Jakub Jan Ludew

ON LIPSCHITZIAN OPERATORS OF SUBSTITUTION GENERATED BY SET-VALUED FUNCTIONS

Abstract

We consider the Nemytskii operator, i.e., the operator of substitution, defined by $(N \phi)(x):=G(x, \phi(x))$, where G is a given multifunction. It is shown that if N maps a Hölder space H_{α} into H_{β} and N fulfils the Lipschitz condition then $$
\begin{equation*} G(x, y)=A(x, y)+B(x), \tag{1} \end{equation*}
$$ where $A(x, \cdot)$ is linear and $A(\cdot, y), B \in H_{\beta}$. Moreover, some conditions are given under which the Nemytskii operator generated by (1) maps H_{α} into H_{β} and is Lipschitzian.

Keywords: Nemytskii operator, Hölder functions, set-valued functions, Jensen equation.

Mathematics Subject Classification: 39B99, 47H04, 47H30, 54C60.

In 1982 J. Matkowski showed (cf. [3]) that a composition operator mapping the function space $\operatorname{Lip}(I, \mathbb{R})(I=[0,1])$ into itself is Lipschitzian with respect to the Lipschitzian norm if and only if its generator has the form

$$
\begin{equation*}
g(x, y)=a(x) y+b(x), \quad x \in I, y \in \mathbb{R}, \tag{2}
\end{equation*}
$$

for some $a, b \in \operatorname{Lip}(I, \mathbb{R})$. This result was extended to a lot of spaces by J. Matkowski and others (cf. [4]). Let $\operatorname{Lip}^{r}(I, \mathbb{R}), r \in(0,1]$, denote the space of all functions $\phi: I \rightarrow \mathbb{R}$ which satisfy the Hölder condition with the constant r. Suppose that $N: \operatorname{Lip}^{r}(I, \mathbb{R}) \rightarrow \operatorname{Lip}^{s}(I, \mathbb{R})(s \in(0,1])$. A. Matkowska showed (cf. [2]) that, in the case of $s \leq r$, the operator N is Lipschitzian if and only if its generator g has form (2) for some $a, b \in \operatorname{Lip}^{r}(I, \mathbb{R})$. In the case of $r<s$, the operator N is a Lipschitz map if and only if there is $b \in \operatorname{Lip}^{s}(I, \mathbb{R})$ such that

$$
g(x, y)=b(x), \quad x \in I, y \in \mathbb{R}
$$

Set-valued versions of Matkowski's results were investigated in papers [9, 10] and others. The main goal of this paper is to examine a Nemytskii operator acting from one Hölder space into another and generated by a set-valued function.

1.

If Z is a real normed space then by $c c(Z)$ we denote the space of all non-empty, compact and convex subsets of Z. Let d denote the Hausdorff metric on the set $c c(Z)$. Moreover, by $n(Z), b(Z)$ we denote the family of non-empty and non-empty, bounded subsets of Z, respectively. If $A \in b(Z)$, then let us define $\|A\|$ as follows: $\|A\|:=\sup \{\|z\|: z \in A\}$.

Now assume that Y, Z are vector spaces and C is a convex cone in Y (a subset C of a real vector space is said to be a convex cone if $C+C \subseteq C, \lambda C \subseteq C$ for $\lambda \geq 0)$. A set-valued function $F: C \rightarrow n(Z)$ is said to be superadditive if the condition $F\left(y_{1}\right)+F\left(y_{2}\right) \subseteq F\left(y_{1}+y_{2}\right)$ holds for $y_{1}, y_{2} \in C$. A set-valued function $F: C \rightarrow n(Z)$ is said to be \mathbb{Q}_{+}-homogenous if the equality $F(\lambda y)=\lambda F(y)$ holds for $\lambda \in \mathbb{Q}_{+}, y \in C$. Now, let Y, Z be real normed spaces and let C be a convex cone in Y. A set-valued function $F: C \rightarrow n(Z)$ is called lower semicontinuous at $y_{0} \in C$ if for every open set V in Z such that $F\left(y_{0}\right) \cap V \neq \emptyset$ there exist a neighbourhood U of zero in Y such that $F(y) \cap V \neq \emptyset$ for $y \in\left(y_{0}+U\right) \cap C$. A set-valued function $F: C \rightarrow n(Z)$ is called lower semicontinuous if it is lower semicontinuous at every point of C.

Lemma 1. [6, Lemma 2]. Let Z be a real normed space. If A, B and C are non-empty, compact and convex subsets of Z, then $d(A+B, A+C)=d(B, C)$.

The next lemma is an easy consequence of Lemma 1.

Lemma 2. Let Z be a real normed space. If A, B, C, D are non-empty, compact and convex subsets of Z, then $d(A+C, B+D) \leq d(A, B)+d(C, D)$.

Lemma 3. [5, Theorem 5.6, p. 64]. Let Y be a vector space and let Z be a Hausdorff topological vector space. Moreover, let C be a convex cone in Y. A set-valued function F defined on C, with non-empty and compact values in Z, satisfies the Jensen equation

$$
F\left(\frac{1}{2}\left(y_{1}+y_{2}\right)\right)=\frac{1}{2}\left(F\left(y_{1}\right)+F\left(y_{2}\right)\right), \quad y_{1}, y_{2} \in C
$$

if and only if there exist an additive set-valued function A, defined on C with non-empty, compact and convex values in Z and a non-empty, compact and convex subset B of Z such that $F(y)=A(y)+B, y \in C$.

Lemma 4. [8, Lemma 4]. Let Y and Z be real normed spaces and let C be a convex cone in Y. Suppose that $\left(F_{j}: j \in J\right)$ is a family of superadditive, lower semicontinuous and Q_{+}-homogeneous set-valued functions $F_{j}: C \rightarrow n(Z)$. If C is of the second category in C (C is endowed with the metric induced from Y) and $\bigcup_{j \in J} F_{j}(y) \in b(Z)$ for $y \in C$, then there exists a constant $M, 0<M<+\infty$, such that

$$
\sup _{j \in J}\left\|F_{j}(y)\right\| \leq M\|y\|, \quad y \in C
$$

Remark. If Y is an infinite-dimensional linear topological space which is a countable union of finite-dimensional subspaces, then Y is of the first category (cf. [7, p. 52]).

