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ON LIPSCHITZIAN OPERATORS OF SUBSTITUTION
GENERATED BY SET-VALUED FUNCTIONS

Abstract. We consider the Nemytskii operator, i.e., the operator of substitution, defined
by (N¢)(z) := G(z, ¢(z)), where G is a given multifunction. It is shown that if N maps a
Holder space H, into Hg and N fulfils the Lipschitz condition then

G(z,y) = A(z,y) + B(x), (1)

where A(z,-) is linear and A(-,y), B € Hz. Moreover, some conditions are given under which
the Nemytskii operator generated by (1) maps H, into Hg and is Lipschitzian.
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In 1982 J. Matkowski showed (cf. [3]) that a composition operator mapping the
function space Lip(I,R) (I = [0,1]) into itself is Lipschitzian with respect to the
Lipschitzian norm if and only if its generator has the form

g(z,y) = a(x)y+b(z), xzel,yeR, (2)

for some a,b € Lip(I,R). This result was extended to a lot of spaces by J. Matkow-
ski and others (cf. [4]). Let Lip"(I,R),r € (0,1], denote the space of all functions
¢: I — R which satisfy the Hoélder condition with the constant r. Suppose that
N: Lip"(I,R) — Lip°(I,R) (s € (0,1]). A. Matkowska showed (cf. [2]) that, in the
case of s < r, the operator N is Lipschitzian if and only if its generator g has form
(2) for some a,b € Lip"(I,R). In the case of r < s, the operator N is a Lipschitz map
if and only if there is b € Lip®(I,R) such that

g(z,y) =b(z), ze€l,yeR.
Set-valued versions of Matkowski’s results were investigated in papers [9, 10| and

others. The main goal of this paper is to examine a Nemytskii operator acting from
one Holder space into another and generated by a set-valued function.
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1.

If Z is a real normed space then by cc(Z) we denote the space of all non-empty,
compact and convex subsets of Z. Let d denote the Hausdorff metric on the set
cc(Z). Moreover, by n(Z),b(Z) we denote the family of non-empty and non-empty,
bounded subsets of Z, respectively. If A € b(Z), then let us define || Al as follows:
JAJ == sup{ =] : = € A}.

Now assume that Y, Z are vector spaces and C is a convex cone in Y (a sub-
set C of a real vector space is said to be a convex cone if C + C C C, A\C C C for
A > 0). A set-valued function F': C' — n(Z) is said to be superadditive if the condition
F(y1)+ F(y2) C F(y1 +y=2) holds for y1,y2 € C. A set-valued function F: C' — n(Z)
is said to be Q-homogenous if the equality F(Ay) = AF(y) holds for A € Q4,y € C.
Now, let Y, Z be real normed spaces and let C' be a convex cone in Y. A set-valued
function F': C — n(Z) is called lower semicontinuous at yo € C' if for every open set
V in Z such that F(yo) NV # ) there exist a neighbourhood U of zero in Y such
that F(y)NV # 0 fory € (yo+U)NC. A set-valued function F': C — n(Z) is called
lower semicontinuous if it is lower semicontinuous at every point of C'.

Lemma 1. [6, Lemma 2]. Let Z be a real normed space. If A, B and C are non-empty,
compact and convex subsets of Z, then d(A+ B, A+ C) =d(B,C).

The next lemma is an easy consequence of Lemma 1.

Lemma 2. Let Z be a real normed space. If A, B,C, D are non-empty, compact and
convex subsets of Z, then d(A+ C,B+ D) < d(A,B) +d(C, D).

Lemma 3. [5, Theorem 5.6, p. 64]. Let Y be a vector space and let Z be a Hausdorff
topological vector space. Moreover, let C be a convex cone in'Y . A set-valued function
F defined on C', with non-empty and compact values in Z, satisfies the Jensen equation

F(%(yl +y2)) = %(F(yl) +F(y2)), vy1,932€C

if and only if there exist an additive set-valued function A, defined on C with
non-empty, compact and convex values in Z and a mnon-empty, compact and convex

subset B of Z such that F(y) = A(y) + B, y € C.

