
Opuscula Mathematica • Vol. 27 • No. 1 • 2007

Jakub Jan Ludew

ON LIPSCHITZIAN OPERATORS OF SUBSTITUTION
GENERATED BY SET-VALUED FUNCTIONS

Abstract. We consider the Nemytskii operator, i.e., the operator of substitution, defined
by (Nφ)(x) := G(x, φ(x)), where G is a given multifunction. It is shown that if N maps a
Hölder space Hα into Hβ and N fulfils the Lipschitz condition then

G(x, y) = A(x, y) + B(x), (1)

where A(x, ·) is linear and A(·, y), B ∈ Hβ . Moreover, some conditions are given under which
the Nemytskii operator generated by (1) maps Hα into Hβ and is Lipschitzian.

Keywords: Nemytskii operator, Hölder functions, set-valued functions, Jensen equation.

Mathematics Subject Classification: 39B99, 47H04, 47H30, 54C60.

In 1982 J. Matkowski showed (cf. [3]) that a composition operator mapping the
function space Lip(I, R) (I = [0, 1]) into itself is Lipschitzian with respect to the
Lipschitzian norm if and only if its generator has the form

g(x, y) = a(x)y + b(x), x ∈ I, y ∈ R, (2)

for some a, b ∈ Lip(I, R). This result was extended to a lot of spaces by J. Matkow-
ski and others (cf. [4]). Let Lipr(I, R), r ∈ (0, 1], denote the space of all functions
φ : I → R which satisfy the Hölder condition with the constant r. Suppose that
N : Lipr(I, R) → Lips(I, R) (s ∈ (0, 1] ). A. Matkowska showed (cf. [2]) that, in the
case of s ≤ r, the operator N is Lipschitzian if and only if its generator g has form
(2) for some a, b ∈ Lipr(I, R). In the case of r < s, the operator N is a Lipschitz map
if and only if there is b ∈ Lips(I, R) such that

g(x, y) = b(x), x ∈ I, y ∈ R.

Set-valued versions of Matkowski’s results were investigated in papers [9, 10] and
others. The main goal of this paper is to examine a Nemytskii operator acting from
one Hölder space into another and generated by a set-valued function.
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1.
If Z is a real normed space then by cc(Z) we denote the space of all non-empty,
compact and convex subsets of Z. Let d denote the Hausdorff metric on the set
cc(Z). Moreover, by n(Z), b(Z) we denote the family of non-empty and non-empty,
bounded subsets of Z, respectively. If A ∈ b(Z), then let us define ‖A‖ as follows:
‖A‖ := sup{‖z‖ : z ∈ A}.

Now assume that Y, Z are vector spaces and C is a convex cone in Y (a sub-
set C of a real vector space is said to be a convex cone if C + C ⊆ C, λC ⊆ C for
λ ≥ 0). A set-valued function F : C → n(Z) is said to be superadditive if the condition
F (y1)+F (y2) ⊆ F (y1 + y2) holds for y1, y2 ∈ C. A set-valued function F : C → n(Z)
is said to be Q+-homogenous if the equality F (λy) = λF (y) holds for λ ∈ Q+, y ∈ C.
Now, let Y,Z be real normed spaces and let C be a convex cone in Y . A set-valued
function F : C → n(Z) is called lower semicontinuous at y0 ∈ C if for every open set
V in Z such that F (y0) ∩ V 6= ∅ there exist a neighbourhood U of zero in Y such
that F (y)∩V 6= ∅ for y ∈ (y0 + U)∩C. A set-valued function F : C → n(Z) is called
lower semicontinuous if it is lower semicontinuous at every point of C.

Lemma 1. [6, Lemma 2]. Let Z be a real normed space. If A,B and C are non-empty,
compact and convex subsets of Z, then d(A + B,A + C) = d(B,C).

The next lemma is an easy consequence of Lemma 1.

Lemma 2. Let Z be a real normed space. If A,B,C, D are non-empty, compact and
convex subsets of Z, then d(A + C,B + D) ≤ d(A,B) + d(C,D).

