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TREE DOMATIC NUMBER IN GRAPHS

Abstract. A dominating set S in a graph G is a tree dominating set of G if the subgraph
induced by S is a tree. The tree domatic number of G is the maximum number of pairwise
disjoint tree dominating sets in V (G). First, some exact values of and sharp bounds for the
tree domatic number are given. Then, we establish a sharp lower bound for the number of
edges in a connected graph of given order and given tree domatic number, and we characterize
the extremal graphs. Finally, we show that a tree domatic number of a planar graph is at
most 4 and give a characterization of planar graphs with the tree domatic number 3.
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1. INTRODUCTION

Let G = (V,E) be a simple graph of order n. The degree, neighborhood and closed
neighborhood of a vertex v in the graph G are denoted by d(v), N(v) and N [v] =
N(v) ∪ {v}, respectively. The minimum degree and maximum degree of the graph G
are denoted by δ(G) and ∆(G), respectively. The graph induced by S ⊆ V is denoted
by 〈S〉. Let Pn, Cn and Kn denote the path, cycle and complete graph with n vertices,
respectively. Let Kn,m denote the complete bipartite graph.

A set of vertices D in a graph G = (V,E) is a dominating set if every vertex in
V −D has at least one neighbor in D. A dominating set D is called a tree dominating
set if the subgraph induced by D is a tree. In what follows, we assume that all graphs
are connected. The minimum number of vertices in a tree dominating set of G is
called the tree domination number of G, and is denoted by γtr(G). A tree domatic
partition of G is a partition of the vertex set V into pairwise disjoint tree dominating
sets. If such a partition exists, the maximum number of subsets in such a partition
is called the tree domatic number of G and is denoted by dtr(G), otherwise, define
dtr(G) = 0.

Zelinka [1] studied the connected domatic number of a graph. Hartnell et al. [2]
gave the connected domatic number of a planar graph. Chen et al. [3] studied tree
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dominating set of a graph. We gave some graphs having no tree dominating set. For
example, take a complete graph K3n, and partition the vertices of K3n into n sets of
three vertices each. To each set of three vertices, add a new vertex and join it to each
of these three vertices. Then the resulting 3-connected graph does not have a tree
dominating set. If G has no tree dominating set, then we define dtr(G) = 0.

A planar graph is a graph that can be embedded in the plane so that no two edges
intersect geometrically except at a vertex to which both are incident. A planar graph
G is called outerplanar if the embedding can be chosen so that the boundary of one
of the planar regions contains every vertex of G. A graph G2 is called an elementary
contraction of G1 if there is an edge uv of G1 such that G2 is obtained from G1

by deleting the vertices u and v and appending a new vertex, denoted by x, that is
adjacent to all the vertices of G−u− v that were originally adjacent to either of u or
v. If the graph H is isomorphic to G or is obtainable from G by a finite sequence of
elementary contractions, then we say that H is a contraction of G. Perhaps a more
intuitive way to think of a contraction H of a graph G is to consider a partition of
V (G) into subsets each of which induces a connected subgraph of G. Each member
of the partition corresponds to a vertex of H, and two vertices of H are adjacent if
the union of the corresponding subsets of G induces a connected subgraph of G. In
effect each member of the partition has been shrunk to a single vertex and multiple
edges have been removed. It is clear that the property of being planar is preserved
under contractions.

For an arbitrary graph G, the vertex connectivity κ(G) is the minimum number
of vertices whose removal will disconnected G.

The Cartesian product of G and H, denoted by G × H, has the vertex set
V (G × H) = {(g, h)|g ∈ V (G), h ∈ V (H)} and the edge set E(G × H) =
{(g1, h1)(g2, h2)|either g1 = g2 and h1h2 ∈ E(H) or g1g2 ∈ E(G) and h1 = h2}.
In particular, if G is isomorphic to Pr and H is isomorphic to Ps, then G×H is called
r × s grid graph, denoted by Gr×s.

2. SOME EXACT VALUES
OF AND BOUNDS FOR THE TREE DOMATIC NUMBER

First, we give some upper bounds for the tree domatic number in term of minimum
degree, tree domination number or vertex connectivity.

Theorem 1. Let G be a connected graph. Then,

(1) If G is a complete graph, then dtr(G) = δ(G)+1; otherwise, dtr(G) ≤ δ(G) and
the bound is sharp.

(2) If γtr(G) > 0, then dtr(G) ≤ n
γtr(G) and the bound is sharp.

(3) dtr(G) ≤ κ(G) and the bound is sharp.