An $\alpha:[0,1] \rightarrow[0,1]$ is said to be a Hölder function [1, p.182], if $\alpha(t)>0$ for $t \in(0,1], \alpha(0)=0=\lim _{t \rightarrow 0} \alpha(t), \alpha(1)=1$, and moreover, α and α^{*}, where

$$
\alpha^{*}(t):= \begin{cases}t / \alpha(t) & \text { for } t \in(0,1] \\ 0 & \text { for } t=0\end{cases}
$$

are increasing.
For two Hölder functions α and β, we write

$$
\alpha \preceq \beta \quad \text { if } \quad \alpha(t)=O(\beta(t)) \quad \text { as } \quad t \rightarrow 0 .
$$

Let α be a Hölder function and $\left(\mathcal{M}, d_{\mathcal{M}}\right)$ be a metric space. We define the Hölder space $H_{\alpha}(I, \mathcal{M})$, where $I=[0,1]$, as a set of all continuous functions $\phi: I \rightarrow \mathcal{M}$ for which

$$
h_{\alpha}(\phi):=\sup _{s \in(0,1]} \frac{\omega(\phi, s)}{\alpha(s)}<+\infty,
$$

where

$$
\begin{equation*}
\omega(\phi, s):=\sup \left\{d_{\mathcal{M}}\left(\phi\left(x_{1}\right), \phi\left(x_{2}\right)\right): x_{1}, x_{2} \in I,\left|x_{1}-x_{2}\right| \leq s\right\} . \tag{3}
\end{equation*}
$$

For a non-empty subset $\mathcal{C} \subseteq \mathcal{M}$, by $H_{\alpha}(I, \mathcal{C})$ we denote the set of all functions $\phi \in H_{\alpha}(I, \mathcal{M})$ such that $\phi(I) \subseteq \mathcal{C}$.

If a set \mathcal{M} is endowed with the structure of a real normed space, then $H_{\alpha}(I, \mathcal{M})$ is also endowed with that structure; the linear operations are defined in the usual way and the norm is given by the formula

$$
\|\phi\|_{\alpha}:=\|\phi(0)\|+h_{\alpha}(\phi) .
$$

Let now Z be a real normed space and let d be the Hausdorff metric on the set $c c(Z)$. On the space $H_{\alpha}(I, c c(Z))$, the metric may be defined by

$$
d_{\alpha}(F, \bar{F}):=d(F(0), \bar{F}(0))+\sup _{s \in(0,1]} \frac{\omega(F, \bar{F}, s)}{\alpha(s)}, \quad F, \bar{F} \in H_{\alpha}(I, c c(Z))
$$

where

$$
\omega(F, \bar{F}, s):=\sup \left\{d\left(F\left(x_{1}\right)+\bar{F}\left(x_{2}\right), F\left(x_{2}\right)+\bar{F}\left(x_{1}\right)\right): x_{1}, x_{2} \in I,\left|x_{1}-x_{2}\right| \leq s\right\} .
$$

First we shall verify that $d_{\alpha}(F, \bar{F})$ is finite for $F, \bar{F} \in H_{\alpha}(I, c c(Z))$ (it is obvious that $d_{\alpha}(F, \bar{F})$ is nonnegative). Let us take $s \in(0,1]$ and $x_{1}, x_{2} \in I$ such that $\left|x_{1}-x_{2}\right| \leq s$. By Lemma 1, there is

$$
\begin{aligned}
& d\left(F\left(x_{1}\right)+\bar{F}\left(x_{2}\right), F\left(x_{2}\right)+\bar{F}\left(x_{1}\right)\right) \leq \\
& \leq d\left(F\left(x_{1}\right)+\bar{F}\left(x_{2}\right), F\left(x_{2}\right)+\bar{F}\left(x_{2}\right)\right)+d\left(F\left(x_{2}\right)+\bar{F}\left(x_{2}\right), F\left(x_{2}\right)+\bar{F}\left(x_{1}\right)\right)= \\
& \quad=d\left(F\left(x_{1}\right), F\left(x_{2}\right)\right)+d\left(\bar{F}\left(x_{1}\right), \bar{F}\left(x_{2}\right)\right) \leq \omega(F, s)+\omega(\bar{F}, s)
\end{aligned}
$$

here $\omega(F, s)$ is given by formula (3), where $d_{\mathcal{M}}$ is replaced by the Hausdorff metric d on $c c(Z)$. Therefore

$$
\omega(F, \bar{F}, s) \leq \omega(F, s)+\omega(\bar{F}, s)
$$

Hence

$$
\omega(F, \bar{F}, s) / \alpha(s) \leq \omega(F, s) / \alpha(s)+\omega(\bar{F}, s) / \alpha(s) \leq h_{\alpha}(F)+h_{\alpha}(\bar{F})
$$