Lemma 4. [8, Lemma 4|. Let Y and Z be real normed spaces and let C' be a convex
cone inY . Suppose that (F; : j € J) is a family of superadditive, lower semicontinuous
and Q-homogeneous set-valued functions Fj: C — n(Z). If C is of the second
category in C' (C' is endowed with the metric induced from Y )Jand U, ; F;(y) € b(Z)
fory € C, then there exists a constant M,0 < M < 400, such that

sup | F(y)|| < Mllyll, yeC.
jeJ
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Remark. If Y is an infinite-dimensional linear topological space which is a count-
able union of finite-dimensional subspaces, then Y is of the first category (cf.
7, p. 52)).

An «a:[0,1] — [0,1] is said to be a Hoélder function [1, p.182], if a(¢) > 0 for

€ (0,1], @(0) = 0 = lim; ¢ «(t), a(1) = 1, and moreover, a and a*, where

(1) = t/a(t) fort e (0,1],
“ "0 fort=0

are increasing.
For two Holder functions v and 3, we write

a<B if a(t)=0(B(t) as t— 0.

Let o be a Holder function and (M, da) be a metric space. We define the Holder
space H, (I, M), where I = [0,1], as a set of all continuous functions ¢: I — M for

which (6 )
w S
he = !
@)= = (s

< 400,

where
w(e, s) :=sup{dm(d(z1), p(x2)) : @1, 29 € I, |21 — 22| < 8} (3)
For a non-empty subset C C M, by H,(I,C) we denote the set of all functions
¢ € Hy(I, M) such that ¢(I) CC.
If a set M is endowed with the structure of a real normed space, then H, (I, M)
is also endowed with that structure; the linear operations are defined in the usual way
and the norm is given by the formula

[Dlla = [[(O)| + halP)-

Let now Z be a real normed space and let d be the Hausdorff metric on the set
cc(Z). On the space H, (I, ce(Z)), the metric may be defined by

da(F?F) = d(F(O),F(O)) + sup @’
se(0,1]  a(s)

F,F e Hy,(I,ce(2)),
where
W(F, F,s) :=sup{d(F(z1) + F(22), F(x2) + F(z1)) : 1,72 € I, |1 — 32| < s}.

First we shall verify that d(F, F) is finite for F, F € Ho(I, cc(Z)) (it is obvious that
d,(F, F) is nonnegative). Let us take s € (0,1] and 21,22 € I such that |x; —xza| < s.
By Lemma 1, there is
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here w(F), s) is given by formula (3), where da4 is replaced by the Hausdorff metric d
on cc(Z). Therefore B B
w(F F,s) <w(F,s)+w(F,s).

Hence
W(F, F,s)/a(s) <w(F,s)/a(s) +w(F,s)/a(s) < ha(F) + ho(F).

It implies that d,(F,F) is finite. The triangle inequality may be obtained in the
following way. Let us take s € (0,1] and x1, x5 € I, such that |x; — 23] < s. Then

d(F(.rl)—FF(l‘g), F($2)+F(1‘1)) = d(F(CCl)—FF(.I’Q)—Ff(l‘Q), F($2)+F(1‘1)+F(ZIJ2)) <
< d(F(x1) + F(x2) +f($2), F(xg) + F(2) + ?(JA))-&-
+ d(F(23) + F(x2) + F(21), F(x2) + Fa1) + F(3)) =

< w(F, F, s)+ w(?,?, s).

Hence _ _
W(F,F,s) <w(F,F,s)+w(F,F,s).
Therefore, o
T Fal w( 7F75)
do(F,F) = d(F(0),F(0)) + sup <
5€(0,1] a(s)
= (F,?,S) e— - w(fvas>
<d(F(0),F(0)) + sup +d(F(0),F(0))+ sup ————= =
(F(0), £(0)) i ey (£(0), £(0)) i Ay

= do(F,F) + do(F. F),
which means that d, satisfies the triangle inequality.
If E, E' are arbitrary non-empty sets, by F(FE, E') we denote the set of all functions

f: E — E'. Every function g: I x E — E’ generates the so-called Nemytskii operator
N:F(I,E) — F(I,E"), defined by the formula

(N¢)(z) = g(x, d(x), ¢€F(,E), wel

Let Y, Z be real normed spaces, and let C' be a convex cone in Y, of the second
category in C. Consider the set

L(Cycc(Z)) :={A: C — cc(Z) : A is additive and continuous}.