Lemma 3. [5, Theorem 5.6, p. 64]. Let Y be a vector space and let Z be a Hausdorff
topological vector space. Moreover, let C be a convex cone in Y . A set-valued function
F defined on C, with non-empty and compact values in Z, satisfies the Jensen equation

F
(1
2
(y1 + y2)

)
=

1
2
(F (y1) + F (y2)), y1, y2 ∈ C

if and only if there exist an additive set-valued function A, defined on C with
non-empty, compact and convex values in Z and a non-empty, compact and convex
subset B of Z such that F (y) = A(y) + B, y ∈ C.

Lemma 4. [8, Lemma 4]. Let Y and Z be real normed spaces and let C be a convex
cone in Y . Suppose that (Fj : j ∈ J) is a family of superadditive, lower semicontinuous
and Q+-homogeneous set-valued functions Fj : C → n(Z). If C is of the second
category in C (C is endowed with the metric induced from Y )and

⋃
j∈J Fj(y) ∈ b(Z)

for y ∈ C, then there exists a constant M, 0 < M < +∞, such that

sup
j∈J

‖Fj(y)‖ ≤ M‖y‖, y ∈ C.
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Remark. If Y is an infinite-dimensional linear topological space which is a count-
able union of finite-dimensional subspaces, then Y is of the first category (cf.
[7, p. 52]).

An α : [0, 1] → [0, 1] is said to be a Hölder function [1, p.182], if α(t) > 0 for
t ∈ (0, 1], α(0) = 0 = limt→0 α(t), α(1) = 1, and moreover, α and α∗, where

α∗(t) :=

{
t/α(t) for t ∈ (0, 1],
0 for t = 0

are increasing.
For two Hölder functions α and β, we write

α � β if α(t) = O(β(t)) as t → 0.

Let α be a Hölder function and (M, dM) be a metric space. We define the Hölder
space Hα(I,M), where I = [0, 1], as a set of all continuous functions φ : I →M for
which

hα(φ) := sup
s∈(0,1]

ω(φ, s)
α(s)

< +∞,

where
ω(φ, s) := sup{dM(φ(x1), φ(x2)) : x1, x2 ∈ I, |x1 − x2| ≤ s}. (3)

For a non-empty subset C ⊆ M, by Hα(I, C) we denote the set of all functions
φ ∈ Hα(I,M) such that φ(I) ⊆ C.

If a set M is endowed with the structure of a real normed space, then Hα(I,M)
is also endowed with that structure; the linear operations are defined in the usual way
and the norm is given by the formula

‖φ‖α := ‖φ(0)‖+ hα(φ).

Let now Z be a real normed space and let d be the Hausdorff metric on the set
cc(Z). On the space Hα(I, cc(Z)), the metric may be defined by

dα(F, F ) := d(F (0), F (0)) + sup
s∈(0,1]

ω(F, F , s)
α(s)

, F, F ∈ Hα(I, cc(Z)),

where

ω(F, F , s) := sup{d(F (x1) + F (x2), F (x2) + F (x1)) : x1, x2 ∈ I, |x1 − x2| ≤ s}.

First we shall verify that dα(F, F ) is finite for F, F ∈ Hα(I, cc(Z)) (it is obvious that
dα(F, F ) is nonnegative). Let us take s ∈ (0, 1] and x1, x2 ∈ I such that |x1−x2| ≤ s.
By Lemma 1, there is

d(F (x1) + F (x2), F (x2) + F (x1)) ≤
≤ d(F (x1) + F (x2), F (x2) + F (x2)) + d(F (x2) + F (x2), F (x2) + F (x1)) =

= d(F (x1), F (x2)) + d(F (x1), F (x2)) ≤ ω(F, s) + ω(F , s);
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here ω(F, s) is given by formula (3), where dM is replaced by the Hausdorff metric d
on cc(Z). Therefore

ω(F, F , s) ≤ ω(F, s) + ω(F , s).

Hence

ω(F, F , s)/α(s) ≤ ω(F, s)/α(s) + ω(F , s)/α(s) ≤ hα(F ) + hα(F ).