It implies that $d_{\alpha}(F, \bar{F})$ is finite. The triangle inequality may be obtained in the following way. Let us take $s \in(0,1]$ and $x_{1}, x_{2} \in I$, such that $\left|x_{1}-x_{2}\right| \leq s$. Then

$$
\begin{aligned}
& d\left(F\left(x_{1}\right)+\bar{F}\left(x_{2}\right), F\left(x_{2}\right)+\bar{F}\left(x_{1}\right)\right)=d\left(F\left(x_{1}\right)+\bar{F}\left(x_{2}\right)+\overline{\bar{F}}\left(x_{2}\right), F\left(x_{2}\right)+\bar{F}\left(x_{1}\right)+\overline{\bar{F}}\left(x_{2}\right)\right) \leq \\
& \quad \leq d\left(F\left(x_{1}\right)+\bar{F}\left(x_{2}\right)+\overline{\bar{F}}\left(x_{2}\right), F\left(x_{2}\right)+\bar{F}\left(x_{2}\right)+\overline{\bar{F}}\left(x_{1}\right)\right)+ \\
& \quad+d\left(F\left(x_{2}\right)+\bar{F}\left(x_{2}\right)+\overline{\bar{F}}\left(x_{1}\right), F\left(x_{2}\right)+\bar{F}\left(x_{1}\right)+\overline{\bar{F}}\left(x_{2}\right)\right)= \\
& \quad=d\left(F\left(x_{1}\right)+\overline{\bar{F}}\left(x_{2}\right), F\left(x_{2}\right)+\overline{\bar{F}}\left(x_{1}\right)\right)+d\left(\bar{F}\left(x_{2}\right)+\overline{\bar{F}}\left(x_{1}\right), \bar{F}\left(x_{1}\right)+\overline{\bar{F}}\left(x_{2}\right)\right) \leq \\
& \quad \leq \omega(F, \overline{\bar{F}}, s)+\omega(\overline{\bar{F}}, \bar{F}, s) .
\end{aligned}
$$

Hence

$$
\omega(F, \bar{F}, s) \leq \omega(F, \overline{\bar{F}}, s)+\omega(\overline{\bar{F}}, \bar{F}, s)
$$

Therefore,

$$
\begin{gathered}
d_{\alpha}(F, \bar{F})=d(F(0), \bar{F}(0))+\sup _{s \in(0,1]} \frac{\omega(F, \bar{F}, s)}{\alpha(s)} \leq \\
\leq d(F(0), \overline{\bar{F}}(0))+\sup _{s \in(0,1]} \frac{\omega(F, \overline{\bar{F}}, s)}{\alpha(s)}+d(\overline{\bar{F}}(0), \bar{F}(0))+\sup _{s \in(0,1]} \frac{\omega(\overline{\bar{F}}, \bar{F}, s)}{\alpha(s)}= \\
=d_{\alpha}(F, \overline{\bar{F}})+d_{\alpha}(\overline{\bar{F}}, \bar{F})
\end{gathered}
$$

which means that d_{α} satisfies the triangle inequality.
If E, E^{\prime} are arbitrary non-empty sets, by $\mathcal{F}\left(E, E^{\prime}\right)$ we denote the set of all functions $f: E \rightarrow E^{\prime}$. Every function $g: I \times E \rightarrow E^{\prime}$ generates the so-called Nemytskii operator $N: \mathcal{F}(I, E) \rightarrow \mathcal{F}\left(I, E^{\prime}\right)$, defined by the formula

$$
(N \phi)(x):=g(x, \phi(x)), \quad \phi \in \mathcal{F}(I, E), \quad x \in I
$$

Let Y, Z be real normed spaces, and let C be a convex cone in Y, of the second category in C. Consider the set

$$
\mathcal{L}(C, c c(Z)):=\{A: C \rightarrow c c(Z): A \text { is additive and continuous }\} .
$$

The formula

$$
\begin{equation*}
d_{\mathcal{L}}(A, B):=\sup _{y \in C \backslash\{0\}} \frac{d(A y, B y)}{\|y\|} \tag{4}
\end{equation*}
$$

yields a metric in $\mathcal{L}(C, c c(Z))$ (cf. [9] and [10]).
2.

Theorem 1. Let Y, Z be real normed spaces, C be a convex cone in Y and let α and β be Hölder functions.
a) Assume that the Nemytskii operator N generated by $G: I \times C \rightarrow c c(Z)$ satisfies the following conditions:

1) $N: H_{\alpha}(I, C) \rightarrow H_{\beta}(I, c c(Z))$,
2) there exists $L \geq 0$ such that

$$
\begin{equation*}
d_{\beta}(N \phi, N \bar{\phi}) \leq L\|\phi-\bar{\phi}\|_{\alpha}, \quad \phi, \bar{\phi} \in H_{\alpha}(I, C) \tag{5}
\end{equation*}
$$

Then there exist functions $A: I \times C \rightarrow c c(Z), B: I \rightarrow c c(Z)$ such that $B, A(\cdot, y)$ belongs to the space $H_{\beta}(I, c c(Z))$ for every $y \in C$, the function $A(x, \cdot)$ belongs to the space $\mathcal{L}(C, c c(Z))$ for every $x \in I$ and

$$
G(x, y)=A(x, y)+B(x), \quad x \in I, y \in C
$$

Moreover, if C is of the second category in C, then the function $I \ni x \mapsto A(x, \cdot) \in$ $\mathcal{L}(C, c c(Z))$ satisfies the Hölder condition

$$
d_{\mathcal{L}}\left(A\left(x_{1}, \cdot\right), A\left(x_{2}, \cdot\right)\right) \leq L \beta\left(\left|x_{1}-x_{2}\right|\right), \quad x_{1}, x_{2} \in I
$$

where $d_{\mathcal{L}}$ is given by (4).
b) Assume that the condition $\alpha \preceq \beta$ does not hold. Then the operator N satisfies conditions 1) and 2) if and only if the function G is of the form

$$
G(x, y)=B(x), \quad x \in I, y \in C
$$

where B belongs to the space $H_{\beta}(I, c c(Z))$. In this case the operator N is a constant function.
Proof. a) First we shall prove that the inequality

$$
\begin{equation*}
d(G(x, y), G(x, \bar{y})) \leq L\|y-\bar{y}\|, \quad x \in I, y, \bar{y} \in C \tag{6}
\end{equation*}
$$

holds. Let us fix $x \in I, y, \bar{y} \in C$. Now define $\phi, \bar{\phi}: I \rightarrow C$ as follows: $\phi(t)=y, \bar{\phi}(t)=$ $\bar{y}, t \in I$. It is obvious that $\phi, \bar{\phi} \in H_{\alpha}(I, C)$. From the definition of the metric d_{β}, we get

$$
d(N \phi(0), N \bar{\phi}(0))+\omega(N \phi, N \bar{\phi}, 1) / \beta(1) \leq d_{\beta}(N \phi, N \bar{\phi})
$$

