Doost Ali Mojdeh, Nader Jafari Rad

k-PERFECT GEODOMINATING SETS IN GRAPHS

Abstract

A perfect geodominating set in a graph G is a geodominating set S such that any vertex $v \in V(G) \backslash S$ is geodominated by exactly one pair of vertices of S. A k-perfect geodominating set is a geodominating set S such that any vertex $v \in V(G) \backslash S$ is geodominated by exactly one pair x, y of vertices of S with $d(x, y)=k$. We study perfect and k-perfect geodomination numbers of a graph G.

Keywords: geodominating set, perfect geodomination number, pendant vertex, pendant edge.

Mathematics Subject Classification: 05C69.

1. INTRODUCTION

For vertices x and y in a connected graph G, the distance $d(x, y)$ is the length of a shortest $x-y$ path in G. An $x-y$ path of length $d(x, y)$ is called an $x-y$ geodesic. A vertex v is said to lie in an $x-y$ geodesic P if v is an internal vertex of P. The closed interval $I[x, y]$ consists of x, y and all vertices lying in some $x-y$ geodesic of G, while for $S \subseteq V(G)$,

$$
I[S]=\cup_{x, y \in S} I[x, y] .
$$

A set S of vertices is a geodetic set if $I[S]=V(G)$, and the minimum cardinality of a geodetic set is the geodetic number $g(G)$. A geodetic set of cardinality $g(G)$ is called a g-set (cf. [1-6])

Geodetic concepts were studied from the point of view of domination (cf. [2]). Geodetic sets and the geodetic number were referred to as geodominating sets and the geodomination number (cf. [2]). These expressions we adopt in this paper.

A pair x, y of vertices in a nontrivial connected graph G is said to geodominate a vertex v of G if either $v \in\{x, y\}$ or v lies in an $x-y$ geodesic of G. A set S of vertices of G is a geodominating set if every vertex of G is geodominated by some pair of vertices of S. For a graph G and an integer $k \geq 1$, a vertex v of G is k-geodominated by a pair x, y of distinct vertices in G if v is geodominated by x, y and $d(x, y)=k$.

A set S of vertices of G is a k-geodominating set of G if each vertex v in $V(G) \backslash S$ is k-geodominated by some pair of distinct vertices of S. The minimum cardinality of a k-geodominating set of G is its k-geodomination number $g_{k}(G)$. A k-geodomination set of cardinality $g_{k}(G)$ is called a g_{k}-set of G.

Uniform and essential geodominating sets are introduced in [1]. A set S of vertices in a connected graph G is uniform if the distance between every two vertices of S is the same fixed number. A geodominating set S is essential if for every two vertices u, v in S, there exists a vertex $w \in V(G) \backslash\{u, v\}$ which lies in a $u-v$ geodesic but in no $x-y$ geodesic for $x, y \in S$ and $\{x, y\} \neq\{u, v\}$.

The cartesian product of two graphs G, H, denoted by $G \times H$, is the graph with vertex set $V(G) \times V(H)$ specified by putting (u, v), adjacent to (u^{\prime}, v^{\prime}) if and only if (1) $u=u^{\prime}$ and $v v^{\prime} \in E(H)$, or (2) $v=v^{\prime}$ and $u u^{\prime} \in E(G)$. This graph has $|V(G)|$ copies of H as rows and $|V(H)|$ copies of G as columns.

All graphs in this paper are connected and for an edge $e=u v$ of a graph G with $\operatorname{deg}(u)=1$ and $\operatorname{deg}(v)>1$, we call e a pendant edge and u a pendant vertex.

2. DEFINITION

A perfect geodominating set in a graph G is a geodominating set S such that any vertex $v \in V(G) \backslash S$ is geodominated by exactly one pair of vertices of S and the cardinality of a minimum perfect geodominating set in G is its perfect geodomination number $g_{p}(G)$.

Let $k \geq 1$ be an integer. A k-perfect geodominating set is a geodominating set S such that any vertex $v \in V(G) \backslash S$ is geodominated by exactly one pair x, y of vertices of S with $d(x, y)=k$. The cardinality of a minimum k-perfect geodominating set in G is its k-perfect geodomination number $g_{k p}(G)$.