The formula

de(AB) = sup “AVBY)
yeC\{0} H?JH

yields a metric in £(C,ce(Z)) (cf. [9] and [10]).
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2.
Theorem 1. Let Y, Z be real normed spaces, C be a convex cone in Y and let o and
5 be Holder functions.

a) Assume that the Nemytskii operator N generated by G: I x C — cc(Z) satisfies
the following conditions:

1) N: H,(I,C) — Hg(I,cc(Z)),
2) there exists L > 0 such that

dﬂ(NQbaNd)) SLHQS_(b”ou d),d)EHa(I,C). (5)
Then there exist functions A: I x C' — cc(Z),B: I — cc(Z) such that B, A(-,y)
belongs to the space Hg(I,cc(Z)) for every y € C, the function A(z,-) belongs to
the space L(C,cc(Z)) for every x € I and

G(z,y) = Az, y) + B(z), zel,yeC.

Moreover, if C'is of the second category in C, then the function I > z +— A(x,-) €
L(C, cc(Z)) satisfies the Holder condition

de(A(z,-), Alwa, ) < LA(Jwy — 2af), @1,22 €1,

where d. is given by (4).
b) Assume that the condition a@ < /3 does not hold. Then the operator N satisfies
conditions 1) and 2) if and only if the function G is of the form

G(z,y) =B(z), zelyeC,
where B belongs to the space Hg(I,cc(Z)). In this case the operator N is a con-
stant function.
Proof. a) First we shall prove that the inequality
d(Glx,y), G, 7)) < Lly -7, w€lygeC (6)
holds. Let us fix z € I,y,5 € C. Now define é,¢: I — C as follows: ¢(t) =y, d(t) =
y,t € I. It is obvious that ¢, ¢ € H,(I,C). From the definition of the metric dg, we
get B B B
d(N¢(0), N§(0)) + w(N¢,N¢,1)/B(1) < dsg(N$, No).
Hence
d(G(0,y),G(0,7)) + d(G(z,y) + G(0,7), G(2,7) + G(0,y)) < ds(N¢, N¢).  (7)
Moreover,
d(G(z,y), G(x,7)) = d(G(z,y) + G(0,7), G(z,Y) + G(0,7)) <
< d(G(z,y) + G(0,7),G(z,7) + G(0,y)) + d(G(z,y) + G(0,9), G(z,7) + G(0,7)) =
=d(G(0,y),G(0,7)) + d(G(z,y) + G(0,7),G(0,y) + G(z,7));
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according to (5) and (7), we hence get

d(G(z,y),G(2,7)) < dsg(No,N¢) < L||¢ — dlla = Lly — o,

which completes the proof of inequality (6). Now, let us take z1,22 € I such that
0 <z <zo <1 andlet y1,y2 € C. Consider the function ¢: I — Y defined by

Lo for ¢ € [0, 1],
¢(t) = U + ﬁ@Q - yl) fOI' te [fL'l,.TQ], (8)
Y2 for t € [x2,1].

It is obvious that ¢(I) € C. Moreover, ¢ is continuous. We shall prove that ¢ €
H,(I,C). Tt is easily seen that the following equalities hold:

w(o,s) = lly2 — w1l for s>x9—uay,

S

w(¢7 S) =

$2_$1Hy2—y1|| for s>0,s<wzy—a;

(w(o, s) is given by formula (3), where the metric daq is induced by the norm || - || in
Y'). Since « is increasing, there is

w(op,s)  lya — |
sup =
s€(0,1] os) a(ry —x1)

< +o00.

