Xue-gang Chen

TREE DOMATIC NUMBER IN GRAPHS

Abstract

A dominating set S in a graph G is a tree dominating set of G if the subgraph induced by S is a tree. The tree domatic number of G is the maximum number of pairwise disjoint tree dominating sets in $V(G)$. First, some exact values of and sharp bounds for the tree domatic number are given. Then, we establish a sharp lower bound for the number of edges in a connected graph of given order and given tree domatic number, and we characterize the extremal graphs. Finally, we show that a tree domatic number of a planar graph is at most 4 and give a characterization of planar graphs with the tree domatic number 3.

Keywords: tree domatic number, regular graph, planar graph, Cartesian product.

Mathematics Subject Classification: 05C69, 05C35.

1. INTRODUCTION

Let $G=(V, E)$ be a simple graph of order n. The degree, neighborhood and closed neighborhood of a vertex v in the graph G are denoted by $d(v), N(v)$ and $N[v]=$ $N(v) \cup\{v\}$, respectively. The minimum degree and maximum degree of the graph G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. The graph induced by $S \subseteq V$ is denoted by $\langle S\rangle$. Let P_{n}, C_{n} and K_{n} denote the path, cycle and complete graph with n vertices, respectively. Let $K_{n, m}$ denote the complete bipartite graph.

A set of vertices D in a graph $G=(V, E)$ is a dominating set if every vertex in $V-D$ has at least one neighbor in D. A dominating set D is called a tree dominating set if the subgraph induced by D is a tree. In what follows, we assume that all graphs are connected. The minimum number of vertices in a tree dominating set of G is called the tree domination number of G, and is denoted by $\gamma_{t r}(G)$. A tree domatic partition of G is a partition of the vertex set V into pairwise disjoint tree dominating sets. If such a partition exists, the maximum number of subsets in such a partition is called the tree domatic number of G and is denoted by $d_{t r}(G)$, otherwise, define $d_{t r}(G)=0$.

Zelinka [1] studied the connected domatic number of a graph. Hartnell et al. [2] gave the connected domatic number of a planar graph. Chen et al. [3] studied tree
dominating set of a graph. We gave some graphs having no tree dominating set. For example, take a complete graph $K_{3 n}$, and partition the vertices of $K_{3 n}$ into n sets of three vertices each. To each set of three vertices, add a new vertex and join it to each of these three vertices. Then the resulting 3 -connected graph does not have a tree dominating set. If G has no tree dominating set, then we define $d_{t r}(G)=0$.

A planar graph is a graph that can be embedded in the plane so that no two edges intersect geometrically except at a vertex to which both are incident. A planar graph G is called outerplanar if the embedding can be chosen so that the boundary of one of the planar regions contains every vertex of G. A graph G_{2} is called an elementary contraction of G_{1} if there is an edge $u v$ of G_{1} such that G_{2} is obtained from G_{1} by deleting the vertices u and v and appending a new vertex, denoted by x, that is adjacent to all the vertices of $G-u-v$ that were originally adjacent to either of u or v. If the graph H is isomorphic to G or is obtainable from G by a finite sequence of elementary contractions, then we say that H is a contraction of G. Perhaps a more intuitive way to think of a contraction H of a graph G is to consider a partition of $V(G)$ into subsets each of which induces a connected subgraph of G. Each member of the partition corresponds to a vertex of H, and two vertices of H are adjacent if the union of the corresponding subsets of G induces a connected subgraph of G. In effect each member of the partition has been shrunk to a single vertex and multiple edges have been removed. It is clear that the property of being planar is preserved under contractions.

For an arbitrary graph G, the vertex connectivity $\kappa(G)$ is the minimum number of vertices whose removal will disconnected G.

The Cartesian product of G and H, denoted by $G \times H$, has the vertex set $V(G \times H)=\{(g, h) \mid g \in V(G), h \in V(H)\}$ and the edge set $E(G \times H)=$ $\left\{\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right) \mid\right.$ either $g_{1}=g_{2}$ and $h_{1} h_{2} \in E(H)$ or $g_{1} g_{2} \in E(G)$ and $\left.h_{1}=h_{2}\right\}$. In particular, if G is isomorphic to P_{r} and H is isomorphic to P_{s}, then $G \times H$ is called $r \times s$ grid graph, denoted by $G_{r \times s}$.