Proof. (1) Assume dtr(G) = t and (D1, D2, . . . , Dt) is a partition of V (G) into t
tree dominating sets. If G is a complete graph, then it is obvious that dtr(G) =
n = δ(G) + 1. If G is not a complete graph, then let v be a vertex of G such that
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d(v) = δ(G) < n− 1. Assume v ∈ D1. If |D1| = 1, then D1 = {v}. Since each vertex
in Di is dominated by v for i = 2, 3, . . . , t, it follows that d(v) = n − 1, which is a
contradiction. Hence, |D1| ≥ 2. Since 〈D1〉 is a tree and v is dominated by at least
one vertex of Di for i = 2, 3, . . . , t, it follows that d(v)− 1 ≥ t− 1. That is t ≤ d(v).
Hence, dtr(G) ≤ δ(G).

(2) Assume dtr(G) = t and (D1, D2, . . . , Dt) is a partition of V (G) into t tree
dominating sets. Since each 〈Di〉 is a tree dominating set, it follows that |Di| ≥ γtr(G)
for i = 1, 2, . . . , t. Hence, n =

∑
1≤i≤t |Di| ≥ tγtr(G). That is dtr(G) ≤ n

γtr(G) .
(3) Let S denote the cut set with cardinality κ(G). Then 〈V (G) − S〉 is discon-

nected. It is obvious that any tree dominating set must contain at least one vertex of
S. So G has at most |S| pairwise disjoint tree dominating sets. Hence, dtr(G) ≤ κ(G).

The sharpness of the bounds is obvious from the following two corollaries and
Theorem 4.

Now, we give some exact values of the tree domatic number for some classes of
graphs.

Corollary 1. (1) Let T denote a tree with n ≥ 3. Then dtr(T ) = 1.

(2) dtr(Cn) =

 3 for n = 3,
2 for n = 4,
0 for n ≥ 5.

(3) dtr(Kn,m) = min(n, m) for n, m ≥ 2.

Proof. (1) By Theorem 1, since κ(T ) = 1, it follows that dtr(G) ≤ 1. It is obvious
that T is a tree dominating set for T . So, dtr(T ) = 1.

(2) Let Cn = v1v2 . . . vnv1. Since γtr(Cn) = n− 2, from Theorem 1 it follows that
dtr(T ) ≤ n

n−2 = 1 + 2
n−2 .

If n = 3, then dtr(T ) ≤ 3. It is obvious that each vertex is a tree dominating set
for C3. So, dtr(T ) = 3.

If n = 4, then dtr(T ) ≤ 2. It is obvious that {v1, v2} and {v3, v4} are two pairwise
disjoint tree dominating sets for C4. So, dtr(T ) = 2.

If n ≥ 5, then dtr(T ) ≤ 1. Hence, V (Cn) is not a tree dominating sets for Cn. So,
dtr(T ) = 0.

(3) Let U = {u1, . . . , un} and W = {w1, . . . , wm} form a two vertex partition of
Kn,m. Without loss of generality, assume min(n, m) = n. By Theorem 1, it follows
that dtr(Kn,m) ≤ δ(Kn,m) = n. It is obvious that {ui, wi} for i = 1, . . . , n − 1 and
{un, vn, . . . , vm} are n pairwise disjoint tree dominating sets of Kn,m. So, dtr(Kn,m) =
n.

Corollary 2. Let G be a connected graph with κ(G) = 1. If G contains a cycle, then
dtr(G) = 0.

Let Ht denote the set of trees of order t. Assume T1, T2, . . . , Tk ∈ Ht. Let
G(T1, T2, . . . , Tk) be obtained from T1, T2, . . . , Tk by joining each vertex v in Ti to ex-
actly one vertex of each Tj for j = 1, 2, . . . , k and j 6= i, and for arbitrary two vertices
u, v ∈ Ti, N(u)∩V (Tj) 6= N(v)∩V (Tj). Let Gt = {G(T1, T2, . . . , Tk)|T1, T2, . . . , Tk ∈
Ht}.
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Theorem 2. For any G(T1, T2, . . . , Tk) ∈ Gt, there is dtr(G(T1, T2, . . . , Tk)) = k.

Proof. It is clear that T1, T2, . . . , Tk is a tree domatic partition of G(T1, T2, . . . , Tk).
Hence, dtr(G(T1, T2, . . . , Tk)) ≥ k. Since δ(G(T1, T2, . . . , Tk)) = k, it follows that
dtr(G(T1, T2, . . . , Tk)) ≤ k by Theorem 1. So, dtr(G(T1, T2, . . . , Tk)) = k.