Hence

$$
\begin{equation*}
d(G(0, y), G(0, \bar{y}))+d(G(x, y)+G(0, \bar{y}), G(x, \bar{y})+G(0, y)) \leq d_{\beta}(N \phi, N \bar{\phi}) \tag{7}
\end{equation*}
$$

Moreover,

$$
\begin{gathered}
d(G(x, y), G(x, \bar{y}))=d(G(x, y)+G(0, \bar{y}), G(x, \bar{y})+G(0, \bar{y})) \leq \\
\leq d(G(x, y)+G(0, \bar{y}), G(x, \bar{y})+G(0, y))+d(G(x, \bar{y})+G(0, y), G(x, \bar{y})+G(0, \bar{y}))= \\
=d(G(0, y), G(0, \bar{y}))+d(G(x, y)+G(0, \bar{y}), G(0, y)+G(x, \bar{y}))
\end{gathered}
$$

according to (5) and (7), we hence get

$$
d(G(x, y), G(x, \bar{y})) \leq d_{\beta}(N \phi, N \bar{\phi}) \leq L\|\phi-\bar{\phi}\|_{\alpha}=L\|y-y\|,
$$

which completes the proof of inequality (6). Now, let us take $x_{1}, x_{2} \in I$ such that $0 \leq x_{1}<x_{2} \leq 1$ and let $y_{1}, y_{2} \in C$. Consider the function $\phi: I \rightarrow Y$ defined by

$$
\phi(t)=\left\{\begin{array}{cl}
y_{1} & \text { for } t \in\left[0, x_{1}\right] \tag{8}\\
y_{1}+\frac{t-x_{1}}{x_{2}-x_{1}}\left(y_{2}-y_{1}\right) & \text { for } t \in\left[x_{1}, x_{2}\right] \\
y_{2} & \text { for } t \in\left[x_{2}, 1\right]
\end{array}\right.
$$

It is obvious that $\phi(I) \subseteq C$. Moreover, ϕ is continuous. We shall prove that $\phi \in$ $H_{\alpha}(I, C)$. It is easily seen that the following equalities hold:

$$
\begin{gathered}
\omega(\phi, s)=\left\|y_{2}-y_{1}\right\| \quad \text { for } \quad s \geq x_{2}-x_{1} \\
\omega(\phi, s)=\frac{s}{x_{2}-x_{1}}\left\|y_{2}-y_{1}\right\| \quad \text { for } \quad s \geq 0, s \leq x_{2}-x_{1}
\end{gathered}
$$

$\left(\omega(\phi, s)\right.$ is given by formula (3), where the metric $d_{\mathcal{M}}$ is induced by the norm $\|\cdot\|$ in $Y)$. Since α is increasing, there is

$$
\sup _{s \in(0,1]} \frac{\omega(\phi, s)}{\alpha(s)}=\frac{\left\|y_{2}-y_{1}\right\|}{\alpha\left(x_{2}-x_{1}\right)}<+\infty .
$$

Hence $\phi \in H_{\alpha}(I, C)$ and $\|\phi\|_{\alpha}=\left\|y_{1}\right\|+\left\|y_{2}-y_{1}\right\| / \alpha\left(x_{2}-x_{1}\right)$. Let $\bar{y}_{1}, \bar{y}_{2} \in C$ and let us define a function $\bar{\phi}: I \rightarrow Y$ by putting \bar{y}_{1}, \bar{y}_{2} instead of y_{1}, y_{2}, respectively, in definition (8). Obviously, $\bar{\phi} \in H_{\alpha}(I, C)$. Let us note that

$$
(\phi-\bar{\phi})(t)=\left\{\begin{array}{cl}
y_{1}-\bar{y}_{1} & \text { for } t \in\left[0, x_{1}\right] \tag{9}\\
y_{1}-\bar{y}_{1}+\frac{t-x_{1}}{x_{2}-x_{1}}\left[\left(y_{2}-\bar{y}_{2}\right)-\left(y_{1}-\bar{y}_{1}\right)\right] & \text { for } t \in\left[x_{1}, x_{2}\right] \\
y_{2}-\bar{y}_{2} & \text { for } t \in\left[x_{2}, 1\right]
\end{array}\right.
$$

It implies that $\phi-\bar{\phi} \in H_{\alpha}(I, Y)$ and

$$
\begin{equation*}
\|\phi-\bar{\phi}\|_{\alpha}=\left\|y_{1}-\bar{y}_{1}\right\|+\left\|y_{2}-\bar{y}_{2}-\left(y_{1}-\bar{y}_{1}\right)\right\| / \alpha\left(x_{2}-x_{1}\right) . \tag{10}
\end{equation*}
$$

Now let $u, v \in C$. Putting $y_{1}=\bar{y}_{2}=\frac{1}{2}(u+v) \in C, \bar{y}_{1}=u \in C, y_{2}=v \in C$ into definitions of the functions ϕ and $\bar{\phi}$, we get

$$
\|\phi-\bar{\phi}\|_{\alpha}=2^{-1}\|v-u\| .
$$

Let $r=x_{2}-x_{1}$; there follows that

$$
\omega(N \phi, N \bar{\phi}, r) / \beta(r) \leq \sup _{s \in(0,1]} \frac{\omega(N \phi, N \bar{\phi}, s)}{\beta(s)} \leq d_{\beta}(N \phi, N \bar{\phi})
$$