By definition, any k-perfect geodominating set is both a k-geodominating set and a perfect geodominating set. We refer a $g_{k p}(G)$-set to a k-perfect geodominating set of size $g_{k p}(G)$ and a $g_{p}(G)$-set to a perfect geodominating set of size $g_{p}(G)$. Thus for any graph G there is $g_{1 p}(G)=|V(G)|$ and also:

1) $g_{p}(G) \geq g(G)$;
2) $|V(G)| \geq g_{k p}(G) \geq g_{k}(G) \geq 2$;
3) if $g(G)=2$, then $g_{p}(G)=g(G)=2$;
4) $g_{k p}(G) \geq g_{p}(G), \quad k \geq 2$.

3. EXAMPLES

In this section we determine the perfect geodomination number and the k-perfect geodomination number of some special classes of graphs. The following are easily verified:

1) $g_{p}\left(K_{n}\right)=n, g_{p}\left(C_{2 n+1}\right)=3, n \geq 1$;
2) $g_{p}\left(P_{n}\right)=g_{p}\left(C_{2 n}\right)=g_{p}\left(P_{m} \times P_{n}\right)=2$;
3) $g_{k p}\left(K_{n}\right)=\left|V\left(K_{n}\right)\right|, k \geq 2$;
4) $g_{p}\left(K_{n} \times K_{n}\right)=n, n \geq 2$;
5) $g_{p}\left(K_{m, n}\right)=4, \min \{m, n\} \geq 2$;
6) $g_{2 p}\left(K_{m, n}\right)=4, \quad \min \{m, n\} \geq 2$;
7) $g_{2 p}\left(K_{1, n}\right)=n+1$;
8) $g_{2 p}\left(K_{m} \times K_{n}\right)=\max \{m, n\}$;
9) for $k \geq 3$ we have $g_{k p}\left(K_{m} \times K_{n}\right)=\left|V\left(K_{m} \times K_{n}\right)\right|, g_{k p}\left(K_{m, n}\right)=\left|V\left(K_{m, n}\right)\right|$ and $g_{k p}\left(W_{n}\right)=\left|V\left(W_{n}\right)\right|$.
Now we determine the k-perfect geodomination numbers of P_{n}, C_{n} and $K_{2} \times P_{n}$:

Example 1. $g_{k p}\left(P_{n}\right)=\left\{\begin{array}{ll}\left\lfloor\frac{n}{2}\right\rfloor+1, & k=2 ; \\ \left\lceil\frac{n}{k}\right\rceil+2, & 3 \leq k \leq n-2, n \stackrel{k}{=} 0 ; \\ \left\lceil\frac{n}{k}\right\rceil, & 3 \leq k \leq n-2, n \stackrel{k}{\equiv} 1 ; \\ \left\lfloor\frac{n}{2}\right\rfloor+2, & 3 \leq k \leq n-2, n \stackrel{k}{=} 2 ; \\ \left\lfloor\frac{n}{2}\right\rfloor+3, & 3 \leq k \leq n-2, n \stackrel{k}{\equiv} 3,4, \ldots, k-1 .\end{array}\right.$.
Proof. Let P_{n} be the path of length $n \geq 2$ with the vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $\left\{v_{i} v_{i+1}: i=1,2, \ldots, n-1\right\}$. For each k-perfect geodominating set S, there is $|S| \geq\left\lceil\frac{n}{k}\right\rceil$. If $|S|=\left\lceil\frac{n}{2}\right\rceil, n=2 t, t \geq 1$, then there exists such i that $\left\{v_{i}, v_{i+1}\right\} \cap S=\emptyset$, so S is not a 2-perfect geodominating set. On the other hand, $S=\left\{v_{1}, v_{3}, v_{5}, \ldots, v_{n}\right\}$ for n odd and $S=\left\{v_{1}, v_{2}, v_{4}, v_{6}, \ldots, v_{n}\right\}$ for n even are 2 -perfect geodominating sets, hence $g_{2 p}\left(P_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor+1$.