2. SOME EXACT VALUES OF AND BOUNDS FOR THE TREE DOMATIC NUMBER

First, we give some upper bounds for the tree domatic number in term of minimum degree, tree domination number or vertex connectivity.
Theorem 1. Let G be a connected graph. Then,
(1) If G is a complete graph, then $d_{t r}(G)=\delta(G)+1$; otherwise, $d_{t r}(G) \leq \delta(G)$ and the bound is sharp.
(2) If $\gamma_{t r}(G)>0$, then $d_{t r}(G) \leq \frac{n}{\gamma_{t r}(G)}$ and the bound is sharp.
(3) $d_{t r}(G) \leq \kappa(G)$ and the bound is sharp.

Proof. (1) Assume $d_{t r}(G)=t$ and $\left(D_{1}, D_{2}, \ldots, D_{t}\right)$ is a partition of $V(G)$ into t tree dominating sets. If G is a complete graph, then it is obvious that $d_{t r}(G)=$ $n=\delta(G)+1$. If G is not a complete graph, then let v be a vertex of G such that
$d(v)=\delta(G)<n-1$. Assume $v \in D_{1}$. If $\left|D_{1}\right|=1$, then $D_{1}=\{v\}$. Since each vertex in D_{i} is dominated by v for $i=2,3, \ldots, t$, it follows that $d(v)=n-1$, which is a contradiction. Hence, $\left|D_{1}\right| \geq 2$. Since $\left\langle D_{1}\right\rangle$ is a tree and v is dominated by at least one vertex of D_{i} for $i=2,3, \ldots, t$, it follows that $d(v)-1 \geq t-1$. That is $t \leq d(v)$. Hence, $d_{t r}(G) \leq \delta(G)$.
(2) Assume $d_{t r}(G)=t$ and $\left(D_{1}, D_{2}, \ldots, D_{t}\right)$ is a partition of $V(G)$ into t tree dominating sets. Since each $\left\langle D_{i}\right\rangle$ is a tree dominating set, it follows that $\left|D_{i}\right| \geq \gamma_{t r}(G)$ for $i=1,2, \ldots, t$. Hence, $n=\sum_{1 \leq i \leq t}\left|D_{i}\right| \geq t \gamma_{t r}(G)$. That is $d_{t r}(G) \leq \frac{n}{\gamma_{t r}(G)}$.
(3) Let S denote the cut set with cardinality $\kappa(G)$. Then $\langle V(G)-S\rangle$ is disconnected. It is obvious that any tree dominating set must contain at least one vertex of S. So G has at most $|S|$ pairwise disjoint tree dominating sets. Hence, $d_{t r}(G) \leq \kappa(G)$.

The sharpness of the bounds is obvious from the following two corollaries and Theorem 4.

Now, we give some exact values of the tree domatic number for some classes of graphs.

Corollary 1. (1) Let T denote a tree with $n \geq 3$. Then $d_{t r}(T)=1$.
(2) $d_{t r}\left(C_{n}\right)= \begin{cases}3 & \text { for } n=3, \\ 2 & \text { for } n=4, \\ 0 & \text { for } n \geq 5\end{cases}$
(3) $d_{t r}\left(K_{n, m}\right)=\min (n, m)$ for $n, m \geq 2$.

Proof. (1) By Theorem 1, since $\kappa(T)=1$, it follows that $d_{t r}(G) \leq 1$. It is obvious that T is a tree dominating set for T. So, $d_{t r}(T)=1$.
(2) Let $C_{n}=v_{1} v_{2} \ldots v_{n} v_{1}$. Since $\gamma_{t r}\left(C_{n}\right)=n-2$, from Theorem 1 it follows that $d_{t r}(T) \leq \frac{n}{n-2}=1+\frac{2}{n-2}$.

If $n=3$, then $d_{t r}(T) \leq 3$. It is obvious that each vertex is a tree dominating set for C_{3}. So, $d_{t r}(T)=3$.