Hence ¢ € Hy(1,C) and [|¢]la = [[y1ll + lly2 — v1ll/a(z2 — z1). Let 71,75 € C and
let us define a function ¢: I — Y by putting ¥, 7, instead of yi1,y2, respectively, in
definition (8). Obviously, ¢ € H,(I,C). Let us note that

B Y1 — Uy for ¢t € [0, z1],
(=) () =1 v1 =T + o=y = 7o) — (y1 = 7)) for t € [x1,22],  (9)
Y2 — Yo for t € [xo,1].
It implies that ¢ — ¢ € H,(I,Y) and
16 = dlla = llyr =Tl + lly2 = T2 — (v1 — o)l /(w2 — 21). (10)

Now let u,v € C. Putting y1 =7, = 3(u+v) € C,j; =u € C,y, = v € C into
definitions of the functions ¢ and ¢, we get

¢ = lla =27 v —ull.

Let r = x5 — x1; there follows that

(NG, NG, 1)/80) < sup NENE5)

dg(N¢, No).
s€(0,1] B(s) < do(N, N9)
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Therefore, from (5) we get
W(No,N¢,r) <27 Lljv — ul|B(r).

Hence
d(N¢(a1) + No(x2), No(x2) + No(z1)) < 27 Lo — u| B(r),
d(G(ml, uT—H)) + G(xg, ut v),G(xg,v) + G(wl,u)) < LHU ; uHﬂ(r)

Taking = € I and letting x1, 22 — « we obtain (since lim,_,o8(r) = 0 and G(-,y) is
continuous for y € C)

a(2G(, U Gl v) + G, w) =0.
Thus 1
6(x. “T”) = S(G(@,0) + Gz, 0)).

By virtue of Lemma 3, there exist functions A: I x C — ce(Z) and B: I — ce(Z),
where A(z,-) is additive for = € I, such that

G(z,y) = A(z,y) + B(x).
Let x € I and y,7 € C. By (6),
d(A(z,y), A(2,7)) = d(A(z,y) + B(z), A(z,7) + B(z)) =

= d(G(,),6(,7) < Ly ~ 3.
Thus the function A(z,-),z € I is continuous. To prove that B € Hg(I, cc(Z)), note
that A(z,-) is additive

G(z,0) = A(z,0) + B(z) = {0} + B(z) = B(x

)s
and G(-,y) € Hg(I,cc(Z)) for every y € C, in particular for y = 0.
We shall now prove that for every y € C the function A(-,y) belongs to the set
Hg(I,cc(Z2)). Let 21,22 € I and y € C. There is

d(A(z1,y), A(x2,y)) = d(A(z1,y) + B(x1), A(22,y) + B(x1)) <
< d(A(z1,y) + B(x1), A(z2,y) + B(22)) + d(A(72,y) + B(22), A(z2,y) + B(71)) =

= d(G(z1,y), G(x2,y)) + d(B(z1), B(22)).

Since G(-,y) and B are continuous, so is A(-,y). Let y € C,s € (0, 1] and let us take
x1, 2z € I such that |z — 23] < s.
Then

d(A(z1,9), A(z2,y)) < d(G(21,y), G(2,y)) + d(B(21), B(z2)) <

<
<w(G(+y),s) +w(B,s).
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Therefore,
w(A(-y))/B(s) < hp(G(-,y)) + hs(B).
Thus the function A(-,y) belongs to the space Hg(I,cc(Z)).
We shall now prove that the function I 3 x — A(z,-) € L(C,cc(Z)) satisfies the
Holder condition. Let us take x1,z2 € I, such that x1 < z2, and let y1,y2,7;,7, € C.
Moreover, let us define ¢ and ¢ as previously. There is

d(N(x1) + No(z2), No(w2) + No(21)) < Ll|¢ — dllaB(z2 — 21). (11)

Let now y,g € C. Putting 11 =9 =y+7 € C, 7, =7, y2 = 2y + 7 € C into (10)
and (11), we get

d(G(x1,y +7) + G(w2,y +7),G (22, 2y +7) + G(21,7)) < Llyl|B(w2 — 1).
Hence
d(A(z1,y+7)+B(z1)+A(z2, y+7)+B(72), A(72, 2y+7) + B(72) + A(21,7)+B(21)) <

< Lyl 8(z2 — 21).
Thus
d(A(z1,y), A(22,9)) < Lllyl|B(z2 — z1).

