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CONSTRUCTION OF ALGEBRAIC-ANALYTIC
DISCRETE APPROXIMATIONS FOR LINEAR

AND NONLINEAR HYPERBOLIC EQUATIONS IN R2.

PART I

Abstract. An algebraic-analytic method for constructing discrete approximations of linear
hyperbolic equations based on a generalized d’Alembert formula of the Lytvyn and Riemann
expressions for Cauchy data is proposed. The problem is reduced to some special case of the
fixed point problem.
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1. INTRODUCTION. GENERALIZED D’ALEMBERT FORMULA

Let us consider the problem of finding a mapping u ∈ Cn(R2; R), where n > N + 1 ∈
Z+, satisfying the following conditions:

∂su

∂ys

∣∣∣
y=0

= us(x) (1.1)

for all s = 0, N , x ∈ R.
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This problem has effectively been solved before by O.M. Lytvyn [1]. He proposed
the following integral formula

u(x, y) =
N∑

i=0

∆−1
N,i

{
(−1)N

N∏
ν=0
ν 6=i

βνu0(x + βiy)+

+
w∑

s=1

(−1)N−s
∑

0≤i1≤...≤iN−s≤w

iν 6=i; ν=1,N−s

N−s∏
ν=1

βiν

x+βiy∫
0

us(ξ)
(x + βiy − ξ)s−1

(s− 1)!
dξ+

+

y∫
0

dη

x+βi(y−η)∫
0

dξ

[
N∏

ν=0

(
∂

∂η
− βν

∂

∂ξ

)
u(ξ, η)

]
[x + βi(y − η)− ξ]N−1

(N − 1)!

}
,

(1.2)

which holds for all N ∈ Z+, (x, y) ∈ R2 and arbitrary numbers βi 6= βj ∈ R, i, j =
0, N , and where we denoted ∆N,i :=

∏
ν=0
ν 6=i

(βi − βj).

A proof of (1.2) one can find in Lytvyn’s paper [1]. One can simply note that
(1.2) is an original generalization of the classical d’Alembert formula for a solution of
the wave equation in R2. If we additionally assume that the function u ∈ C∞(R2; R)
satisfies the hyperbolic equation:

AN+1u(x, y) :=
N∏

ν=0

(
∂

∂y
− βν

∂

∂x

)
u(x, y) = f(x, y), (1.3)

where f ∈ L1(R2; R), then formula (1.2) immediately leads to the following
d’Alembert type formula:

u(x, y) =
N∑

i=0

∆−1
N,i

{
(−1)N

N∏
ν=0

βνu0(x + βiy)+

+
w∑

s=1

(−1)N−s
∑

0≤i1≤...≤iN−s≤w

iν 6=i; ν=1,N−s

N−s∏
ν=1

βiν

x+βiy∫
0

us(ξ)
(x + βiy − ξ)s−1

(s− 1)!
dξ+

+

y∫
0

dη

x+βi(y−η)∫
0

dξ f(ξ, η)
[x + βi(y − η)− ξ]N−1

(N − 1)!

}
,

(1.4)

which solves hyperbolic equation (1.3) exactly, provided “initial” conditions (1.1) are
satisfied.

Formula (1.2) can be rewritten in the following generalized operator form

u(x, y) = g0(x, y) +
N∑

i=0

Ki

(
AN+1u

)
(x, y) (1.5)
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for all (x, y) ∈ R2 with

g0(x, y) :=
N∑

i=0

∆−1
N,i

{
(−1)N

N∏
ν=0

βνu0(x + βiy)+

+
w∑

s=1

(−1)N−s
∑

0≤i1≤...≤iN−s≤w

N−s∏
ν=1

βiν

x+βiy∫
0

us(ξ)
(x + βiy − ξ)s−1

(s− 1)!
dξ

}
,

(1.6)

KiAN+1(. . .) := ∆−1
N,i

∫
Ω

(x,y)
i

dη dξ
[x + βi(y − η)− ξ]N−1

(N − 1)!
AN+1(. . .), (1.6′)

where domains Ω(x,y)
i ⊂ R2, i = 0, N , are given as

Ω(x,y)
i :=

{
(ξ, η) ∈ R2 : η ∈ (0, y), ξ ∈ (0, ξi(η)), ξi(η) := x + βi(y − η)

}
, (1.7)

if βi < 0 and i = 0, N, they have the shape shown in Figure 1, or in the opposite case
βi > 0, i = 0, N , as shown in Figure 2.