Theorem 3. Let G be a connected graph of order n with tree domatic number k ≥ 1.
Then G must have at least (k+1)n

2 − k edges. Furthermore, G has exactly (k+1)n
2 − k

edges if and only if n ≡ 0(mod k) and G ∈ Gn
k
.

Proof. Let D1, D2, . . . , Dk be a tree domatic partition of G and let Gi = 〈Di〉.
Without loss of generality, we assume that Gi has order ni for i = 1, 2, . . . , k. Let
E(Di, V (G) − Di) denote such a set of edges that for any edge one of its endpoints
belongs to Di and the other belongs to V (G)−Di. Since Di is a tree dominating set
for G, it follows that |E(Di, V (G)−Di)| ≥ n− ni. So,

|E(G)| ≥
∑

1≤i≤k

|E(Gi)|+
1
2

∑
1≤i≤k

|E(Di, V (G)−Di)| ≥

≥
∑

1≤i≤k

(ni − 1) +
1
2

∑
1≤i≤k

(n− ni) ≥

≥ (n− k) +
1
2
n(k − 1) =

=
(k + 1)n

2
− k.

For each G ∈ Gn
k
, there exist T1, T2, . . . , Tk that belong to Hn

k
such that G =

G(T1, T2, . . . , Tk). By the definition of G(T1, T2, . . . , Tk), it is clear that G has exactly
(k+1)n

2 − k edges.
Conversely, if G has exactly (k+1)n

2 − k edges, then for each Di, |E(Di, V (G) −
Di)| = n − ni. Since for each v ∈ V (G) − Di, v is dominated by at least one
vertex in Di, it follows that v is dominated by exactly one vertex in Di. Hence,
|D1| = |D2| = . . . = |Dk|. Indeed, let us for the contrary assume that |Di| 6= |Dj |.
Without loss of generality, assume that |Di| > |Dj |. Since each vertex v ∈ Di is
dominated by exactly one vertex in Dj , it follows that there exists one vertex in
Dj which is dominated by at least two vertices in Di, which is a contradiction. So,
k|D1| = n. That is n ≡ 0(mod k). For arbitrary two vertices u, v ∈ Di, it is clear
that N(u) ∩ Dj 6= N(v) ∩ Dj . Let Ti = 〈Di〉 for i = 1, 2, . . . , k. It is clear that
G = G(T1, T2, . . . , Tk). Hence, G ∈ Gn

k
.

3. CHARACTERIZATION OF REGULAR GRAPHS AND PLANAR GRAPHS
ATTAINING THE UPPER BOUNDS

Theorem 4. Let G be an r-regular graph of order n, where r < n−1. Then dtr(G) = r
if and only if n = 2r and there exists a perfect matching M = {e1, e2, . . . , er} of
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G. If ei = uivi for i = 1, 2, . . . , r, then for each ui there is |N(ui) ∩ ej | = 1 and
N(ui) ∩ ej 6= N(vi) ∩ ej.

Proof. Let G be an r-regular graph with dtr(G) = r and let D1, D2, . . . , Dr be a tree
domatic partition of G. By Theorem 3, it follows that |E(G)| ≥ (r+1)n

2 − r. That is
rn
2 ≥ (r+1)n

2 − r. So, n ≤ 2r. If n < 2r, then there exists a Di such that |Di| = 1. Let
D1 = {v}. Since each vertex in Dj is dominated by v for j = 2, . . . , r, it follows that
d(v) = n− 1 and G is a complete graph, which is a contradiction. Hence, n = 2r and
|Di| = 2 for i = 1, 2, . . . , r. Let M = {〈D1〉, 〈D2〉, . . . , 〈Dr〉}. Then M is a perfect
matching of G. Assume 〈Di〉 = ei = uivi for i = 1, 2, . . . , r. Since d(ui) = r and
ui is dominated by at least one vertex in Dj for j = 1, 2, . . . , r and j 6= i, it follows
that |N(ui) ∩ ej | = 1. If N(ui) ∩ ej = N(vi) ∩ ej , that is both ui and vi are adjacent
to the same vertex, say uj , then d〈Di∪Dj〉(uj) = 3. Hence, there exists a Dk such
that uj is not dominated by any vertex in Dk for k ∈ {1, 2, . . . , r}\{i, j}, which is a
contradiction.

Conversely, let Di = {ui, vi} for i = 1, 2, . . . , r. It is obvious that (D1, D2, . . . , Dr)
is a tree domatic partition of G. Hence, dtr(G) ≥ r. By Theorem 1, it follows that
dtr(G) = r.

Corollary 3. If G is a cubic graph and dtr(G) = 3, then G is K3,3 or K3 ×K2.