If $n=4$, then $d_{t r}(T) \leq 2$. It is obvious that $\left\{v_{1}, v_{2}\right\}$ and $\left\{v_{3}, v_{4}\right\}$ are two pairwise disjoint tree dominating sets for C_{4}. So, $d_{t r}(T)=2$.

If $n \geq 5$, then $d_{t r}(T) \leq 1$. Hence, $V\left(C_{n}\right)$ is not a tree dominating sets for C_{n}. So, $d_{t r}(T)=0$.
(3) Let $U=\left\{u_{1}, \ldots, u_{n}\right\}$ and $W=\left\{w_{1}, \ldots, w_{m}\right\}$ form a two vertex partition of $K_{n, m}$. Without loss of generality, assume $\min (n, m)=n$. By Theorem 1, it follows that $d_{t r}\left(K_{n, m}\right) \leq \delta\left(K_{n, m}\right)=n$. It is obvious that $\left\{u_{i}, w_{i}\right\}$ for $i=1, \ldots, n-1$ and $\left\{u_{n}, v_{n}, \ldots, v_{m}\right\}$ are n pairwise disjoint tree dominating sets of $K_{n, m}$. So, $d_{t r}\left(K_{n, m}\right)=$ n.

Corollary 2. Let G be a connected graph with $\kappa(G)=1$. If G contains a cycle, then $d_{t r}(G)=0$.

Let H_{t} denote the set of trees of order t. Assume $T_{1}, T_{2}, \ldots, T_{k} \in H_{t}$. Let $G\left(T_{1}, T_{2}, \ldots, T_{k}\right)$ be obtained from $T_{1}, T_{2}, \ldots, T_{k}$ by joining each vertex v in T_{i} to exactly one vertex of each T_{j} for $j=1,2, \ldots, k$ and $j \neq i$, and for arbitrary two vertices $u, v \in T_{i}, N(u) \cap V\left(T_{j}\right) \neq N(v) \cap V\left(T_{j}\right)$. Let $G_{t}=\left\{G\left(T_{1}, T_{2}, \ldots, T_{k}\right) \mid T_{1}, T_{2}, \ldots, T_{k} \in\right.$ $\left.H_{t}\right\}$.

Theorem 2. For any $G\left(T_{1}, T_{2}, \ldots, T_{k}\right) \in G_{t}$, there is $d_{t r}\left(G\left(T_{1}, T_{2}, \ldots, T_{k}\right)\right)=k$.
Proof. It is clear that $T_{1}, T_{2}, \ldots, T_{k}$ is a tree domatic partition of $G\left(T_{1}, T_{2}, \ldots, T_{k}\right)$. Hence, $d_{t r}\left(G\left(T_{1}, T_{2}, \ldots, T_{k}\right)\right) \geq k$. Since $\delta\left(G\left(T_{1}, T_{2}, \ldots, T_{k}\right)\right)=k$, it follows that $d_{t r}\left(G\left(T_{1}, T_{2}, \ldots, T_{k}\right)\right) \leq k$ by Theorem 1. So, $d_{t r}\left(G\left(T_{1}, T_{2}, \ldots, T_{k}\right)\right)=k$.

Theorem 3. Let G be a connected graph of order n with tree domatic number $k \geq 1$. Then G must have at least $\frac{(k+1) n}{2}-k$ edges. Furthermore, G has exactly $\frac{(k+1) n}{2}-k$ edges if and only if $n \equiv 0(\bmod k)$ and $G \in G_{\frac{n}{k}}$.
Proof. Let $D_{1}, D_{2}, \ldots, D_{k}$ be a tree domatic partition of G and let $G_{i}=\left\langle D_{i}\right\rangle$. Without loss of generality, we assume that G_{i} has order n_{i} for $i=1,2, \ldots, k$. Let $E\left(D_{i}, V(G)-D_{i}\right)$ denote such a set of edges that for any edge one of its endpoints belongs to D_{i} and the other belongs to $V(G)-D_{i}$. Since D_{i} is a tree dominating set for G, it follows that $\left|E\left(D_{i}, V(G)-D_{i}\right)\right| \geq n-n_{i}$. So,

$$
\begin{aligned}
|E(G)| & \geq \sum_{1 \leq i \leq k}\left|E\left(G_{i}\right)\right|+\frac{1}{2} \sum_{1 \leq i \leq k}\left|E\left(D_{i}, V(G)-D_{i}\right)\right| \geq \\
& \geq \sum_{1 \leq i \leq k}\left(n_{i}-1\right)+\frac{1}{2} \sum_{1 \leq i \leq k}\left(n-n_{i}\right) \geq \\
& \geq(n-k)+\frac{1}{2} n(k-1)= \\
& =\frac{(k+1) n}{2}-k
\end{aligned}
$$