It implies that dα(F, F ) is finite. The triangle inequality may be obtained in the
following way. Let us take s ∈ (0, 1] and x1, x2 ∈ I, such that |x1 − x2| ≤ s. Then

d(F (x1)+F (x2), F (x2)+F (x1)) = d(F (x1)+F (x2)+F (x2), F (x2)+F (x1)+F (x2)) ≤

≤ d(F (x1) + F (x2) + F (x2), F (x2) + F (x2) + F (x1))+

+ d(F (x2) + F (x2) + F (x1), F (x2) + F (x1) + F (x2)) =

= d(F (x1) + F (x2), F (x2) + F (x1)) + d(F (x2) + F (x1), F (x1) + F (x2)) ≤

≤ ω(F, F , s) + ω(F , F , s).

Hence
ω(F, F , s) ≤ ω(F, F , s) + ω(F , F , s).

Therefore,

dα(F, F ) = d(F (0), F (0)) + sup
s∈(0,1]

ω(F, F , s)
α(s)

≤

≤ d(F (0), F (0)) + sup
s∈(0,1]

ω(F, F , s)
α(s)

+ d(F (0), F (0)) + sup
s∈(0,1]

ω(F , F , s)
α(s)

=

= dα(F, F ) + dα(F , F ),

which means that dα satisfies the triangle inequality.

If E,E′ are arbitrary non-empty sets, by F(E,E′) we denote the set of all functions
f : E → E′. Every function g : I×E → E′ generates the so-called Nemytskii operator
N : F(I, E) → F(I, E′), defined by the formula

(Nφ)(x) := g(x, φ(x)), φ ∈ F(I, E), x ∈ I.

Let Y,Z be real normed spaces, and let C be a convex cone in Y , of the second
category in C. Consider the set

L(C, cc(Z)) := {A : C → cc(Z) : A is additive and continuous}.

The formula
dL(A,B) := sup

y∈C\{0}

d(Ay, By)
‖y‖

(4)

yields a metric in L(C, cc(Z)) (cf. [9] and [10]).
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2.
Theorem 1. Let Y,Z be real normed spaces, C be a convex cone in Y and let α and
β be Hölder functions.

a) Assume that the Nemytskii operator N generated by G : I × C → cc(Z) satisfies
the following conditions:

1) N : Hα(I, C) → Hβ(I, cc(Z)),

2) there exists L ≥ 0 such that

dβ(Nφ, Nφ) ≤ L‖φ− φ‖α, φ, φ ∈ Hα(I, C). (5)
Then there exist functions A : I × C → cc(Z), B : I → cc(Z) such that B,A(·, y)
belongs to the space Hβ(I, cc(Z)) for every y ∈ C, the function A(x, ·) belongs to
the space L(C, cc(Z)) for every x ∈ I and

G(x, y) = A(x, y) + B(x), x ∈ I, y ∈ C.

Moreover, if C is of the second category in C, then the function I 3 x 7→ A(x, ·) ∈
L(C, cc(Z)) satisfies the Hölder condition

dL(A(x1, ·), A(x2, ·)) ≤ Lβ(|x1 − x2|), x1, x2 ∈ I,

where dL is given by (4).
b) Assume that the condition α � β does not hold. Then the operator N satisfies

conditions 1) and 2) if and only if the function G is of the form

G(x, y) = B(x), x ∈ I, y ∈ C,

where B belongs to the space Hβ(I, cc(Z)). In this case the operator N is a con-
stant function.

Proof. a) First we shall prove that the inequality

d(G(x, y), G(x, y)) ≤ L‖y − y‖, x ∈ I, y, y ∈ C (6)

holds. Let us fix x ∈ I, y, y ∈ C. Now define φ, φ : I → C as follows: φ(t) = y, φ(t) =
y, t ∈ I. It is obvious that φ, φ ∈ Hα(I, C). From the definition of the metric dβ , we
get

d(Nφ(0), Nφ(0)) + ω(Nφ, Nφ, 1)/β(1) ≤ dβ(Nφ, Nφ).