Therefore, from (5) we get

$$
\omega(N \phi, N \bar{\phi}, r) \leq 2^{-1} L\|v-u\| \beta(r)
$$

Hence

$$
d\left(N \phi\left(x_{1}\right)+N \bar{\phi}\left(x_{2}\right), N \phi\left(x_{2}\right)+N \bar{\phi}\left(x_{1}\right)\right) \leq 2^{-1} L\|v-u\| \beta(r)
$$

i.e.,

$$
d\left(G\left(x_{1}, \frac{u+v}{2}\right)+G\left(x_{2}, \frac{u+v}{2}\right), G\left(x_{2}, v\right)+G\left(x_{1}, u\right)\right) \leq L\left\|\frac{v-u}{2}\right\| \beta(r) .
$$

Taking $x \in I$ and letting $x_{1}, x_{2} \rightarrow x$ we obtain (since $\lim _{r \rightarrow 0} \beta(r)=0$ and $G(\cdot, y)$ is continuous for $y \in C$)

$$
d\left(2 G\left(x, \frac{u+v}{2}\right), G(x, v)+G(x, u)\right)=0 .
$$

Thus

$$
G\left(x, \frac{u+v}{2}\right)=\frac{1}{2}(G(x, v)+G(x, u))
$$

By virtue of Lemma 3, there exist functions $A: I \times C \rightarrow c c(Z)$ and $B: I \rightarrow c c(Z)$, where $A(x, \cdot)$ is additive for $x \in I$, such that

$$
G(x, y)=A(x, y)+B(x)
$$

Let $x \in I$ and $y, \bar{y} \in C$. By (6),

$$
\begin{gathered}
d(A(x, y), A(x, \bar{y}))=d(A(x, y)+B(x), A(x, \bar{y})+B(x))= \\
=d(G(x, y), G(x, \bar{y})) \leq L\|y-\bar{y}\|
\end{gathered}
$$

Thus the function $A(x, \cdot), x \in I$ is continuous. To prove that $B \in H_{\beta}(I, c c(Z))$, note that $A(x, \cdot)$ is additive

$$
G(x, 0)=A(x, 0)+B(x)=\{0\}+B(x)=B(x),
$$

and $G(\cdot, y) \in H_{\beta}(I, c c(Z))$ for every $y \in C$, in particular for $y=0$.
We shall now prove that for every $y \in C$ the function $A(\cdot, y)$ belongs to the set $H_{\beta}(I, c c(Z))$. Let $x_{1}, x_{2} \in I$ and $y \in C$. There is

$$
\begin{gathered}
d\left(A\left(x_{1}, y\right), A\left(x_{2}, y\right)\right)=d\left(A\left(x_{1}, y\right)+B\left(x_{1}\right), A\left(x_{2}, y\right)+B\left(x_{1}\right)\right) \leq \\
\leq d\left(A\left(x_{1}, y\right)+B\left(x_{1}\right), A\left(x_{2}, y\right)+B\left(x_{2}\right)\right)+d\left(A\left(x_{2}, y\right)+B\left(x_{2}\right), A\left(x_{2}, y\right)+B\left(x_{1}\right)\right)= \\
=d\left(G\left(x_{1}, y\right), G\left(x_{2}, y\right)\right)+d\left(B\left(x_{1}\right), B\left(x_{2}\right)\right)
\end{gathered}
$$

Since $G(\cdot, y)$ and B are continuous, so is $A(\cdot, y)$. Let $y \in C, s \in(0,1]$ and let us take $x_{1}, x_{2} \in I$ such that $\left|x_{1}-x_{2}\right| \leq s$.
Then

$$
\begin{aligned}
d\left(A\left(x_{1}, y\right), A\left(x_{2}, y\right)\right) & \leq d\left(G\left(x_{1}, y\right), G\left(x_{2}, y\right)\right)+d\left(B\left(x_{1}\right), B\left(x_{2}\right)\right) \leq \\
& \leq \omega(G(\cdot, y), s)+\omega(B, s) .
\end{aligned}
$$

Therefore,

$$
\omega(A(\cdot, y)) / \beta(s) \leq h_{\beta}(G(\cdot, y))+h_{\beta}(B)
$$

Thus the function $A(\cdot, y)$ belongs to the space $H_{\beta}(I, c c(Z))$.
We shall now prove that the function $I \ni x \mapsto A(x, \cdot) \in \mathcal{L}(C, c c(Z))$ satisfies the Hölder condition. Let us take $x_{1}, x_{2} \in I$, such that $x_{1}<x_{2}$, and let $y_{1}, y_{2}, \bar{y}_{1}, \bar{y}_{2} \in C$. Moreover, let us define ϕ and $\bar{\phi}$ as previously. There is

$$
\begin{equation*}
d\left(N \phi\left(x_{1}\right)+N \bar{\phi}\left(x_{2}\right), N \phi\left(x_{2}\right)+N \bar{\phi}\left(x_{1}\right)\right) \leq L\|\phi-\bar{\phi}\|_{\alpha} \beta\left(x_{2}-x_{1}\right) . \tag{11}
\end{equation*}
$$

Let now $y, \bar{y} \in C$. Putting $y_{1}=\bar{y}_{2}=y+\bar{y} \in C, \bar{y}_{1}=\bar{y}, y_{2}=2 y+\bar{y} \in C$ into (10) and (11), we get

$$
d\left(G\left(x_{1}, y+\bar{y}\right)+G\left(x_{2}, y+\bar{y}\right), G\left(x_{2}, 2 y+\bar{y}\right)+G\left(x_{1}, \bar{y}\right)\right) \leq L\|y\| \beta\left(x_{2}-x_{1}\right)
$$

Hence

$$
\begin{gathered}
d\left(A\left(x_{1}, y+\bar{y}\right)+B\left(x_{1}\right)+A\left(x_{2}, y+\bar{y}\right)+B\left(x_{2}\right), A\left(x_{2}, 2 y+\bar{y}\right)+B\left(x_{2}\right)+A\left(x_{1}, \bar{y}\right)+B\left(x_{1}\right)\right) \leq \\
\leq L\|y\| \beta\left(x_{2}-x_{1}\right)
\end{gathered}
$$