Therefore,

de(Az, ), Alws, ) = sup DALY Alz2,y))

< Lﬁ(.’rg — .%'1).
yeC\{0} llyll

Obviously that inequality is also true in the case of x; > x5, which completes the
proof of part a).

b) Assume that N satisfies conditions 1) and 2). From (5) and (10) we get

d(G(21,y1) + G(22,73), G(w2,y2) + G(21,7;)) <
B(x2 — 1) -

<Ly =l +

ly2 =¥ — (1 =Tl
a(ze — 1)

Putting y; = ¥, in the above inequality, we obtain

d(G(22,7a), G(x2,42)) < L(B/ ) (2 — 21)[ly2 — Vs (12)

If the condition o =< 3 does not hold, then it is easy to see that there exists a sequence

(tn),tn € (0,1],t, — 0, such that (8/a)(t,) — 0. Now let us take z; € [0,1) and

let x(Qn) = x1 + t, (the condition xén) € [0,1] holds for almost all n). There is
;vé") — z7; from the continuity of G(-,y),y € C and from inequality (12) we get

G(z1,79) = G(x1,y2). Hence
G(z,y) = G(x,0) = B(z), z<€0,1),yecC.
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If 2 = 1, then we may take zo = 1 and 2" := 1 —¢,. Then 2{") — 1 and from (12)
we get G(1,7,) = G(1,y2), which completes the proof of the equality

G(z,y) = B(x), xzel,yeC.

Conversely, if we assume, that the above equality holds, then it is easy to observe
that IV is a constant function and satisfies the Lipschitz condition. O

3.

Theorem 2. Let Y be a real Banach space, Z be a real normed space, C' be a convex
cone in'Y, satisfying equality Y = C U (=C), a and 3 be Hoélder functions and let
a = B. Assume that A: I x C — cc(Z),B: I — cc(Z) are such functions that
A(-,y), B belong to the space Hg(I,cc(Z)) fory € C and A(z,-) belongs to the space
L(C,ce(Z)) for x € I. Moreover, let the function I > x — A(z,-) € L(C,ce(Z))
satisfy the Holder condition

de(A(zi, ), A(me, ) < LA(|z1 — x2|), 1,20 €1,

where dg is given by (4).
If we define the function G: I x C — cc(Z) in the following way:

G(z,y) = A(z,y) + B(x), zelyed,

then the Nemytski operator N generated by G maps the set H,(I,C) into the space
Hg(1,cc(2)) and satisfies the Lipschitz condition, i.e., there exists a constant L' > 0
such that

dg(N¢,N¢) < L'|¢ = Glla, .0 € Ha(I,0).

Proof. First we shall prove that the following formula holds:

U A, y) € b(2), (13)

xel

for an arbitrary y € C. Let z € I,y € C; there is

[A(z, y)|| = d(A(z, y), {0}) < d(A(z,y), A(0,y)) + d(A(0, y), {0}).
Moreover,
d(A(z,y), A0,y)) < w(A(,y),1) < hg(A(,y))-
Hence
[A(z, )| < hs(A(,y)) + d(A(0,y),{0}).

Thus (13) holds. Moreover, {A(z,)},er is a family of additive and continuous func-
tions. By Lemma 4, there exists a constant M,0 < M < +o0, such that

d(A(z,y),{0}) = [[A(z, y)| < M]lyll, welyeC. (14)
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Let us take x € I,y1,y2 € C and let yo — y; € C. According to (14), we get
d(A(z,y2), A(w,y1)) = d(A(z,y2 — 1) + Az, 1), Az, 1) +{0}) =
= d(A(z,y2 —31),{0}) < M|ly2 — |-
In the case of y; — yo € C, we can also get the inequality
d(A(2,y2), A(@,y1)) < Mlly2 — y1]]. (15)