Hence

d(G(0, y), G(0, y)) + d(G(x, y) + G(0, y), G(x, y) + G(0, y)) ≤ dβ(Nφ, Nφ). (7)

Moreover,

d(G(x, y), G(x, y)) = d(G(x, y) + G(0, y), G(x, y) + G(0, y)) ≤

≤ d(G(x, y) + G(0, y), G(x, y) + G(0, y)) + d(G(x, y) + G(0, y), G(x, y) + G(0, y)) =

= d(G(0, y), G(0, y)) + d(G(x, y) + G(0, y), G(0, y) + G(x, y));
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according to (5) and (7), we hence get

d(G(x, y), G(x, y)) ≤ dβ(Nφ, Nφ) ≤ L‖φ− φ‖α = L‖y − y‖,

which completes the proof of inequality (6). Now, let us take x1, x2 ∈ I such that
0 ≤ x1 < x2 ≤ 1 and let y1, y2 ∈ C. Consider the function φ : I → Y defined by

φ(t) =


y1 for t ∈ [0, x1],

y1 + t−x1
x2−x1

(y2 − y1) for t ∈ [x1, x2],
y2 for t ∈ [x2, 1].

(8)

It is obvious that φ(I) ⊆ C. Moreover, φ is continuous. We shall prove that φ ∈
Hα(I, C). It is easily seen that the following equalities hold:

ω(φ, s) = ‖y2 − y1‖ for s ≥ x2 − x1,

ω(φ, s) =
s

x2 − x1
‖y2 − y1‖ for s ≥ 0, s ≤ x2 − x1

(ω(φ, s) is given by formula (3), where the metric dM is induced by the norm ‖ · ‖ in
Y ). Since α is increasing, there is

sup
s∈(0,1]

ω(φ, s)
α(s)

=
‖y2 − y1‖
α(x2 − x1)

< +∞.

Hence φ ∈ Hα(I, C) and ‖φ‖α = ‖y1‖ + ‖y2 − y1‖/α(x2 − x1). Let y1, y2 ∈ C and
let us define a function φ : I → Y by putting y1, y2 instead of y1, y2, respectively, in
definition (8). Obviously, φ ∈ Hα(I, C). Let us note that

(φ− φ)(t) =


y1 − y1 for t ∈ [0, x1],

y1 − y1 + t−x1
x2−x1

[(y2 − y2)− (y1 − y1)] for t ∈ [x1, x2],
y2 − y2 for t ∈ [x2, 1].

(9)

It implies that φ− φ ∈ Hα(I, Y ) and

‖φ− φ‖α = ‖y1 − y1‖+ ‖y2 − y2 − (y1 − y1)‖/α(x2 − x1). (10)

Now let u, v ∈ C. Putting y1 = y2 = 1
2 (u + v) ∈ C, y1 = u ∈ C, y2 = v ∈ C into

definitions of the functions φ and φ, we get

‖φ− φ‖α = 2−1‖v − u‖.

Let r = x2 − x1; there follows that

ω(Nφ, Nφ, r)/β(r) ≤ sup
s∈(0,1]

ω(Nφ, Nφ, s)
β(s)

≤ dβ(Nφ, Nφ).
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Therefore, from (5) we get

ω(Nφ, Nφ, r) ≤ 2−1L‖v − u‖β(r).

Hence
d(Nφ(x1) + Nφ(x2), Nφ(x2) + Nφ(x1)) ≤ 2−1L‖v − u‖β(r),

i.e.,

d
(
G

(
x1,

u + v

2
)

+ G
(
x2,

u + v

2
)
, G

(
x2, v

)
+ G(x1, u)

)
≤ L

∣∣∣∣∣∣v − u

2

∣∣∣∣∣∣β(r).

Taking x ∈ I and letting x1, x2 → x we obtain (since limr→0β(r) = 0 and G(·, y) is
continuous for y ∈ C)

d
(
2G(x,

u + v

2
), G(x, v) + G(x, u)

)
= 0.

Thus
G

(
x,

u + v

2

)
=

1
2
(G(x, v) + G(x, u)).

By virtue of Lemma 3, there exist functions A : I × C → cc(Z) and B : I → cc(Z),
where A(x, ·) is additive for x ∈ I, such that

G(x, y) = A(x, y) + B(x).