For each $G \in G_{\frac{n}{k}}$, there exist $T_{1}, T_{2}, \ldots, T_{k}$ that belong to $H_{\frac{n}{k}}$ such that $G=$ $G\left(T_{1}, T_{2}, \ldots, T_{k}\right)$. By the definition of $G\left(T_{1}, T_{2}, \ldots, T_{k}\right)$, it is clear that G has exactly $\frac{(k+1) n}{2}-k$ edges.

Conversely, if G has exactly $\frac{(k+1) n}{2}-k$ edges, then for each $D_{i}, \mid E\left(D_{i}, V(G)-\right.$ $\left.D_{i}\right) \mid=n-n_{i}$. Since for each $v \in V(G)-D_{i}, v$ is dominated by at least one vertex in D_{i}, it follows that v is dominated by exactly one vertex in D_{i}. Hence, $\left|D_{1}\right|=\left|D_{2}\right|=\ldots=\left|D_{k}\right|$. Indeed, let us for the contrary assume that $\left|D_{i}\right| \neq\left|D_{j}\right|$. Without loss of generality, assume that $\left|D_{i}\right|>\left|D_{j}\right|$. Since each vertex $v \in D_{i}$ is dominated by exactly one vertex in D_{j}, it follows that there exists one vertex in D_{j} which is dominated by at least two vertices in D_{i}, which is a contradiction. So, $k\left|D_{1}\right|=n$. That is $n \equiv 0(\bmod k)$. For arbitrary two vertices $u, v \in D_{i}$, it is clear that $N(u) \cap D_{j} \neq N(v) \cap D_{j}$. Let $T_{i}=\left\langle D_{i}\right\rangle$ for $i=1,2, \ldots, k$. It is clear that $G=G\left(T_{1}, T_{2}, \ldots, T_{k}\right)$. Hence, $G \in G_{\frac{n}{k}}$.

3. CHARACTERIZATION OF REGULAR GRAPHS AND PLANAR GRAPHS ATTAINING THE UPPER BOUNDS

Theorem 4. Let G be an r-regular graph of order n, where $r<n-1$. Then $d_{t r}(G)=r$ if and only if $n=2 r$ and there exists a perfect matching $M=\left\{e_{1}, e_{2}, \ldots, e_{r}\right\}$ of
G. If $e_{i}=u_{i} v_{i}$ for $i=1,2, \ldots, r$, then for each u_{i} there is $\left|N\left(u_{i}\right) \cap e_{j}\right|=1$ and $N\left(u_{i}\right) \cap e_{j} \neq N\left(v_{i}\right) \cap e_{j}$.
Proof. Let G be an r-regular graph with $d_{t r}(G)=r$ and let $D_{1}, D_{2}, \ldots, D_{r}$ be a tree domatic partition of G. By Theorem 3, it follows that $|E(G)| \geq \frac{(r+1) n}{2}-r$. That is $\frac{r n}{2} \geq \frac{(r+1) n}{2}-r$. So, $n \leq 2 r$. If $n<2 r$, then there exists a D_{i} such that $\left|D_{i}\right|=1$. Let $D_{1}=\{v\}$. Since each vertex in D_{j} is dominated by v for $j=2, \ldots, r$, it follows that $d(v)=n-1$ and G is a complete graph, which is a contradiction. Hence, $n=2 r$ and $\left|D_{i}\right|=2$ for $i=1,2, \ldots, r$. Let $M=\left\{\left\langle D_{1}\right\rangle,\left\langle D_{2}\right\rangle, \ldots,\left\langle D_{r}\right\rangle\right\}$. Then M is a perfect matching of G. Assume $\left\langle D_{i}\right\rangle=e_{i}=u_{i} v_{i}$ for $i=1,2, \ldots, r$. Since $d\left(u_{i}\right)=r$ and u_{i} is dominated by at least one vertex in D_{j} for $j=1,2, \ldots, r$ and $j \neq i$, it follows that $\left|N\left(u_{i}\right) \cap e_{j}\right|=1$. If $N\left(u_{i}\right) \cap e_{j}=N\left(v_{i}\right) \cap e_{j}$, that is both u_{i} and v_{i} are adjacent to the same vertex, say u_{j}, then $\left.d_{\left\langle D_{i} \cup D_{j}\right\rangle}\right\rangle\left(u_{j}\right)=3$. Hence, there exists a D_{k} such that u_{j} is not dominated by any vertex in D_{k} for $k \in\{1,2, \ldots, r\} \backslash\{i, j\}$, which is a contradiction.