0 Y η

X

ξ

βi < 0

ξi(η)

Fig. 1. Domain Ω
(x,y)
i , βi < 0
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We pose the following problem for solving a hyperbolic equation of order (N +1) ∈
Z+ in Ω ⊂ R2 of the form:

AN+1u = f, (1.8)

where f ∈ L1,loc(Ω; R), the function u ∈ C
2
(Ω; R) satisfies initial conditions (1.1) and

the operator

AN+1 :=
N+1∑
|α|=0

cα(x, y)
∂|α|

∂xα1∂yα2
(1.9)

has the coefficients cα ∈ C |α|(Ω; R), α = (α1, α2) ∈ Z2
+, |α| = α1 + α2 = 0, N + 1.

0 Y η

X

ξ

βi > 0

ξi(η)

Fig. 2. Domain Ω
(x,y)
i , βi > 0

On the basis of previous results if AN = AN one can immediately find the solution
to problem (1.8) in exact form (1.4). Otherwise, if the inequality AN 6= AN holds,
one can use operator formula (1.5). Really, we obtain:

u = g0 +
N∑

i=0

Ki

(
AN+1 −AN+1

)
u +

N∑
i=0

KiAN+1u =

= g0 +
N∑

i=0

Kif +
N∑

i=0

Ki∆AN+1u := gf +
N∑

i=0

Ki∆AN+1u,

(1.10)
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where

gf := g0 +
N∑

i=0

Kif, ∆AN+1 := AN+1 −AN+1. (1.11)

Problem (1.10) is equivalent to the ordinary problem of finding a fixed point for
the mapping Q : C(Ω, R) → C(Ω, R), where:

Qu := gf +
N∑

i=0

Ki∆AN+1u = u. (1.12)

Indeed, the following theorem is true.

Theorem 1.1. Fixed-point problem (1.12) defined on each compact set Ω ⊂ R2, for
which ‖∆Q‖C(Ω,R) < 1, possesses exactly one solution u ∈ C(N+1)(Ω; R), satisfying
equation (1.8) and initial conditions (1.1).

Proof. Proof of the theorem relies on the application of operator (1.9) to formula
(1.10):

AN+1u = AN+1gf +
N∑

i=0

AKi∆AN+1u := f̃ , (1.13)

the integration-by-parts formula and checking that the function f̃ ≡ f ∈ L1,loc(Ω; R).
Since the function u ∈ C(N+1)(Ω; R), given in form (1.5), automatically satisfies initial
conditions (1.1), it is sufficient to prove that the functional series∑

k∈Z+

(∆Q)k
gf = ũ (1.14)

converges in C(Ω, R), where

∆Q :=
N∑

i=0

Ki∆AN+1. (1.15)

Then, the function ũ ∈ C(N+1)(Ω; R) will be the solution of equation (1.8) owing to
the condition ‖∆Q‖C(Ω,R) < 1, that can be supplied by selecting the domain Ω ∈ R2

and appropriate parameters βi ∈ R, i = 0, N . Thereby, we obtain the convergence
of series (1.14) to the unique function ũ := u ∈ C(N+1)(Ω; R), which solves problem
(1.12).

2. THE LAGRANGE INTERPOLATION

Proceeding further similarly as it was proposed by Lytvyn [1], we are going to apply
the Lagrange interpolation to the construction of the algebraic-analytic discrete ap-
proximation for equation (1.8) with initial conditions (1.1). Since expression (1.12)
automatically satisfies initial conditions (1.1), one has only to solve the problem of
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discrete algebraically-analytic approximation for the operator Q : C(Ω(a,b); R) →
C(Ω(a,b); R) or, equivalently, for the operator

N∑
i=0

Ki∆AN+1 : C(Ω(a,b); R) → C(Ω(a,b); R). (2.1)