Let x ∈ I and y, y ∈ C. By (6),

d(A(x, y), A(x, y)) = d(A(x, y) + B(x), A(x, y) + B(x)) =

= d(G(x, y), G(x, y)) ≤ L‖y − y‖.
Thus the function A(x, ·), x ∈ I is continuous. To prove that B ∈ Hβ(I, cc(Z)), note
that A(x, ·) is additive

G(x, 0) = A(x, 0) + B(x) = {0}+ B(x) = B(x),

and G(·, y) ∈ Hβ(I, cc(Z)) for every y ∈ C, in particular for y = 0.
We shall now prove that for every y ∈ C the function A(·, y) belongs to the set

Hβ(I, cc(Z)). Let x1, x2 ∈ I and y ∈ C. There is

d(A(x1, y), A(x2, y)) = d(A(x1, y) + B(x1), A(x2, y) + B(x1)) ≤

≤ d(A(x1, y) + B(x1), A(x2, y) + B(x2)) + d(A(x2, y) + B(x2), A(x2, y) + B(x1)) =

= d(G(x1, y), G(x2, y)) + d(B(x1), B(x2)).

Since G(·, y) and B are continuous, so is A(·, y). Let y ∈ C, s ∈ (0, 1] and let us take
x1, x2 ∈ I such that |x1 − x2| ≤ s.
Then

d(A(x1, y), A(x2, y)) ≤ d(G(x1, y), G(x2, y)) + d(B(x1), B(x2)) ≤
≤ ω(G(·, y), s) + ω(B, s).
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Therefore,
ω(A(·, y))/β(s) ≤ hβ(G(·, y)) + hβ(B).

Thus the function A(·, y) belongs to the space Hβ(I, cc(Z)).
We shall now prove that the function I 3 x 7→ A(x, ·) ∈ L(C, cc(Z)) satisfies the

Hölder condition. Let us take x1, x2 ∈ I, such that x1 < x2, and let y1, y2, y1, y2 ∈ C.
Moreover, let us define φ and φ as previously. There is

d(Nφ(x1) + Nφ(x2), Nφ(x2) + Nφ(x1)) ≤ L‖φ− φ‖αβ(x2 − x1). (11)

Let now y, y ∈ C. Putting y1 = y2 = y + y ∈ C, y1 = y, y2 = 2y + y ∈ C into (10)
and (11), we get

d(G(x1, y + y) + G(x2, y + y), G(x2, 2y + y) + G(x1, y)) ≤ L‖y‖β(x2 − x1).

Hence

d(A(x1, y+y)+B(x1)+A(x2, y+y)+B(x2), A(x2, 2y+y)+B(x2)+A(x1, y)+B(x1)) ≤

≤ L‖y‖β(x2 − x1).

Thus
d(A(x1, y), A(x2, y)) ≤ L‖y‖β(x2 − x1).

Therefore,

dL(A(x1, ·), A(x2, ·)) = sup
y∈C\{0}

d(A(x1, y), A(x2, y))
‖y‖

≤ Lβ(x2 − x1).

Obviously that inequality is also true in the case of x1 ≥ x2, which completes the
proof of part a).

b) Assume that N satisfies conditions 1) and 2). From (5) and (10) we get

d(G(x1, y1) + G(x2, y2), G(x2, y2) + G(x1, y1))
β(x2 − x1)

≤

≤ L
[
‖y1 − y1‖+

‖y2 − y2 − (y1 − y1)‖
α(x2 − x1)

]
.

Putting y1 = y1 in the above inequality, we obtain

d(G(x2, y2), G(x2, y2)) ≤ L(β/α)(x2 − x1)‖y2 − y2‖ (12)

If the condition α � β does not hold, then it is easy to see that there exists a sequence
(tn), tn ∈ (0, 1], tn → 0, such that (β/α)(tn) → 0. Now let us take x1 ∈ [0, 1) and
let x

(n)
2 := x1 + tn (the condition x

(n)
2 ∈ [0, 1] holds for almost all n). There is

x
(n)
2 → x1; from the continuity of G(·, y), y ∈ C and from inequality (12) we get

G(x1, y2) = G(x1, y2). Hence

G(x, y) = G(x, 0) = B(x), x ∈ [0, 1), y ∈ C.
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If x = 1, then we may take x2 = 1 and x
(n)
1 := 1− tn. Then x

(n)
1 → 1 and from (12)

we get G(1, y2) = G(1, y2), which completes the proof of the equality

G(x, y) = B(x), x ∈ I, y ∈ C.