Conversely, let $D_{i}=\left\{u_{i}, v_{i}\right\}$ for $i=1,2, \ldots, r$. It is obvious that $\left(D_{1}, D_{2}, \ldots, D_{r}\right)$ is a tree domatic partition of G. Hence, $d_{t r}(G) \geq r$. By Theorem 1, it follows that $d_{t r}(G)=r$.

Corollary 3. If G is a cubic graph and $d_{t r}(G)=3$, then G is $K_{3,3}$ or $K_{3} \times K_{2}$.
Lemma 1. A graph G is planar(ourterplanar) if and only if neither K_{5} nor $K_{3,3}$ (K_{4} nor $K_{2,3}$) is a contraction of a subgraph of G.

In a way similar to used in [3], we may prove the following theorem.
Theorem 5. Let G be a planar graph of order n. Then the tree domatic number of G is at most 4 and K_{4} is the only planar graph achieving this bound.
Proof. Assume G is a planar graph of order n such that $d_{t r}(G) \geq 5$. By Theorem 3, it follows that $|E(G)| \geq 3 n-5$. But this contradicts the well known upper bound of $3 n-6$ for a planar graph of order n. Thus, $d_{t r}(G) \leq 4$.

Consider the case of $d_{t r}(G)=4$ and G not isomorphic to K_{4}. Let $D_{1} \cup D_{2} \cup D_{3} \cup D_{4}$ be a tree domatic partition of G. Without loss of generality, assume $\left|D_{1}\right| \geq 2$. Let a and b be adjacent vertices in D_{1}. Let H be the contraction of G formed by identifying the vertices in each of D_{2}, D_{3} and D_{4} to a single vertex x_{2}, x_{3} and x_{4}, respectively. H is planar since it is a contraction of a planar graph. But since D_{2} is a dominating set in G, it follows that x_{2} is adjacent to each of a, b, x_{3}, x_{4} in H. Similar statements hold for x_{3} and x_{4}. But then H contains the subgraph $\left\langle\left\{a, b, x_{2}, x_{3}, x_{4}\right\}\right\rangle$ which has been shown to be isomorphic to K_{5}, which is a contradiction.
Theorem 6. Let G be a planar graph such that $d_{t r}(G)=3$ and let $D_{1} \cup D_{2} \cup D_{3}$ be any tree domatic partition of G. Then each of the induced subgraphs $\left\langle D_{1}\right\rangle,\left\langle D_{2}\right\rangle$ and $\left\langle D_{3}\right\rangle$ is a path.