Therefore, we may define a function u ∈ C(N+1)(Ω; R) on cube Ω(a,b) = [0, a]× [0, b] ⊂
R2 chosen in such a way that Ω(x,y) ⊂ Ω(a,b) for all (x, y) ∈ Ω(a,b). Using now the
Lagrange interpolation formula

u(n)(x, y) = Pnu(x, y) =
nx,ny∑
i,j=1

u
(n)
ij li(x)⊗ lj(y) (2.2)

where ⊗ is the usual tensor product (x, y) ∈ Ω(a,b), n := (nx, ny) ∈ Z2
+, u(n) ∈

Rnx ⊗ Rny , and

li(x) :=
nx∏
k 6=i

x− xk

xi − xk
, lj(y) :=

ny∏
k 6=j

y − yk

yj − yk
, (2.3)

for i = 1, nx, j = 1, ny are the fundamental Lagrangian polynomials on the cube
Ω(a,b) ⊂ R2.

Now, one can use the algebraic-analytic method [6] developed before by Luśtyk
and Bihun [4, 5] of constructing the discrete approximations for linear operators in
suitable functional spaces, i.e., one can find a matrix quasi-representation of operator
(2.1) in the space C(Ω(a,b); R), using expression (1.6′). Thus, we obtain(

Ki∆AN+1

)(n)
:= PnKi∆AN+1Pn, (2.4)

or equivalently, in the functional form:〈(
Ki∆AN+1

)(n)
u(n), l(x)⊗ l(y)

〉
=

= Pn∆−1
N,i

∫
Ω

(x,y)
i

dη dξ
[x + βi(y − η)− ξ]N−1

(N − 1)!

〈
∆A

(n)
N+1u

(n), l(ξ)⊗ l(η)
〉

:=

:= Pn

〈
∆A

(n)
N+1u

(n), ai(x, y)⊗ bi(x, y)
〉

=

= Pn

〈
∆A

(n)
N+1u

(n), a
(n)
i ⊗ b

(n)
i l(x)⊗ l(y)

〉
=

=
〈(

a
(n)
i ⊗ b

(n)
i

)
∆A

(n)
N+1u

(n), l(x)⊗ l(y)
〉

(2.5)

for all (x, y) ∈ Ω(a,b), where

ai(x, y)⊗ bi(x, y) := ∆−1
N,i

∫
Ω

(x,y)
i

[x + βi(y − η)− ξ]N−1

(N − 1)!
l(ξ)⊗ l(η)dη dξ (2.6)
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and

a
(n)
i := ai(X(n), Y (n)), b

(n)
i := bi(X(n), Y (n)) (2.7)

for i = 0, N . Whence we get

(
Ki∆AN+1

)(n)
=

(
a
(n)
i ⊗ b

(n)
i

)
∆A

(n)
N+1, (2.8)

where i = 0, N and

∆A
(n)
N+1 :=

N∏
ν=0

(
Z(n)

y − βνZ(n)
x

)
−

N+1∑
|α|=0

cα

(
X(n), Y (n)

) (
Z(n)

x

)α1
(
Z(n)

y

)α2

, (2.9)

is an appropriate quasi-representation of the differential expression ∆AN+1 =
(AN+1 −AN+1) in the space C(Ω(a,b); R).

Now fixed-point problem (1.12) can be rewritten in the approximation form as

g
(n)
f + ∆Q(n)u(n) = u(n), (2.10)

where u(n) ∈ Rnx ⊗ Rny and

∆Q(n) :=
N∑

i=0

(
Ki∆AN+1

)(n)
. (2.11)

Solving discrete problem (2.10), making use of standard numerical methods, we obtain
an approximate solution to problem (1.8) with initial conditions (1.1) in the form

u(n)(x, y) =
〈
u(n), l(x)⊗ l(y)

〉
(2.12)

for all n = (nx, ny) ∈ Z2
+.

The above method of finding the approximate solution to problem (1.12) for lin-
ear hyperbolic operators of order (N + 1) ∈ Z+ of form (1.9), based on the Lytvyn
formula of d’Alembert type (1.2) and the Lagrange interpolation scheme, as is shown
by examples, is very efficient from in terms of its convergence. Analogously, one can
exploit the more accurate Hermite interpolation scheme, for which the convergence
rate of the approximate solution will be better still. To the unfortunately, the expres-
sions for quasi-representations of basic differential operators Zx and Zy in the cube
(x, y) ∈ Ω(a,b) are slightly complicated, as it was shown earlier [5].