Thus

$$
d\left(A\left(x_{1}, y\right), A\left(x_{2}, y\right)\right) \leq L\|y\| \beta\left(x_{2}-x_{1}\right)
$$

Therefore,

$$
d_{\mathcal{L}}\left(A\left(x_{1}, \cdot\right), A\left(x_{2}, \cdot\right)\right)=\sup _{y \in C \backslash\{0\}} \frac{d\left(A\left(x_{1}, y\right), A\left(x_{2}, y\right)\right)}{\|y\|} \leq L \beta\left(x_{2}-x_{1}\right)
$$

Obviously that inequality is also true in the case of $x_{1} \geq x_{2}$, which completes the proof of part a).
b) Assume that N satisfies conditions 1) and 2). From (5) and (10) we get

$$
\begin{aligned}
& \frac{d\left(G\left(x_{1}, y_{1}\right)+G\left(x_{2}, \bar{y}_{2}\right), G\left(x_{2}, y_{2}\right)+G\left(x_{1}, \bar{y}_{1}\right)\right)}{\beta\left(x_{2}-x_{1}\right)} \leq \\
& \leq L\left[\left\|y_{1}-\bar{y}_{1}\right\|+\frac{\left\|y_{2}-\bar{y}_{2}-\left(y_{1}-\bar{y}_{1}\right)\right\|}{\alpha\left(x_{2}-x_{1}\right)}\right]
\end{aligned}
$$

Putting $y_{1}=\bar{y}_{1}$ in the above inequality, we obtain

$$
\begin{equation*}
d\left(G\left(x_{2}, \bar{y}_{2}\right), G\left(x_{2}, y_{2}\right)\right) \leq L(\beta / \alpha)\left(x_{2}-x_{1}\right)\left\|y_{2}-\bar{y}_{2}\right\| \tag{12}
\end{equation*}
$$

If the condition $\alpha \preceq \beta$ does not hold, then it is easy to see that there exists a sequence $\left(t_{n}\right), t_{n} \in(0,1], t_{n} \rightarrow 0$, such that $(\beta / \alpha)\left(t_{n}\right) \rightarrow 0$. Now let us take $x_{1} \in[0,1)$ and let $x_{2}^{(n)}:=x_{1}+t_{n}$ (the condition $x_{2}^{(n)} \in[0,1]$ holds for almost all n). There is $x_{2}^{(n)} \rightarrow x_{1}$; from the continuity of $G(\cdot, y), y \in C$ and from inequality (12) we get $G\left(x_{1}, \bar{y}_{2}\right)=G\left(x_{1}, y_{2}\right)$. Hence

$$
G(x, y)=G(x, 0)=B(x), \quad x \in[0,1), y \in C .
$$

If $x=1$, then we may take $x_{2}=1$ and $x_{1}^{(n)}:=1-t_{n}$. Then $x_{1}^{(n)} \rightarrow 1$ and from (12) we get $G\left(1, \bar{y}_{2}\right)=G\left(1, y_{2}\right)$, which completes the proof of the equality

$$
G(x, y)=B(x), \quad x \in I, y \in C .
$$

Conversely, if we assume, that the above equality holds, then it is easy to observe that N is a constant function and satisfies the Lipschitz condition.
3.

Theorem 2. Let Y be a real Banach space, Z be a real normed space, C be a convex cone in Y, satisfying equality $Y=C \cup(-C), \alpha$ and β be Hölder functions and let $\alpha \preceq \beta$. Assume that $A: I \times C \rightarrow c c(Z), B: I \rightarrow c c(Z)$ are such functions that $A(\cdot, y), B$ belong to the space $H_{\beta}(I, c c(Z))$ for $y \in C$ and $A(x, \cdot)$ belongs to the space $\mathcal{L}(C, c c(Z))$ for $x \in I$. Moreover, let the function $I \ni x \mapsto A(x, \cdot) \in \mathcal{L}(C, c c(Z))$ satisfy the Hölder condition

$$
d_{\mathcal{L}}\left(A\left(x_{1}, \cdot \cdot\right), A\left(x_{2}, \cdot\right)\right) \leq L \beta\left(\left|x_{1}-x_{2}\right|\right), \quad x_{1}, x_{2} \in I,
$$

where $d_{\mathcal{L}}$ is given by (4).
If we define the function $G: I \times C \rightarrow c c(Z)$ in the following way:

$$
G(x, y)=A(x, y)+B(x), \quad x \in I, y \in C,
$$

then the Nemytski operator N generated by G maps the set $H_{\alpha}(I, C)$ into the space $H_{\beta}(I, c c(Z))$ and satisfies the Lipschitz condition, i.e., there exists a constant $L^{\prime} \geq 0$ such that

$$
d_{\beta}(N \phi, N \bar{\phi}) \leq L^{\prime}\|\phi-\bar{\phi}\|_{\alpha}, \quad \phi, \bar{\phi} \in H_{\alpha}(I, C) .
$$

Proof. First we shall prove that the following formula holds:

$$
\begin{equation*}
\bigcup_{x \in I} A(x, y) \in b(Z), \tag{13}
\end{equation*}
$$

for an arbitrary $y \in C$. Let $x \in I, y \in C$; there is

$$
\|A(x, y)\|=d(A(x, y),\{0\}) \leq d(A(x, y), A(0, y))+d(A(0, y),\{0\}) .
$$

Moreover,

$$
d(A(x, y), A(0, y)) \leq \omega(A(\cdot, y), 1) \leq h_{\beta}(A(\cdot, y)) .
$$

Hence

$$
\|A(x, y)\| \leq h_{\beta}(A(\cdot, y))+d(A(0, y),\{0\}) .
$$

Thus (13) holds. Moreover, $\{A(x, \cdot)\}_{x \in I}$ is a family of additive and continuous functions. By Lemma 4, there exists a constant $M, 0<M<+\infty$, such that

$$
\begin{equation*}
d(A(x, y),\{0\})=\|A(x, y)\| \leq M\|y\|, \quad x \in I, y \in C . \tag{14}
\end{equation*}
$$

