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NUMERICAL SIMULATION OF LIQUID MOTION
IN A PARTLY FILLED TANK

Abstract. The paper presents the problem of liquid motion in a 2D partly filled tank. It is
assumed that the flow of liquid in tank is a potential, hence it can be described by Laplace
equations with appropriate boundary conditions. The problem is solved using the boundary
element method. The developed numerical algorithm makes it possible to determine the free
surface elevation, the velocity field and the pressure field during the liquid motion in the
tank. The area occupied by liquid is represented by a mesh changing in time. Numerical
computations are performed for translatory and rotational motion of the tank. The results
of numerical computations are verified by experiment.
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1. INTRODUCTION

A ship moving in waves generates motion of liquid in partially filled tanks of the
ship. The motion induces change of liquid particle velocity in time and liquid particle
acceleration, pressure field and domain occupied by the liquid. The liquid surface
striking the tank walls can damage the tank structure. This physical phenomenon,
called sloshing, is an important factor in the design of ship structures.

The solution of the problem comprises the determination of:

— the domain occupied by liquid (the position and shape of free surface),
— the velocity and pressure fields in this domain

at each instant of time.
In order to determine the velocity and pressure field in a domain Ω occupied by a

liquid, the following methods are applied:

— The Finite Element Method (FEM), which is based on the division of liquid do-
main into finite elements. The approximate solution of the problem considered is
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determined on the finite element division and therefore this method requires the
updating of the liquid domain division at each time step instant, [2].

— The Finite Difference Method (FDM) applied to Euler equations - this method
requires a fine mesh and small time increment. Determination of the grid on the
free surface changing in time and imposing the boundary conditions on the grid
make problems in this method [1].

— The Boundary Element Method (BEM) – this method is applied to potential flows,
represented by a harmonic function, which has its boundary integral representation
(the values of a harmonic function is determined by its values on the boundary).
This feature enables the problem of seeking the solution inside the liquid domain
to be replaced by finding the solution on its boundary [5].

Proper determination of the position of the free surface significantly influences the
accuracy of determining the liquid flow. Various methods have been worked out to
determine the free surface changing in time, including:

— The Lagrangian Grid Method, which describes the motion of each liquid particle.
Lagrangian grid moves with the fluid and automatically tracks free surface. This
method cannot track surface that breaks apart or intersects.

— The Arbitrary Lagrangian-Eulerian Method, which is a modified Lagrangian
method including regridding techniques. This method is applied for large am-
plitude surface motion.

— The Surface Height Method - this method is applied to determine low amplitude,
shallow water waves and other motions, in which the surface can be described by
height H. Time evolution is described by the following equation:

∂H

∂t
= uz − ux

∂H

∂x
− uy

∂H

∂y
. (1)

— The Marker and Cell method (MAC), which is based on a fixed Eulerian grid.
The location of fluid within the grid is determined by a set of marked particles
moving with the liquid. The MAC method has been applied for two-dimensional
simulation, because it requires considerable memory, [3].

— The Surface Marked Method – this method is based on marked particles kept only
on the surface. This significantly reduces the computation time. The method
requires additional conditions if surface breaks apart.

— The Volume of Fluid Method is based on the MAC method. One value only for
pressure, velocity etc. is retained within each control volume, the fluid volume
fraction is consistent with the resolution of the other flow quantities. Position of
free surface is determined by cells partially filled by liquid, [4].

The last three methods require application of complicated numerical methods and
normally simpler methods are applied.

This paper presents the formulation of the mathematical problem describing the
phenomenon of liquid motion in partly filled tanks and numerical method of solving
this problem. The method is based on the assumption that the flow is potential, which
enables the Boundary Element Method to be applied to solve the problem comprising
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the Laplace equation and appropriate boundary conditions on the tank walls and on
the free surface. An experiment has been carried out to verify the method used and
the results obtained.