Conversely, if we assume, that the above equality holds, then it is easy to observe
that N is a constant function and satisfies the Lipschitz condition.

3.
Theorem 2. Let Y be a real Banach space, Z be a real normed space, C be a convex
cone in Y , satisfying equality Y = C ∪ (−C), α and β be Hölder functions and let
α � β. Assume that A : I × C → cc(Z), B : I → cc(Z) are such functions that
A(·, y), B belong to the space Hβ(I, cc(Z)) for y ∈ C and A(x, ·) belongs to the space
L(C, cc(Z)) for x ∈ I. Moreover, let the function I 3 x 7→ A(x, ·) ∈ L(C, cc(Z))
satisfy the Hölder condition

dL(A(x1, ·), A(x2, ·)) ≤ Lβ(|x1 − x2|), x1, x2 ∈ I,

where dL is given by (4).
If we define the function G : I × C → cc(Z) in the following way:

G(x, y) = A(x, y) + B(x), x ∈ I, y ∈ C,

then the Nemytski operator N generated by G maps the set Hα(I, C) into the space
Hβ(I, cc(Z)) and satisfies the Lipschitz condition, i.e., there exists a constant L′ ≥ 0
such that

dβ(Nφ, Nφ) ≤ L′‖φ− φ‖α, φ, φ ∈ Hα(I, C).

Proof. First we shall prove that the following formula holds:⋃
x∈I

A(x, y) ∈ b(Z), (13)

for an arbitrary y ∈ C. Let x ∈ I, y ∈ C; there is

‖A(x, y)‖ = d(A(x, y), {0}) ≤ d(A(x, y), A(0, y)) + d(A(0, y), {0}).

Moreover,
d(A(x, y), A(0, y)) ≤ ω(A(·, y), 1) ≤ hβ(A(·, y)).

Hence
‖A(x, y)‖ ≤ hβ(A(·, y)) + d(A(0, y), {0}).

Thus (13) holds. Moreover, {A(x, ·)}x∈I is a family of additive and continuous func-
tions. By Lemma 4, there exists a constant M, 0 < M < +∞, such that

d(A(x, y), {0}) = ‖A(x, y)‖ ≤ M‖y‖, x ∈ I, y ∈ C. (14)
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Let us take x ∈ I, y1, y2 ∈ C and let y2 − y1 ∈ C. According to (14), we get

d(A(x, y2), A(x, y1)) = d(A(x, y2 − y1) + A(x, y1), A(x, y1) + {0}) =

= d(A(x, y2 − y1), {0}) ≤ M‖y2 − y1‖.
In the case of y1 − y2 ∈ C, we can also get the inequality

d(A(x, y2), A(x, y1)) ≤ M‖y2 − y1‖. (15)

Thus inequality (15) holds for every x ∈ I and y1, y2 ∈ C.
Since the function I 3 x 7→ A(x, ·) ∈ L(C, cc(Z)) satisfies the Hölder condition, then

d(A(x1, y), A(x2, y)) ≤ L‖y‖β(|x1 − x2|), x1, x2 ∈ I, y ∈ C. (16)

We shall now prove that N maps the set Hα(I, C) into the space Hβ(I, cc(Z)). Let
φ ∈ Hα(I, C) and x1, x2 ∈ I. According to (15) and (16), we get

d(Nφ(x1), Nφ(x2)) = d(g(x1, φ(x1)), g(x2, φ(x2))) =
= d(A(x1, φ(x1)) + B(x1), A(x2, φ(x2)) + B(x2)) ≤
≤ d(A(x1, φ(x1)), A(x2, φ(x2))) + d(B(x1), B(x2)) ≤
≤ d(A(x1, φ(x1)), A(x2, φ(x1)))+

+ d(A(x2, φ(x1)), A(x2, φ(x2))) + d(B(x1), B(x2)) ≤
≤ L‖φ(x1)‖β(|x1 − x2|) + M‖φ(x1)− φ(x2))‖+

+ d(B(x1), B(x2)).