Let us take $x \in I, y_{1}, y_{2} \in C$ and let $y_{2}-y_{1} \in C$. According to (14), we get

$$
\begin{gathered}
d\left(A\left(x, y_{2}\right), A\left(x, y_{1}\right)\right)=d\left(A\left(x, y_{2}-y_{1}\right)+A\left(x, y_{1}\right), A\left(x, y_{1}\right)+\{0\}\right)= \\
=d\left(A\left(x, y_{2}-y_{1}\right),\{0\}\right) \leq M\left\|y_{2}-y_{1}\right\|
\end{gathered}
$$

In the case of $y_{1}-y_{2} \in C$, we can also get the inequality

$$
\begin{equation*}
d\left(A\left(x, y_{2}\right), A\left(x, y_{1}\right)\right) \leq M\left\|y_{2}-y_{1}\right\| \tag{15}
\end{equation*}
$$

Thus inequality (15) holds for every $x \in I$ and $y_{1}, y_{2} \in C$.
Since the function $I \ni x \mapsto A(x, \cdot) \in \mathcal{L}(C, c c(Z))$ satisfies the Hölder condition, then

$$
\begin{equation*}
d\left(A\left(x_{1}, y\right), A\left(x_{2}, y\right)\right) \leq L\|y\| \beta\left(\left|x_{1}-x_{2}\right|\right), \quad x_{1}, x_{2} \in I, y \in C \tag{16}
\end{equation*}
$$

We shall now prove that N maps the set $H_{\alpha}(I, C)$ into the space $H_{\beta}(I, c c(Z))$. Let $\phi \in H_{\alpha}(I, C)$ and $x_{1}, x_{2} \in I$. According to (15) and (16), we get

$$
\begin{aligned}
d\left(N \phi\left(x_{1}\right), N \phi\left(x_{2}\right)\right)= & d\left(g\left(x_{1}, \phi\left(x_{1}\right)\right), g\left(x_{2}, \phi\left(x_{2}\right)\right)\right)= \\
= & d\left(A\left(x_{1}, \phi\left(x_{1}\right)\right)+B\left(x_{1}\right), A\left(x_{2}, \phi\left(x_{2}\right)\right)+B\left(x_{2}\right)\right) \leq \\
\leq & d\left(A\left(x_{1}, \phi\left(x_{1}\right)\right), A\left(x_{2}, \phi\left(x_{2}\right)\right)\right)+d\left(B\left(x_{1}\right), B\left(x_{2}\right)\right) \leq \\
\leq & d\left(A\left(x_{1}, \phi\left(x_{1}\right)\right), A\left(x_{2}, \phi\left(x_{1}\right)\right)\right)+ \\
& +d\left(A\left(x_{2}, \phi\left(x_{1}\right)\right), A\left(x_{2}, \phi\left(x_{2}\right)\right)\right)+d\left(B\left(x_{1}\right), B\left(x_{2}\right)\right) \leq \\
\leq & \left.L\left\|\phi\left(x_{1}\right)\right\| \beta\left(\left|x_{1}-x_{2}\right|\right)+M \| \phi\left(x_{1}\right)-\phi\left(x_{2}\right)\right) \|+ \\
& +d\left(B\left(x_{1}\right), B\left(x_{2}\right)\right) .
\end{aligned}
$$

Thus $N \phi$ is continuous, since ϕ and B are continuous. Now let $s \in(0,1]$ and let us take $x_{1}, x_{2} \in I$ such that $\left|x_{1}-x_{2}\right| \leq s$. It is easy to check that $\|\phi(x)\| \leq\|\phi\|_{\alpha}$, for every $x \in I$ and for every Hölder function α. Accordingly,

$$
\begin{gathered}
d\left(N \phi\left(x_{1}\right), N \phi\left(x_{2}\right)\right) \leq \\
\left.\leq L\left\|\phi\left(x_{1}\right)\right\| \beta\left(\left|x_{1}-x_{2}\right|\right)+M \| \phi\left(x_{1}\right)-\phi\left(x_{2}\right)\right) \|+d\left(B\left(x_{1}\right), B\left(x_{2}\right)\right) \leq \\
\leq L\|\phi\|_{\alpha} \beta(s)+M \omega(\phi, s)+\omega(B, s)
\end{gathered}
$$

Hence

$$
\begin{aligned}
\frac{\omega(N \phi, s)}{\beta(s)} & \leq L\|\phi\|_{\alpha}+M \frac{\omega(\phi, s)}{\alpha(s)} \frac{\alpha(s)}{\beta(s)}+\frac{\omega(B, s)}{\beta(s)} \leq \\
& \leq L\|\phi\|_{\alpha}+M M^{\prime} h_{\alpha}(\phi)+h_{\beta}(B)
\end{aligned}
$$

where $M^{\prime}>1$ is a constant such that $\alpha(s) / \beta(s) \leq M^{\prime}$ for $s \in(0,1]$. Therefore, $N \phi \in H_{\beta}(I, c c(Z))$.