2. GENERAL FORMULATION OF THE PROBLEM

The motion of liquid in a tank is described by the initial boundary-value Navier–Stokes
or Euler problem. Currently, it is impossible to obtain a direct solution of the prob-
lem. The liquid flow in the tank is determined by applying numerical methods.
This is possible after significant simplification of the phenomenon considered. Such
phenomena as:

— flow separation during motion of liquid in tank,
— solubility of air in liquid moving in tank,
— occurrence of cushions when liquid strikes a tank wall,
— dynamic flow interaction with flexible tank structure,

are neglected in the description of liquid flow in the tank. Additionally, the following
assumptions are introduced:

— the liquid density is constant during its motion,
— the pressure on the free surface is equal to the atmospheric pressure.

In this paper, the two-dimensional (2D) flow is considered. Such flow can be used
to describe the flow in a three-dimensional tank in which the parameters of the flow
are the same in all parallel cross sections of the tank and can be represented by a flow
in a single 2D cross section. The tank is partially filled with liquid and the tank cross
section can translate and rotate.

X’

Y’

0’

X
Y

0

R P

R'

Fig. 1. Reference systems

Two reference systems presented in Figure 1 are introduced:

1) inertial reference system O’X’Y’ – the tank motion is described in relation to the
system, and

2) non-inertial reference system OXY – fixed to the tank cross section.



532 Monika Warmowska

The velocity of liquid particle u′ is called absolute velocity and determines the
radius R′ changing in time and describing the location of the liquid particle P in
relation to the inertial system O’X’Y’:

u′(P (t), t) =
dR′(t)

dt
, P (t) ∈ Ω(t), t ∈ [t0, T ], (2)

where Ω is the domain occupied by the liquid, t0 is the initial time and T is the
assumed period of liquid simulation. The velocity u is called the relative velocity
and determines the radius R changing in time(location of particle in relation to the
non-inertial system OXY):

u(P (t), t) =
dR(t)

dt
, P (t) ∈ Ω(t), t ∈ [t0, T ]. (3)

The absolute velocity u is the sum:

u′(P (t), t) = ue(P (t), t) + u(P (t), t), P (t) ∈ Ω(t), t ∈ [t0, T ], (4)

where ue is velocity of transportation. The tank structure element velocity ue is
known and depends on the tank motion and position of the element P .

The flow in the tank is described by the following boundary-initial value problem:

— Equation of liquid motion. The Navier–Stokes equations describing liquid flow
have the following form,

du′(P (t), t)
dt

= U− 1
ρ
∇ p(P (t), t) + ν∆u′, P (t) ∈ Ω(t), t ∈ [t0, T ], (5)

where U is the gravity acceleration vector, ρ is the liquid density, ν is the liquid
viscosity. The experiments show that the viscosity forces acting in the liquid are
small in relation to the inertial forces and can be neglected. This results in the
following Euler equations:

du′(P (t), t)
dt

= U− 1
ρ
∇ p(P (t), t), P (t) ∈ Ω(t), t ∈ [t0, T ]. (6)

— The equation of mass conservation. The assumption that the liquid is of
constant density ρ leads to the following equation:

∇ · u′(P (t), t) = 0, P ∈ Ω(t), t ∈ [t0, T ]. (7)

Neglecting the flow separation and solubility of air in the liquid enables us to
assume that the liquid boundary is described by a continuous surface S. The
surface S satisfies the condition:

∀t∈[t0,T ]
dS(P (t), t)

dt
= 0, P (t) ∈ S(t). (8)
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— The boundary conditions. The boundary S = ∂Ω of the domain Ω occupied by
the liquid was divided into wetted surface SC and free surface SF . It is assumed
that the liquid particle P slips on the boundary, which can be expressed in the
form:

∂u(P (t), t)
∂n

= 0, P (t) ∈ SC(t), t ∈ [t0, T ], (9)

(the normal relative velocity of the liquid particle equals zero).
The pressure p on the free surface SF is equal to atmospheric pressure pa:

p(P (t), t) = pa, P (t) ∈ SF (t), t ∈ [t0, T ]. (10)

— The initial conditions. It is assumed that the initial relative velocity of fluid
is equal to zero and the pressure field is equal to the hydrostatic pressure. The
free surface is not disturbed and the pressure on the free surface is equal to the
atmospheric pressure pa.