Let $n \stackrel{k}{\equiv} 0$ and S be a subset of vertices with $|S|=\left\lceil\frac{n}{k}\right\rceil$ or $\left\lceil\frac{n}{k}\right\rceil+1$; since $\left\{v_{1}, v_{n}\right\} \subseteq S$, then S is not a k-perfect geodominating set and by considering the k-perfect geodominating set $\left\{v_{1}, v_{k+1}, v_{2 k+1}, \ldots, v_{\left(\left\lfloor\frac{n}{k}\right\rfloor-1\right) k}, v_{\left(\left\lfloor\frac{n}{k}\right\rfloor-1\right) k+1}, v_{n}\right\}$ we obtain $g_{k p}\left(P_{n}\right)=\left\lceil\frac{n}{k}\right\rceil+2$.

If $n \stackrel{k}{\equiv} 1$, then $\left\{v_{1}, v_{k+1}, v_{2 k+1}, \ldots, v_{n}\right\}$ is a k-perfect geodominating set, so $g_{k p}\left(P_{n}\right)=\left\lceil\frac{n}{k}\right\rceil$. The other cases are similarly verified.

Example 2. $g_{k p}\left(C_{n}\right)=\left\{\begin{array}{ll}\left\lceil\frac{n}{k}\right\rceil, & n \stackrel{k}{=} 0,1 \\ \left\lceil\frac{n}{k}\right\rceil+1, & \text { otherwise }\end{array}, \quad k \geq 2\right.$.
Proof. Let C_{n} be the n-cycle, $n \geq 3$, with the vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $\left\{v_{i} v_{i+1}: i=1,2, \ldots, n-1\right\} \cup\left\{v_{n} v_{1}\right\}$. It is clear that for each integers $n \geq 3$ and $k \geq 2, g_{k p}\left(C_{n}\right) \geq\left\lceil\frac{n}{k}\right\rceil$. On the other hand considering the following k-perfect geodominating sets:

$$
\begin{aligned}
& \quad S=\left\{v_{1}, v_{k+1}, v_{2 k+1}, \ldots, v_{\left(\left\lfloor\frac{n}{k}\right\rfloor-1\right) k+1}\right\} \text { for } n \stackrel{k}{\equiv} 0, \text { and } \\
& \quad S=\left\{v_{1}, v_{k+1}, v_{2 k+1}, \ldots, v_{\left\lfloor\frac{n}{k}\right\rfloor k+1}\right\} \text { for } n \stackrel{k}{\equiv} 1 \text { imply that } g_{k p}\left(C_{n}\right)=\left\lceil\frac{n}{k}\right\rceil \text { when } \\
& n \stackrel{k}{\equiv} 0,1 .
\end{aligned}
$$

From now on, let $\stackrel{k}{\neq} 0,1$. We show that no subset of G with size $\left\lceil\frac{n}{k}\right\rceil$ is a k-perfect geodominating set. Suppose that S is a k-perfect geodominating set for C_{n} with size $\left\lceil\frac{n}{k}\right\rceil$. It is easily seen that there is a vertex $v \in V(G) \backslash S$ which is not k-geodominated by two vertices of S, which is a contradiction; hence, $g_{k p}\left(C_{n}\right) \geq\left\lceil\frac{n}{k}\right\rceil+1$. On the other hand, let $n=\left\lfloor\frac{n}{k}\right\rfloor k+l, 2 \leq l<k$ and let $T=\left\{v_{1}, v_{k+1}, v_{2 k+1}, \ldots, v_{\left\lfloor\frac{n}{k}\right\rfloor k+1}, v_{k-l+1}\right\}$. Then T is a k-perfect geodominating set. Hence, $g_{k p}\left(C_{n}\right)=\left\lceil\frac{n}{k}\right\rceil+1$.

$$
\text { A similar proof shows that } g_{k}\left(C_{n}\right)=\left\{\begin{array}{ll}
{\left[\begin{array}{l}
\frac{n}{k} \\
\frac{k}{k}
\end{array},\right.} & n \stackrel{k}{=} 0,1 \\
\frac{n}{k}
\end{array}\right]+1, \quad \text { otherwise }, \quad k \geq 2 .
$$