Now we shall prove that N is Lipschitzian. Let us take $x_{1}, x_{2} \in I, y_{1}, y_{2}, y_{3}, y_{4} \in C$ and let $y_{2}-y_{3} \in C$. There is

$$
\begin{gather*}
d\left(A\left(x_{1}, y_{1}\right)+A\left(x_{2}, y_{2}\right), A\left(x_{2}, y_{3}\right)+A\left(x_{1}, y_{4}\right)\right) \leq \\
\leq d\left(A\left(x_{1}, y_{1}+y_{2}\right), A\left(x_{1}, y_{3}+y_{4}\right)\right)+d\left(A\left(x_{2}, y_{2}-y_{3}\right), A\left(x_{1}, y_{2}-y_{3}\right)\right) \leq \\
\leq M\left\|y_{1}+y_{2}-y_{3}-y_{4}\right\|+L \beta\left(\left|x_{1}-x_{2}\right|\right)\left\|y_{2}-y_{3}\right\| \tag{17}
\end{gather*}
$$

We can also get inequality (17) in the case of $y_{3}-y_{2} \in C$. Now let $\phi, \bar{\phi} \in H_{\alpha}(I, C)$ and $s \in(0,1]$. From the definition, there follows

$$
\omega(N \phi, N \bar{\phi}, s)=\sup _{x_{1}, x_{2} \in I,\left|x_{1}-x_{2}\right| \leq s} d\left(N \phi\left(x_{1}\right)+N \bar{\phi}\left(x_{2}\right), N \phi\left(x_{2}\right)+N \bar{\phi}\left(x_{1}\right)\right) .
$$

Now let us take $x_{1}, x_{2} \in I$ such that $\left|x_{1}-x_{2}\right| \leq s$; using inequality (17), we get

$$
\begin{aligned}
d\left(N \phi\left(x_{1}\right)+\right. & N \\
& \left.\bar{\phi}\left(x_{2}\right), N \phi\left(x_{2}\right)+N \bar{\phi}\left(x_{1}\right)\right)= \\
& =d\left(A\left(x_{1}, \phi\left(x_{1}\right)\right)+A\left(x_{2}, \bar{\phi}\left(x_{2}\right)\right), A\left(x_{2}, \phi\left(x_{2}\right)\right)+A\left(x_{1}, \bar{\phi}\left(x_{1}\right)\right)\right) \leq \\
& \leq M\left\|(\phi-\bar{\phi})\left(x_{1}\right)-(\phi-\bar{\phi})\left(x_{2}\right)\right\|+L \beta\left(\left|x_{1}-x_{2}\right|\right)\left\|(\phi-\bar{\phi})\left(x_{2}\right)\right\| \leq \\
& \leq M \omega(\phi-\bar{\phi}, s)+L \beta(s)\|\phi-\bar{\phi}\|_{\alpha} .
\end{aligned}
$$

Hence

$$
\frac{\omega(N \phi, N \bar{\phi}, s)}{\beta(s)} \leq M \frac{\omega(\phi-\bar{\phi}, s)}{\alpha(s)} \frac{\alpha(s)}{\beta(s)}+L\|\phi-\bar{\phi}\|_{\alpha}
$$

which implies that

$$
\begin{equation*}
\sup _{s \in(0,1]} \frac{\omega(N \phi, N \bar{\phi}, s)}{\beta(s)} \leq M M^{\prime} h_{\alpha}(\phi-\bar{\phi})+L\|\phi-\bar{\phi}\|_{\alpha} . \tag{18}
\end{equation*}
$$

From inequality (15), we get

$$
d(N \phi(0), N \bar{\phi}(0))=d(A(0, \phi(0)), A(0, \bar{\phi}(0))) \leq M\|\phi(0)-\bar{\phi}(0)\|
$$

Now using inequality (18), we obtain

$$
\begin{aligned}
d_{\beta}(N \phi, N \bar{\phi}) & =d(N \phi(0), N \bar{\phi}(0))+\sup _{s \in(0,1]} \frac{\omega(N \phi, N \bar{\phi}, s)}{\beta(s)} \leq \\
& \leq M\|\phi(0)-\bar{\phi}(0)\|+M M^{\prime} h_{\alpha}(\phi-\bar{\phi})+L\|\phi-\bar{\phi}\|_{\alpha} \leq \\
& \leq M M^{\prime}\left[\|\phi(0)-\bar{\phi}(0)\|+h_{\alpha}(\phi-\bar{\phi})\right]+L\|\phi-\bar{\phi}\|_{\alpha}= \\
& =M M^{\prime}\|\phi-\bar{\phi}\|_{\alpha}+L\|\phi-\bar{\phi}\|_{\alpha}= \\
& =\left[M M^{\prime}+L\right]\|\phi-\bar{\phi}\|_{\alpha},
\end{aligned}
$$

and we may take $L^{\prime}=M M^{\prime}+L(\geq 0)$.

REFERENCES

[1] J. Appel, P.P. Zabrejko, Nonlinear Superposition Operators, Cambridge University Press, Cambridge, 1990.
[2] A. Matkowska, On a characterization of Lipschitzian operators of substitution in the class of Hölders functions, Zeszyty Nauk. Politech. Łódz. Mat. 17 (1984), 81-85.
[3] J. Matkowski, Functional equations and Nemytskij operators, Funkc. Ekvacioj Ser. Int. 25 (1982), 127-132.
[4] J. Matkowski, Lipschitzian composition operators in some function spaces, Nonlinear Anal., Theory, Methods Appl. 30, Proc. 2nd World Congress of Nonlinear Analysis (1997), 719-726.
[5] K. Nikodem, K-convex and K-concave set-valued functions, Politechnika Łódzka, Zeszyty Nauk. Politech. Łódz., Mat. 559, Rozprawy Nauk. 114, 1989.
[6] H. Rådström, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165-169.
[7] W. Rudin, Functional analysis, McGraw-Hill Book Company, 1973.
[8] A. Smajdor, On regular multivalued cosine families, Ann. Math. Sil. 13 (1999), 271-280.
[9] A. Smajdor, W. Smajdor, Jensen equation and Nemytskii operator for set-valued functions, Rad. Mat. 5 (1989), 311-320.
[10] G. Zawadzka, On Lipschitzian operators of substitution in the space of set-valued functions of bounded variation, Rad. Mat. 6 (1990), 279-293.

Jakub Jan Ludew
jakub.ludew@polsl.pl
Silesian University of Technology
Institute of Mathematics
ul. Kaszubska 23, 44-100 Gliwice, Poland
Received: December 29, 2005.