Proof. Let G be a planar graph and $D_{1} \cup D_{2} \cup D_{3}$ be any tree domatic partition of G such that $\left\langle D_{1}\right\rangle$ has a vertex a of degree at least three. Let b, c, d be three of its neighbours in D_{1} and let $u_{2} \in D_{2}$ and $u_{3} \in D_{3}$. Let H be the planar graph obtained
from G by contracting D_{i} into u_{i} for $i=2,3$, and by removing any of the edges $b c, b d, c d$ which is present in G. Since each vertex in D_{1} is dominated by at least one vertex in D_{2}, each of a, b, c and d is adjacent to u_{2} in H. Consider any planar embedding of H. By Euler's formula, the induced subgraph $K=\left\langle\left\{a, b, c, d, u_{2}\right\}\right\rangle$ has four regions, and u_{2} belongs to the boundary of each of these regions. Since, K contains a subgraph isomorphic to $K_{2,3}$, it is not outerplanar, and so none of the four regions has a boundary which contains all of a, b, c and d. Now u_{3} lies in one of these regions and can be adjacent only to vertices on the boundary of this region. But then there exists in $\{a, b, c, d\}$ a vertex which it is not dominated by u_{3}, contradicting our assumption above. Therefore, the maximum degree of any of the induced subgraphs $\left\langle D_{1}\right\rangle,\left\langle D_{1}\right\rangle$ and $\left\langle D_{3}\right\rangle$ is no more than two. Hence, each of the induced subgraphs $\left\langle D_{1}\right\rangle,\left\langle D_{1}\right\rangle$ and $\left\langle D_{3}\right\rangle$ is a path.
Theorem 7. Suppose $2 \leq r \leq s$. If $r=2$, then $d_{t r}\left(G_{r, s}\right)=2$; otherwise, $d_{t r}\left(G_{r, s}\right)=0$.
Proof. Let P_{r} be the path $v_{1}, v_{2}, \ldots, v_{r}$ and let P_{s} be the path $w_{1}, w_{2}, \ldots, w_{s}$.
The case $r=2$ is easy. Assume $r \geq 3$ and $\left\{D_{1}, D_{2}\right\}$ is a partition of $V\left(G_{r, s}\right)$ into two tree dominating sets. For ease of reference, let a, b, c, d, e, f be the vertices $\left(v_{1}, w_{2}\right),\left(v_{2}, w_{1}\right),\left(v_{1}, w_{s-1}\right),\left(v_{2}, w_{s}\right),\left(v_{r-1}, w_{s}\right),\left(v_{r}, w_{s-1}\right)$, respectively. Note that if $r=3$, then $d=e$. (If, in addition, $s=3$, then $a=c$ as well). We may assume without loss of generality that $a \in D_{1}$ and $b \in D_{2}$. Since D_{1} and D_{2} are tree dominating sets of $G_{r, s}$, some neighbours of $\left(v_{1}, w_{s}\right)$ must belong to D_{2}, and some neighbours of $\left(v_{r}, w_{s}\right)$ must belong to D_{1}. Let $\{x\}=D_{2} \cap\{c, d\}$ and let $\{y\}=D_{1} \cap\{e, f\}$.

If $r=3=s$, then $f \in D_{1}$ and $d \in D_{2}$. But then $\left(v_{2}, w_{2}\right) \in D_{1}$ and so $\left\langle D_{2}\right\rangle$ is not connected, a contradiction. Therefore, assume $s \geq 4$. There are three cases to consider. If $r=3$ and $y=e$, then it follows that $x=c$ and $f \in D_{2}$. Thus the vertices of any $a-y$ path form a cutset which separates vertices b and c. If $r=3$ and $y=f$, then the vertex set of any $a-y$ path separates vertices b and d. If $r \geq 4$, then vertices b and x are separated by the vertex set of any $a-y$ path. In each case, we come to a contradiction with the assumption that $\left\langle D_{2}\right\rangle$ is connected. So, $d_{t r}\left(G_{r, s}\right) \leq 1$. Since $G_{r, s}$ is not a tree, it follows that $d_{t r}\left(G_{r, s}\right)=0$.

Acknowledgments

Supported by National Natural Sciences Foundation of China(19871036).

REFERENCES

[1] B. Zelinka, Connected domatic number of a graph, Math. Slovaca 36 (1986), 387-392.
[2] B.l. Hartnell, D.F. Rall, Connected domatic number in planar graph. Czechoslovak Math. Journal 51 (126) (2001), 173-179.
[3] X.G. Chen, L. Sun, A. McRae, Tree domination in graphs, Ars Comb. 73 (2004), 193-203.

Xue-gang Chen
gxc_xdm@163.com

North China Electric Power University
Department of Mathematics
Beijing 102206, China

Received March 28, 2005.