Example 3. $g_{2 p}\left(K_{2} \times P_{n}\right)=\left\{\begin{array}{lll}n, & n & \text { is even } \\ n+1, & n & \text { is odd }\end{array}\right.$.
Proof. Let $\left\{v_{11}, v_{12}, \ldots, v_{1 n}, v_{21}, v_{22}, \ldots, v_{2 n}\right\}$ be the vertex set of $K_{2} \times P_{n}$, where $v_{i j}$ is adjacent to the vertices $v_{i(j+1)}$ and $v_{(i+1) j}$ whose first and second indices are modulo 2 and modulo n, respectively. Let S be a 2 -perfect geodominating set for $K_{2} \times P_{n}$. Then it is clear that $S \cap\left\{v_{11}, v_{21}\right\} \neq \emptyset$, and $S \cap\left\{v_{1 n}, v_{2 n}\right\} \neq \emptyset$. There is no integer j such that

$$
\left\{v_{i j}, v_{i(j+1)}, v_{(i+1) j}, v_{(i+1)(j+1)}\right\} \cap S=\emptyset
$$

for $i=1,2$. Moreover, if $S \cap\left\{v_{1 j}, v_{2 j}\right\}=\emptyset$ for some j, then

$$
\left\{v_{1(j-1)}, v_{2(j-1)}, v_{1(j+1)}, v_{2(j+1)}\right\} \subseteq S
$$

So there is a map of S onto $\{1,2, \ldots, n\}$, hence $|S| \geq n$. On the other hand, $\left\{v_{1(4 k)}, v_{1(4 k+1)}, v_{2(4 k+2)}, v_{2(4 k+3)}: k \geq 1\right\} \cup\left\{v_{11}, v_{22}, v_{23}\right\}$ is a 2 -perfect geodominating set if n is even. Now let n be an odd number and S be a 2-perfect geodominating set of $K_{2} \times P_{n}$. It is easy to see that there is no integer j such that $\left\{v_{i j}, v_{(i+1)(j+1)}, v_{(i+1)(j-1)}\right\} \subseteq S$ and $v_{(i+1) j} \notin S$ for $i=1,2$. Also, if $v_{11} \in S$, $v_{21} \notin S$, then $v_{22} \in S$ and if $v_{21} \in S, v_{11} \notin S$, then $v_{12} \in S$. A similar discussion holds for $v_{1 n}, v_{2 n}$. If $|S|=n$, then either there is an integer j such that $\left\{v_{i j}, v_{(i+1)(j+1)}, v_{(i+1)(j-1)}\right\} \subseteq S$, and $v_{(i+1) j} \notin S$ for $i=1$ or 2 , or there is an integer j such that $\left\{v_{i j}, v_{i(j+1)}, v_{i(j+2)}\right\} \subseteq S$, and $\left\{v_{(i+1) j}, v_{(i+1)(j+1)}, v_{(i+1)(j+2)}\right\} \cap S=\emptyset$, which in either case leads to a contradiction. So $|S| \geq n+1$. On the other hand, considering the following 2 -perfect geodominating sets:
$\left\{v_{1(4 k)}, v_{1(4 k+1)}, v_{2(4 k+2)}, v_{2(4 k+3)}: k \geq 1\right\} \cup\left\{v_{11}, v_{22}, v_{23}, v_{2(n-1)}\right\}$ for $n \stackrel{4}{\equiv} 1$,
$\left\{v_{1(4 k)}, v_{1(4 k+1)}, v_{2(4 k+2)}, v_{2(4 k+3)}: k \geq 1\right\} \cup\left\{v_{11}, v_{22}, v_{23}, v_{1(n-1)}\right\}$ for $n \xlongequal{=} 3$ we verify the equality.

