=

=
(
nd − nd−|i|(n− 1)|i|

)(
1−

(
1 +

T2(i)
nr−1

)d

+
(

1 +
T2(i)
nr−1

)d

σ

(
− ns

4

))
=:

=: ξ22
n (i)(σ).

Now we estimate:

nr−dξ22
n (i)(σ) = nr−d(nd−nd−|i|(n−1)|i|)

(
1−
(

1+
T2(i)
nr−1

)d

+
(

1+
T2(i)
nr−1

)d

σ

(
−ns

4

))
∼

∼ nr−dnd−1

(
−T2(i)
nr−1

+ σ
(
− ns

4

))
= −T2(i) +

1
n

nrσ(−ns

4
).

Once more, by the assumption of Lemma 4.3, there is nr−dξ22
n (i)(σ) ∼ −T2(i),

which means that ξ12
n (σ) = O( 1

nr−d ).

Denote ξ2
n(σ) :=

∑2d−1
i=1 (ξ21

n (i)(σ) + ξ22
n (i)(σ)), which completes the proof of

Lemma 4.3.
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Proof of Theorem 3.3. Notice that

Bnf(x) =
∑

α∈Jn

σn
α(x)

∑
β∈Jn;α−1≤β≤α

(−1)|α−β|f
(β

n

)
=

=
∑

α∈Jn;α≤nx

σn
α(x)

∑
β∈Jn;α−1≤β≤α

(−1)|α−β|f
(β

n

)
+

+
∑

α∈Jn;¬(α≤nx)

σn
α(x)

∑
β∈Jn;α−1≤β≤α

(−1)|α−β|f
(β

n

)
=

=
∑

α∈Jn;α≤nx

∑
β∈Jn;α−1≤β≤α

(−1)|α−β|f
(β

n

)
−

−
∑

α∈Jn;α≤nx

(1− σn
α(x))

∑
β∈Jn;α−1≤β≤α

(−1)|α−β|f
(β

n

)
+

+
∑

α∈Jn;¬(α≤nx)

σn
α(x)

∑
β∈Jn;α−1≤β≤α

(−1)|α−β|f
(β

n

)
.

Now using Remark 4.1, we can write

Bnf(x) = f(x)−
(
f(x)− f

( [nx]
n

))
−

−
∑

α∈Jn;α≤nx

(1− σn
α(x))

∑
β∈Jn;α−1≤β≤α

(−1)|α−β|f
(β

n

)
+

+
∑

α∈Jn;¬(α≤nx)

σn
α(x)

∑
β∈Jn;α−1≤β≤α

(−1)|α−β|f
(β

n

)
.

(6)

Next we estimate

‖Bnf − f‖L1 ≤
∫

[0,1]d

∣∣∣∣f(x)− f

(
[nx]
n

)∣∣∣∣ dx+

+
∫

[0,1]d

∑
α∈Jn;α≤nx

(1− σn
α(x))

∣∣∣∣∣∣
∑

β∈Jn;α−1≤β≤α

(−1)|α−β|f

(
β

n

)∣∣∣∣∣∣ dx+

+
∫

[0,1]d

∑
α∈Jn;¬(α≤nx)

σn
α(x)

∣∣∣∣∣∣
∑

β∈Jn;α−1≤β≤α

(−1)|α−β|f

(
β

n

)∣∣∣∣∣∣ dx

≤ ωf

(√
d

n

)
+ 2d‖f‖∞

(∫
[0,1]d

∑
α∈Jn;α≤nx

(1− σn
α(x))dx +

∫
[0,1]d

∑
α∈Jn;¬(α≤nx)

σn
α(x)dx

)
.

The latter inequality calls for some explanation. Namely, since ‖x− [nx]
n ‖2 ≤

√
d

n

for every x ∈ [0, 1]d, we obtain ‖f(x) − f( [nx]
n )‖ ≤ ωf (

√
d

n ). This, when combined
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with the fact that #{β ∈ Jn : α− 1 ≤ β ≤ α} ≤ 2d for fixed α ∈ Jn, implies that the
desired inequality holds true.

In order to finish the proof of Theorem 3.3, it is sufficient to use Lemma 4.2 and
Lemma 4.3.

Finally we set ξn(σ) := 2d(ξ1
n(σ)+ξ2

n(σ)) and the proof of Theorem 3.3 is complete.

5. EXAMPLE

We deal with a special case of a function σ of “signum”-type:

σ(x) :=
{

0, x < 0,
1, x ≥ 0.

(7)

Then T1 = 0, ξ11
n = ξ12

n = 0 and T2(i) = 0, ξ21
n (i) = ξ22

n (i) = 0 for i = 1, . . . , 2d − 1.
Consequently, ξn(σ) = 0. This implies that inequality (3.3) has the form:

‖Bnf − f‖L1 ≤ ωf

(√d

n

)
.

Indeed, for σ as in (7), σn
α takes values 0 or 1. We proceed as follows

σn
α(x) = 1⇔σ

(
ns

(
1
2
− d +

d∑
k=1

σ
(
nr
(
xk −

αk

n

))))
= 1⇔

⇔ns

(
1
2
− d +

d∑
k=1

σ
(
nr
(
xk −

αk

n

)))
≥ 0⇔

d∑
k=1

σ
(
nr
(
xk −

αk

n

))
≥d− 1

2
⇔

⇔
d∑

k=1

σ
(
nr
(
xk −

αk

n

))
= d ⇔ xk ≥

αk

n
∀k = 1, . . . , n ⇔ α ≤ nx.

Therefore, we can write

σn
α(x) :=

{
0, ¬(α ≤ nx),
1, α ≤ nx.

From (6), we get

Bnf(x) = f
( [nx]

n

)
−

∑
α∈Jn;α≤nx

(1− σn
α(x))

∑
β∈Jn;α−1≤β≤α

(−1)|α−β|f
(β

n

)
+

+
∑

α∈Jn;¬(α≤nx)

σn
α(x)

∑
β∈Jn;α−1≤β≤α

(−1)|α−β|f
(β

n

)
.
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Notice that in the case of sigmoidal function given by (7), the second and third
summands of the above sum are equal to 0. Therefore, the values of Bn are step
functions:

Bnf(x) = f
( [nx]

n

)
.

Indeed, for these functions the rate of convergence is less then or equal to ωf

(√
d

n

)
.
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