The proposed algebraic-analytic method for finding approximate solutions to linear
hyperbolic equations of order (N + 1) ∈ Z+ in a cube Ω(a,b) ⊂ R2 can be applied, as
usual, to quasi-linear and non-linear partial differential equations of order (N + 1) ∈
Z+ that will not be covered within the framework of this paper.
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3. BOUNDARY VALUE PROBLEM FOR LINEAR HYPERBOLIC EQUATIONS
OF THE SECOND ORDER ON R2

Consider the following boundary value problem for a linear hyperbolic equation of
the second order in a cube Ω := [0, a]× [0, b] ⊂ R2:

A2u :=
∂2u

∂x∂y
+ c(x)(x, y)

∂u

∂x
+ c(y)(x, y)

∂u

∂y
+ c(0)(x, y)u = f, (3.1)

where f ∈ L1,loc(Ω; R), c(0) ∈ C(Ω; R), c(x), c(y) ∈ C(1)(Ω; R). The function u ∈
C(2)(Ω; R) has to satisfy the boundary conditions

u|Γ(x,y) = u0,
∂u

∂n

∣∣∣
Γ(x,y)

= u1 (3.2)

on a smooth curve Γ(x,y) ⊂ ∂Ω(x,y), Γ(x,y) =
{
η = σ(ξ), σ−1(y) ≤ ξ ≤ x

}
(see Fig. 3),

where the functions u0(x, σ(x)) ∈ C(2)([0, a]; R), u1(x, σ(x)) ∈ C(1)([0, a]; R) are
given.

0 Y a η

X

b

ξ

Γ(x, y)

Ω(x, y)
(X, Y )

(a, b)

σ(ξ) = η

Fig. 3

We also need to assume that the curve Γ(x,y) ⊂ ∂Ω(x,y) does not intersect the
characteristics of equation (3.1), i.e., σ

′
(ξ) < 0 for all ξ ∈ [0, a]. Conditions (3.2) on

the curve Γ(x,y) make it also possible to find easily the suitable expressions ux|Γ(x,y)

and uy|Γ(x,y) , solving the system of equationsux|Γ(x,y) + uy|Γ(x,y)σ′ = u′0,x|Γ(x,y) ,

ux|Γ(x,y)
σ′

∆
− uy|Γ(x,y)

1
∆

= u1|Γ(x,y)

(3.3)
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for all (ξ, η) ∈ Γ(x,y), where ∆ :=
[
1 + (σ′(ξ))2

]1/2

.
The following theorem characterizes [3] solution to boundary problem (3.1) and

(3.2).

Theorem 3.1. Let Γ(x,y) ⊂ ∂Ω(x,y) be a smooth curve of class C(2) and the coeffi-
cients of equation (3.1) satisfy the conditions mentioned above. Then there exists the
unique solution of boundary value problem (3.1) and (3.2) in the Riemann form

u(x, y) =
1
2
u0(σ−1(y), y)R(σ−1(y), y;x, y) +

1
2
u0(x, σ(x))R(x, σ(x);x, y)+

+
∫

Γ(x,y)

[(
R
2

∂u

∂ξ
− u0

2
∂R
∂ξ

+ c(y)u0R
)

dξ−
(
R
2

∂u

∂η
− u0

2
∂R
∂η

+ c(x)u0R
)

dη

]
+

+
∫

Ω(x,y)

Rfdξ dη, (3.4)

where the domain Ω(x,y) ⊂ Ω and the curve Γ(x,y) ⊂ Γ are shown on Fig. 3, and the
Riemann function R : Ω×Ω → R satisfies the following conditions for all (x, y) ∈ Ω:

1. functions R, Rx, Ry and Rxy ∈ C(Ω× Ω; R);
2. A∗

2R = 0;
3. the relationships

R(x, y|ξ, η)|y=η = c(y)(x, η)×R(x, η; ξ, η),
R(x, y|ξ, η)|x=ξ = c(x)(ξ, y)×R(ξ, y; ξ, η), (3.5)

R(x, y|ξ, η)
∣∣∣
x=ξ
y=η

= 1

hold for all (ξ, η) ∈ Ω.