4. RESULTS

In this section we prove some results about the perfect and k-perfect geodomination number of a graph. Let G be a connected graph with $g(G) \geq 3$. If G has some pendant
vertices, then the neighbor of any pendant vertex of G belongs to any $g_{p}(G)$-set and the condition $g(G) \geq 3$ is necessary. To this end, see the path P_{n}. For trees we have the following proposition:

Proposition 4. If a tree T has a proper perfect geodominating set, then T is a path.
Proof. Let x, y and z be three pendant vertices of T and x^{\prime}, y^{\prime} and z^{\prime} be the adjacent vertices of x, y and z, respectively. Let S be a proper perfect geodominating set, then $\left\{x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right\} \subseteq S$. If $w \in V(T) \backslash S$ is geodominated by a pair of vertices u, v in S, then clearly $\{u, v\} \cap\left\{x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right\}=\emptyset$. But there is exactly one $x-u$ geodesic containing w, so w is geodominated by x, u, which is a contradiction.

If a tree T has more than two pendant vertices, then $g_{p}(T)=|V(T)|$, and so the inequality $g_{p}(G) \geq g(G)$ is strict.

Proposition 5. I) For two positive integers k, n with $4 \leq k<n$, there exists a connected graph G of order n with $k-3$ pendant vertices such that $g_{p}(G)=k$.
II) For two positive integers a, b with $3 \leq a \leq b$ there exists a connected graph G with no pendant vertices such that $|V(G)|=b, g_{p}(G)=a$.
III) For two positive integers a, b with $b \geq(a-1) k+1$, there exists a connected graph G with $|V(G)|=b$ and $g_{k p}(G)=a$.

Proof. I) Let x, y be two vertices of $K_{1, k-1}$ with $\operatorname{deg}(x)=\operatorname{deg}(y)=1$. We add an ear x, w_{i}, y to $K_{1, k-1}$ for $i=1,2, \ldots, n-k$ to obtain a graph G. Then G has $k-3$ pendant vertices and $g_{p}(G)=k$.
II) Let x, y be two vertices of K_{a}. We delete the edge $\{x, y\}$ and add an ear x, w_{i}, y for $i=1,2, \ldots, b-a$ to K_{a} to obtain a graph G. Then $|V(G)|=b$ and $g_{p}(G)=a$.
III) Let $P_{(a-1) k+1}$ be the path with vertices $v_{1}, v_{2}, \ldots, v_{(a-1) k+1}$. We add an ear $v_{1} w_{i} v_{3}$ for $i=1,2, \ldots, b-((a-1) k+1)$ to obtain a graph G. Then $|V(G)|=b$ and $g_{k p}(G)=a$.

Proposition 6. I) If a graph G with no pendant vertex has a proper perfect geodominating set, then $|V(G)| \geq 4$.
II) If a graph G with exactly one pendant vertex has a proper perfect geodominating set, then $|V(G)| \geq 5$.

Proof. I) If S is a proper g_{p}-set in the graph G, then there is a vertex $v \in V(G) \backslash S$ which is geodominated by two vertices x and y of S. But $\operatorname{deg}(x) \geq 2$ and $\operatorname{deg}(y) \geq 2$, so $|V(G)| \geq 4$.
II) Let x be the pendant vertex of G and x^{\prime} be the neighbor of x. Let S be a proper perfect geodominating set of G and $y \in V(G) \backslash S$. The following cases are possible:

1) If $x^{\prime} \in S$, then it is clear that no vertex of S together with x or x^{\prime} can perfectly geodominate y, so y is geodominated by two vertices of S other than x, x^{\prime}, thus $|V(G)| \geq 5$.
2) If $x^{\prime} \notin S$, then y is geodominated by a pair of vertices of S with the degree of one of them at least 2. So $|V(G)| \geq 5$.

The above bounds are best possible. Indeed, the graph C_{4} has no pendant vertices, and by adding a pendant edge to C_{4} we obtain a graph with five vertices. Similarly, if $g_{p}(G)=k \geq 2$ and G has an independent $g_{p}(G)$-set, then $|V(G)| \geq\left\lceil\frac{k^{2}+k-1}{2}\right\rceil$.