Thus Nφ is continuous, since φ and B are continuous. Now let s ∈ (0, 1] and let us
take x1, x2 ∈ I such that |x1 − x2| ≤ s. It is easy to check that ‖φ(x)‖ ≤ ‖φ‖α, for
every x ∈ I and for every Hölder function α. Accordingly,

d(Nφ(x1), Nφ(x2)) ≤

≤ L‖φ(x1)‖β(|x1 − x2|) + M‖φ(x1)− φ(x2))‖+ d(B(x1), B(x2)) ≤
≤ L‖φ‖αβ(s) + Mω(φ, s) + ω(B, s).

Hence

ω(Nφ, s)
β(s)

≤ L‖φ‖α + M
ω(φ, s)
α(s)

α(s)
β(s)

+
ω(B, s)
β(s)

≤

≤ L‖φ‖α + MM ′hα(φ) + hβ(B),

where M ′ > 1 is a constant such that α(s)/β(s) ≤ M ′ for s ∈ (0, 1]. Therefore,
Nφ ∈ Hβ(I, cc(Z)).

Now we shall prove that N is Lipschitzian. Let us take x1, x2 ∈ I, y1, y2, y3, y4 ∈ C
and let y2 − y3 ∈ C. There is

d(A(x1, y1) + A(x2, y2), A(x2, y3) + A(x1, y4)) ≤
≤ d(A(x1, y1 + y2), A(x1, y3 + y4)) + d(A(x2, y2 − y3), A(x1, y2 − y3)) ≤

≤ M‖y1 + y2 − y3 − y4‖+ Lβ(|x1 − x2|)‖y2 − y3‖. (17)



On Lipschitzian operators of substitution generated by set-valued functions 23

We can also get inequality (17) in the case of y3 − y2 ∈ C. Now let φ, φ ∈ Hα(I, C)
and s ∈ (0, 1]. From the definition, there follows

ω(Nφ, Nφ, s) = sup
x1,x2∈I,|x1−x2|≤s

d(Nφ(x1) + Nφ(x2), Nφ(x2) + Nφ(x1)).

Now let us take x1, x2 ∈ I such that |x1 − x2| ≤ s; using inequality (17), we get

d(Nφ(x1) + Nφ(x2), Nφ(x2) + Nφ(x1)) =

= d(A(x1, φ(x1)) + A(x2, φ(x2)), A(x2, φ(x2)) + A(x1, φ(x1))) ≤
≤ M‖(φ− φ)(x1)− (φ− φ)(x2)‖+ Lβ(|x1 − x2|)‖(φ− φ)(x2)‖ ≤
≤ Mω(φ− φ, s) + Lβ(s)‖φ− φ‖α.

Hence
ω(Nφ, Nφ, s)

β(s)
≤ M

ω(φ− φ, s)
α(s)

α(s)
β(s)

+ L‖φ− φ‖α,

which implies that

sup
s∈(0,1]

ω(Nφ, Nφ, s)
β(s)

≤ MM ′hα(φ− φ) + L‖φ− φ‖α. (18)

From inequality (15), we get

d(Nφ(0), Nφ(0)) = d(A(0, φ(0)), A(0, φ(0))) ≤ M‖φ(0)− φ(0)‖.

Now using inequality (18), we obtain

dβ(Nφ, Nφ) = d(Nφ(0), Nφ(0)) + sup
s∈(0,1]

ω(Nφ, Nφ, s)
β(s)

≤

≤ M‖φ(0)− φ(0)‖+ MM ′hα(φ− φ) + L‖φ− φ‖α ≤
≤ MM ′ [‖φ(0)− φ(0)‖+ hα(φ− φ)

]
+ L‖φ− φ‖α =

= MM ′‖φ− φ‖α + L‖φ− φ‖α =

= [MM ′ + L]‖φ− φ‖α,

and we may take L′ = MM ′ + L(≥ 0).
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