Thus inequality (15) holds for every z € I and y,,y2 € C.
Since the function I 5 z +— A(z,-) € L(C,cc(Z)) satisfies the Holder condition, then

d(A(z1,y), Alxa,y)) < Lllyl[B(|x1 — w2l), 21,25 € Ly € C. (16)

We shall now prove that N maps the set H,(I,C) into the space Hg(I,cc(Z)). Let
¢ € Hy(I,C) and x1,z2 € I. According to (15) and (16), we get
d(N¢(x1), No(22)) = d(g(x1, (1)), g(2, (22))) =
d(A(z1, ¢(x1)) + B(a1), A(w2, ¢(22)) + B(2)) <
d(A(z1, ¢(21)), A2, 9(22))) + d(B(21), B(z2)) <
d(A(21, ¢(21)), Az, ¢(1)))+
+ d(A(z2, §(x1)), A(22, §(22))) + d(B(21), B(22)) <
< Lli¢(@)l|B(lxr — 2f) + Mllp(x1) — d(x2)) [+
+ d(B(z1), B(x2)).
Thus N¢ is continuous, since ¢ and B are continuous. Now let s € (0, 1] and let us
)

take x1,z9 € I such that |x; — 22| < s. It is easy to check that ||¢(x)] < ||@]«, for
every x € I and for every Holder function «. Accordingly,

d(N¢(x1), Np(x2)) <

< Lljp(z)l|B(lxr = w2|) + M||¢(x1) = d(22))l| + d(B(x1), B(xz)) <
< Lli¢llaB(s) + Mw (g, s) +w(B, s).

< A
< A

Hence

w(Ng, s)
B(s)

w(,5) als) | w(B,s)
a(s) Bs) | Bl -

< L)|@]|a + M 3
< L||¢|la + MM ho(¢) + hg(B),
s)

where M’ > 1 is a constant such that a(s)/3(
N¢ € Hz(I,ce(Z)).

Now we shall prove that N is Lipschitzian. Let us take x1,x2 € I, 91,92, y3,y4 € C
and let y» — y3 € C. There is

d(A(x1,y1) + A(w2,y2), A(w2,y3) + A(z1,94)) <

< d(A(z1, 91 +y2), A(z1,y3 +ya)) + d(A(z2, y2 — y3), A(T1, 92 — y3)) <
< Mllys +y2 — y3 — yall + LB(|lz1 — z2|)|ly2 — ys]|- (17)

< M’ for s € (0,1]. Therefore,
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We can also get inequality (17) in the case of y3 — yo € C. Now let ¢,¢ € H,(I,C)
and s € (0,1]. From the definition, there follows

w(N$,No,s) = sup d(N§(z1) + No(2), No(x2) + No(21)).

z1,22€1,|z1—22|<s

Now let us take 1,22 € I such that |z; — x2| < s; using inequality (17), we get

d(N¢(z1) + No(x2), Nop(z2) + No(21)) =
= d(A(z1, ¢(21)) + Alz2, d(22)), A(2, ¢(22)) + A1, d(21))) <
< M||(¢ = ¢)(x1) — (¢ — @) (w2) || + LB(|lz1 — 2 [(d — ¢)(w2)]| <

< Mw(¢ = ¢,5) + LB(s)l|¢ — ¢lla-

e (N6, NG5) _ - w(6=,5) als)
w(N¢, N, s w(p— ¢, s) al(s =
which implies that
sup O NS) o yraphg(6-3) + Lo - Bl (18)
s€(0,1] B(s)

From inequality (15), we get

d(N¢(0), No(0)) = d(A(0, $(0)), A(0,6(0))) < M||6(0) — $(0)]-
Now using inequality (18), we obtain
45(N6.NB) = d(No(0). N3(0)) + sup LN
s€(0,1] B(s)

< MJ|$(0) = $(0)|| + MM ho(d — ¢) + L||¢ — ¢lla <
< MM [[|¢(0) = $(0)[| + halp — @)] + Llld — dlla =
= MM'||¢ — ¢lla + Lll¢ — dlla =

= [MM' + L}|¢ = ]a,

and we may take L' = MM’ + L(> 0). O
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