Vertices u, v in a graph G are antipodal if $d(u, v)=\operatorname{diam}(G)$.
Proposition 7. Let G be a connected graph of order $n \geq 3$, with $\operatorname{diam}(G) \geq 3$ and $g(G)=2$ and let $k \geq 1$ be an integer. Then $g_{k p}(G)=g(G)$ if and only if $k=\operatorname{diam}(G)$.
Proof. Let $\operatorname{diam}(G)=d$ and $S=\{x, y\}$ be a $g(G)$-set. Then x and y are antipodal vertices, so S is a perfect d-geodominating set. Consequently, $g_{d p}(G)=2$. For the converse, note that if $k=1$ or $k>d$, then $g_{k p}(G)=|V(G)| \neq g(G)$. Suppose that $2 \leq k \leq d-1$ and $g_{k p}(G)=g(G)=2$. Then any minimum k-perfect geodominating set contains two antipodal vertices. But $k \leq d-1$, which is a contradiction.

There are graphs with a perfect geodominating set which is not essential. To see this, consider $S=\left\{v_{1}, v_{n+1}, v_{n+2}\right\}$ in the graph $C_{2 n+1},(n \geq 5)$, then for two vertices v_{n+1}, v_{n+2}, there is no vertex $w \neq v_{n+1}, v_{n+2}$ of G which would lie in a $v_{n+1}-v_{n+2}$ geodesic. But for independent perfect geodominating set the following proposition in true:

Proposition 8. Any independent perfect geodominating set of a graph G is essential.
Proof. Let S be an independent perfect geodominating set and $x, y \in S$. Then there exists a vertex $v \notin\{x, y\}$ which is geodominated by x, y. Since S is a perfect geodominating set, then v lies in no $x^{\prime}-y^{\prime}$ geodesic for $x^{\prime}, y^{\prime} \in S$ and $\left\{x^{\prime}, y^{\prime}\right\} \neq\{x, y\}$. So S is essential.

If a graph G has a uniform perfect geodominating set with a fixed number k, then $|V(G)|=\binom{g_{p}(G)}{2}(k-1)+g_{p}(G)$. It is not true, either, that any k-geodominating set or any uniform geodominating set with a fixed number k in a graph G is a k-perfect geodominating set.

Let $K_{k}^{(k-1)}$ denote the multigraph of order k in which every two vertices are joined by $k-1$ edges and let $G_{k}=S\left(K_{k}^{(k-1)}\right)$ be the subdivision graph of $K_{k}^{(k-1)}$. It was shown that $V\left(K_{k}^{(k-1)}\right)$ is a uniform, essential minimum geodetic set for G_{k} and $g\left(G_{k}\right)=k$ (see [1]). It is easily seen that $g_{k}\left(G_{k}\right)=g\left(G_{k}\right)=k$ and $V\left(K_{k}^{(k-1)}\right)$ is a uniform, essential minimum perfect geodominating set for G_{k}. So for each integer $k \geq 2$, there exists a connected graph G with $g_{p}(G)=k$ which contains a uniform, essential minimum perfect geodominating set.

REFERENCES

[1] G. Chartrand, F. Harary, P. Zhang, Geodetic sets in graphs, Discussiones Mathematicae Graph Theory 20 (2000), 129-138.
[2] G. Chartrand, F. Harary, H.C. Swart, P. Zhang, Geodomination in graphs, Bull. ICA 31 (2001), 51-59.
[3] G. Chartrand, P. Zhang, The forcing geodetic number of a graph, Discuss. Math. Graph Theory 19 (1999), 45-58.
[4] D. Donovan, E.S. Mahmoodian, C. Ramsay, A.P. Street, Defining sets in combinatorics: a survey, in surveys in combinatorics, Lecture Notes in Mathematics, eds. Wensley Cambridge University Press, 2003, 113-174.
[5] R. Muntean, P. Zhang, k-Geodomination in Graphs, ARS Combinatorica 63 (2002), 33-47.
[6] R. Muntean, P. Zhang, On geodomination in graphs, Congressus Numerantium 143 (2000), 161-174.

Doost Ali Mojdeh
dmojdeh@umz.ac.ir
University of Mazandaran
Department of Mathematics
Babolsar, IRAN, P.O. Box 47416-1467

Nader Jafari Rad
n.jafarirad@umz.ac.ir

University of Mazandaran
Department of Mathematics
Babolsar, IRAN, P.O. Box 47416-1467

Received: December 12, 2005.