Lemma 1. A graph G is planar(ourterplanar) if and only if neither K5 nor K3,3

(K4 nor K2,3) is a contraction of a subgraph of G.

In a way similar to used in [3], we may prove the following theorem.

Theorem 5. Let G be a planar graph of order n. Then the tree domatic number of
G is at most 4 and K4 is the only planar graph achieving this bound.

Proof. Assume G is a planar graph of order n such that dtr(G) ≥ 5. By Theorem 3,
it follows that |E(G)| ≥ 3n− 5. But this contradicts the well known upper bound of
3n− 6 for a planar graph of order n. Thus, dtr(G) ≤ 4.

Consider the case of dtr(G) = 4 and G not isomorphic to K4. Let D1∪D2∪D3∪D4

be a tree domatic partition of G. Without loss of generality, assume |D1| ≥ 2. Let a
and b be adjacent vertices in D1. Let H be the contraction of G formed by identifying
the vertices in each of D2, D3 and D4 to a single vertex x2, x3 and x4, respectively.
H is planar since it is a contraction of a planar graph. But since D2 is a dominating
set in G, it follows that x2 is adjacent to each of a, b, x3, x4 in H. Similar statements
hold for x3 and x4. But then H contains the subgraph 〈{a, b, x2, x3, x4}〉 which has
been shown to be isomorphic to K5, which is a contradiction.

Theorem 6. Let G be a planar graph such that dtr(G) = 3 and let D1 ∪D2 ∪D3 be
any tree domatic partition of G. Then each of the induced subgraphs 〈D1〉, 〈D2〉 and
〈D3〉 is a path.

Proof. Let G be a planar graph and D1 ∪ D2 ∪ D3 be any tree domatic partition of
G such that 〈D1〉 has a vertex a of degree at least three. Let b, c, d be three of its
neighbours in D1 and let u2 ∈ D2 and u3 ∈ D3. Let H be the planar graph obtained
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from G by contracting Di into ui for i = 2, 3, and by removing any of the edges
bc, bd, cd which is present in G. Since each vertex in D1 is dominated by at least
one vertex in D2, each of a, b, c and d is adjacent to u2 in H. Consider any planar
embedding of H. By Euler’s formula, the induced subgraph K = 〈{a, b, c, d, u2}〉
has four regions, and u2 belongs to the boundary of each of these regions. Since, K
contains a subgraph isomorphic to K2,3, it is not outerplanar, and so none of the four
regions has a boundary which contains all of a, b, c and d. Now u3 lies in one of these
regions and can be adjacent only to vertices on the boundary of this region. But then
there exists in {a, b, c, d} a vertex which it is not dominated by u3, contradicting our
assumption above. Therefore, the maximum degree of any of the induced subgraphs
〈D1〉, 〈D1〉 and 〈D3〉 is no more than two. Hence, each of the induced subgraphs
〈D1〉, 〈D1〉 and 〈D3〉 is a path.

Theorem 7. Suppose 2≤r≤s. If r = 2, then dtr(Gr,s) = 2; otherwise, dtr(Gr,s)=0.

Proof. Let Pr be the path v1, v2, . . . , vr and let Ps be the path w1, w2, . . . , ws.
The case r = 2 is easy. Assume r ≥ 3 and {D1, D2} is a partition of V (Gr,s)

into two tree dominating sets. For ease of reference, let a, b, c, d, e, f be the vertices
(v1, w2), (v2, w1), (v1, ws−1), (v2, ws), (vr−1, ws), (vr, ws−1), respectively. Note that if
r = 3, then d = e. (If, in addition, s = 3, then a = c as well). We may assume without
loss of generality that a ∈ D1 and b ∈ D2. Since D1 and D2 are tree dominating sets of
Gr,s, some neighbours of (v1, ws) must belong to D2, and some neighbours of (vr, ws)
must belong to D1. Let {x} = D2 ∩ {c, d} and let {y} = D1 ∩ {e, f}.

If r = 3 = s, then f ∈ D1 and d ∈ D2. But then (v2, w2) ∈ D1 and so 〈D2〉 is
not connected, a contradiction. Therefore, assume s ≥ 4. There are three cases to
consider. If r = 3 and y = e, then it follows that x = c and f ∈ D2. Thus the vertices
of any a− y path form a cutset which separates vertices b and c. If r = 3 and y = f ,
then the vertex set of any a−y path separates vertices b and d. If r ≥ 4, then vertices
b and x are separated by the vertex set of any a− y path. In each case, we come to
a contradiction with the assumption that 〈D2〉 is connected. So, dtr(Gr,s) ≤ 1. Since
Gr,s is not a tree, it follows that dtr(Gr,s) = 0.
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