Proof. A proof of the theorem is standard and relies on substitution of solution (3.4)
into equation (3.1), using conditions (3.5) and the following property of the adjoint
Riemann function R∗ : Ω× Ω → R for equation (3.1):

A2R∗ = 0,

where

R∗(x, y|ξ, η) = R(ξ, η|x, y), R∗(ξ, η|ξ, η) = 1

and

R∗
x(x, y|ξ, η)|y=η = −c(y)(x, η)R∗(x, η; ξ, η), (3.6)

R∗
y(x, y|ξ, η)|x=ξ = −c(x)(ξ, y)R∗(ξ, y; ξ, η)

for all (x, y)× (ξ, η) ∈ Ω× Ω.
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Expression (3.4) obtainded for solution to boundary value problem (3.1) and (3.2)
is a consequence of the following Riemann identity for an arbitrary smooth function
u ∈ C2(Ω; R):

u(x, y) =
1
2
u0(σ−1(y), y)R(σ−1(y), y;x, y) +

1
2
u0(x, σ(x))R(x, σ(x);x, y)+

+
∫

Γ(x,y)

[(
R
2

∂u

∂ξ
− u0

2
∂R
∂ξ

+ c(y)u0R
)

dξ −
(
R
2

∂u

∂η
− u0

2
∂R
∂η

+ c(x)u0R
)

dη

]
+

+
∫

Ω(x,y)

R(x, y; ξ, η)A2u(ξ, η)dξ dη, (3.7)

holding for all (x, y) ∈ Ω. Looking at equation (3.7) one can easily notice that in the
case of linear hyperbolic equations of the second order the expression of the d’Alembert
type, obtained by Lytvyn [2], is a specific case of the Riemann type formula for a
linear equation of the second order on a cube Ω ⊂ R2. It means that by constructing
a suitable Riemann function R for linear equation (1.3) of order (N + 1) ∈ Z+ with
proper boundary conditions on a smooth curve Γ(x,y) ⊂ ∂Ω(x,y), one may similarly
write down the following identity for u ∈ C(N+1)(Ω; R):

u(x, y) = g0(x, y) +
∫

Ω(x,y)

R(x, y; ξ, η)AN+1u(ξ, η) dξdη, (3.8)

where (x, y) ∈ Ω and g0 ∈ C(N+1)(Ω; R) is a suitable known function depending on
boundary conditions on the curve Γ(x,y) ⊂ ∂Ω(x,y).

Having expressed (3.8) in the operator form

u = g0 + K
(
AN+1 −AN+1

)
u + KAN+1u, (3.9)

where

AN+1 :=
N+1∑
|α|=0

aα
∂|α|

∂xα1∂yα2
, (3.10)

one can obtain a solution to the linear equation of the (N + 1)-th order

AN+1u = f (3.11)

for f ∈ L1,loc(Ω; R) in the form of a fixed-point problem in the space C(N+1)(Ω; R):

u = Qu := gf + K∆AN+1u. (3.12)

In the preceding formula

∆AN+1 := AN+1 −AN+1, gf := g0 + Kf, Kf :=
∫

Ω(x,y)

Rf dξdη (3.13)

for all (x, y) ∈ Ω.
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Since expression (3.12) automatically satisfies boundary conditions (3.2) on the
smooth curve Γ(x,y) ⊂ ∂Ω(x,y), we can state that a solution to fixed-point problem
(3.12) on the compact cube Ω ⊂ R2 will be a solution to linear differential equation
(3.11), satisfying the same boundary conditions on the curve Γ(x,y) ⊂ ∂Ω(x,y).

The preceding reasoning is a basis for our algebraic-analytical method for dis-
crete approximations applied to equivalent fixed-point problem (3.12) in the space
C(N+1)(Ω; R). In the particular case of the second order equation (3.1) with boundary
conditions (3.2), fixed-point problem (3.12) gets the standard form

u = gf + K∆A2u, (3.14)

for which, as usual, we obtain the following discrete approximation:

u(n) = g
(n)
f +

(
K∆A2

)(n)
u(n), (3.15)

where u(n) = Rnx ⊗ Rny , n := (nx, ny) ∈ Z2
+.

Solving approximate problem (3.15) as a finite-dimensional fixed-point problem
in the space Rnx ⊗Rny by means of available numerical methods, and next applying
formula (2.12), we can obtain an approximate solution to boundary value problem
(3.1) and (3.2).
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