3. DIFFERENTIAL PROBLEM DESCRIBING THE POTENTIAL LIQUID
FLOW IN A PARTLY FILLED TANK

Due to the complexity of the problem presented in Chapter 2, additionally it is as-
sumed that the flow is potential. This means that there exists a potential φ′ of the
absolute velocity u′ of the liquid particle P :

∇φ′(P (t), t)
def
= u′(P (t), t), P ∈ Ω(t), t ∈ [t0, T ]. (11)

For the potential flow equation (6) of liquid motion takes the following form:

∂φ′(P (t), t)
∂t

+
1
2
|u′(P (t), t)|2 −U ·R′(t) +

p(P (t), t)− pa

ρ
= 0,

P ∈ Ω(t), t ∈ [t0, T ]. (12)

The equation of mass conservation (7) and equations (9), (12) with (10) and (3)
constitute the following boundary-value problem with the Laplace equation as the
governing equation:

∆φ′(P (t), t) = 0, P ∈ Ω(t), t ∈ [t0, T ], (13)

∂φ′(P (t), t)
∂n

= n(P (t), t) · ue(P (t), t), P (t) ∈ SC(t),

∂φ′(P (t), t)
∂t

+
1
2
|u′(P (t), t)|2 −U ·R′(t) = 0, P (t) ∈ SF (t),

dR(P (t))
dt

= u(P (t), t), P (t) ∈ SF (t).

The last condition is used to determine the moving free surface [8] in numerical
simulation.
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During the simulation the following condition:∫
Ω(t)

dΩ = const (14)

is used to control the correctness of the numerical solution of boundary-value problem
(13). Multiplying both sides of the last condition of problem (13) by the normal vector
of the free surface and applying formula (4), the following condition of Neumann type
is obtained:

∂φ′(P )
∂n

= n(P ) · ue(P ) + n(P ) · dR
dt

, P ∈ SF . (15)

This results in the following boundary value problem of Neumann type for each instant
of time t:

4φ′(P ) = 0, P ∈ Ω, (16)

∂φ′(P )
∂n

= n(P ) · ue(P ), P ∈ SC ,

∂φ′(P )
∂n

= n(P ) ·
(
ue(P ) +

dR
dt

)
, P ∈ SF .

The internal Neumann boundary-value problem has solutions which differ by a con-
stant value [6], but the velocity field u’=∇φ ’ is uniquely determined.

Problem (13) was solved numerically according to the following algorithm:

A1. Determine the shape of the free surface in the fixed coordinate system from
the equations,

dx(t)
dt

=
∂φ′(P (t), t)

∂x
− uex(P (t), t), (17)

dy(t)
dt

=
∂φ′(P (t), t)

∂y
− uey(P (t), t), P (t) ∈ SF (t),

where (x, y) are the coordinates of the liquid particle P in the reference system
OXY fixed to the tank.

A2. Determine the potential φF on the free surface from equation (12),

dφF (P (t), t)
dt

=
1
2

(
∂φF (P (t), t)

∂x′

)2

+
1
2

(
∂φF (P (t), t)

∂y′

)2

+ U ·R′(t), (18)

where φF is the value of velocity potential φ′ on the free surface SF .
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A3. Solve the Laplace problem for the new liquid domain Ω, determined in step
A1, and for a new value φ′

F of potential φ′ on free surface, determined in step
A2:

∆φ′(P ) = 0, P ∈ Ω, (19)

∂φ′(P )
∂n

= n(P ) · ue(P ), P ∈ SC ,

φ′(P ) = φF (P ), P ∈ SF .

A4. Determine the velocity field in the liquid domain Ω according to formula (11).
A5. Determine the pressure field from equation (12).

Steps A1 and A2 are computed using the Runge–Kutta method. The new position
of free surface determines the new shape of domain Ω occupied by the liquid and new
coordinates of the grid (Fig. 2).

 

 

a) b)

Fig. 2. The mesh approximating the liquid domain at the initial time (a)
and during the simulation(b)

The numerical simulation of the free surface motion is stable, provided the
Courant–Friedrichs–Lewy condition is satisfied, [7]. This condition says that the
particle velocity is smaller than the velocity of the mesh ∆x/∆t, where ∆x denotes
the distance between nodes of the mesh and ∆t is the time increment.

In step A3, Laplace problem (19) is solved after translating problem (16) into the
following Fredholm equation of second kind:

µ(Xk)φ′(Xk) = −
∫

Y ∈S

φ′(Y )
∂ ln |Xk − Y |

∂ny
dl +

∫
Y ∈S

∂φ′(Y )
∂ny

ln |Xk − Y |dl,

Y ∈ S =
⋃

l=1..m

[Xl, Xl+1], Xk ∈ S, k = 1..m, (20)

where Xk are endpoints of polyline approximating the boundary S of liquid domain
and m is the number of endpoints.

This equation is solved using the boundary element method presented in [9]. There
was a problem with uniquely determining the boundary condition at the points joining
the free surface and wetted surface of the tank, while numerically solving of the
Laplace problem with mixed boundary conditions.



536 Monika Warmowska

The velocity potential φ′ is a continuous function on the boundary, and the normal
derivate of the potential is not continuous at the points joining the free surface SF

and wetted surface SC .

� � � � � � � � ���� �� �� �� � � �� � � �� � � �� �� � � �a) b)

Fig. 3. The given (a) and unknown (b) value in the endpoints of polyline
approximating the liquid boundary S

The values of the velocity potential are given on the free surface SF , while the
values of the normal derivatives of the potential are given on the sections of the
polyline describing the wetted surface SC (see Fig. 3). At the endpoints of the
polyline describing the free surface, the value of normal derivate of the potential is
the unknown value. The problem can be easily solved numerically using equation (20).

The values of the potential and its normal derivative at the liquid boundary S,
determined from equation (20), enables the values of the potential to be computed
inside the liquid domain Ω according to the formula:

2πφ′(X) = −
∫

Y ∈S

φ′(Y )
∂ ln |X − Y |

∂ny
dl +

∫
Y ∈S

∂φ′(Y )
∂ny

ln |X − Y |dl,

Y ∈ S =
⋃

l=1..m

[Xl, Xl+1], l = 1..m, X ∈ Ω\S. (21)

4. EXPERIMENTAL VERIFICATION

The computer program TANK, developed based on the algorithm presented, enables
the simulation of the liquid motion in a partially filled tank. The geometry of the
tank, the extent to which it is filled and the tank’s motion constitute the input data.
The program simulates the moving free surface and the velocity and pressure fields
changing in time. The algorithm and the program have been verified by experiment
[8]. Examples of this verification are presented in Figures 4, 5 and 6.

The verification of simulation of the water motion in a tank filled up to 20 % of its
height is presented in Figure 4. The tank is making horizontal harmonic motions with
amplitude equal to 0,1 of the tank length and rotating motion with the amplitude
equal to 2◦. Experimental verification of the simulation of water motion is presented
in Figure 5. The tank is performing horizontal harmonic motion with the amplitude
equal to 0,0125 of the tank length. The tank is filled up to 60% of its height.
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The comparison of pressure changing in time in the right bottom corner recorded
during the experiment and obtained in simulations is presented in Figure 6.

 
 

   

   

 
 

Experiment Simulation

Fig. 4. Verification of water motion in a tank filled up to 20% of its height
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Experiment Simulation

   

   

   

   

   

Fig. 5. Verification of water motion in a tank filled up to 60% of its height
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Experiment Simulation
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Fig. 6. Comparison of pressure recorded in the experiment and obtained in simulations

5. CONCLUSIONS

The problem of determining liquid motion in a partly filled tank has been solved using
a numerical method. This method is based on the precise determination of the liquid
boundary and velocity potential values and its normal derivatives at the boundary
changing in time. The values on the boundary determine the velocity field of liquid
particles and the pressure field. The assumption that the flow is potential means that
the well established boundary element method can be applied to solve the problem.

A two dimensional problem has been considered. The experiment conducted to
verify the presented method of liquid motion simulation in a partly filled tank shows
that the free surface flow and pressure inside the tank are correctly simulated. The
simulation of free surface flow is very sensitive to the algorithm used and numerical
method applied to solve the problem considered.
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