PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efficient computation of the MCTDHF approximation to the time-dependent Schrodinger equation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We discuss analytical and numerical properties of the multi-configuration time-dependent Hartree-Fock method for the approximate solution of the time-dependent multi-particle (electronic) Schrödinger equation which are relevant for an efficient implementation of this model reduction technique. Particularly, we focus on a discretization and Iow rank approximation in the evaluation of the meanfield terms occurring in the MCTDHF equations of motion, which is crucial for the computational tractability of the problem. We give error bounds for this approximation and demonstrate the achieved gain in performance.
Rocznik
Strony
483--497
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
  • Universität Tübingen, Mathematisches Institut, Auf der Morgenstelle 10, D-72076 Tübingen, Germany, othmar@othmar-koch.org
Bibliografia
  • [1] O. Axelsson, V. A. Barker, Finite element solution of boundary value problems: Theory and computation, Academic Press, Orlando, Fa., 1984.
  • [2] M.H. Beck, A. Jackle, G.A. Worth, H.-D. Meyer, The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propagating wavepackets, Phys. Rep. 324 (2000), 1-105.
  • [3] M.H. Beck, H.-D. Meyer, An efficient and robust integration scheme for the equations of the multiconfiguration time-dependent Hartree (MCTDH) method, Z. Phys. D 42 (1997), 113-129.
  • [4] D. Braess, Finite elements, 2nd ed., Cambridge University Press, Cambridge, U.K., 2001.
  • [5] S.C. Brenner, L.R. Scott, The mathematical theory of finite element methods, 2nd ed., Springer-Verlag, New York, 2002.
  • [6] J. Caillat, J. Zanghellini, M. Kitzler, W. Kreuzer, O. Koch, A. Scrinzi, Correlated multielectron systems in strong laser pulses - an MCTDHF approach, Phys. Rev. A 71 (2005), 012712.
  • [7] J. Caillat, J. Zanghellini, A. Scrinzi, Parallelization of the MCTDHF code, AURORA TR-2004-19, Photonics Institute, Vienna Univ. of Technology, Austria, 2004, available at http://www.vcpc.univie.ac.at/aurora/publications/.
  • [8] P.A.M. Dirac, Note on exchange phenomena in the Thomas atom, Proc. Cambridge Phil. Soc. 26 (1930), 376-385.
  • [9] K.-J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, Springer Verlag, New York, 2000.
  • [10] J. Frenkel, Wave mechanics, advanced general theory, Clarendon Press, Oxford, 1934.
  • [11] W. Hunziker, I.M. Sigal, The quantum N-body problem, J. Math. Phys. 41 (2000), 3448-3510.
  • [12] O. Koch, Numerical solution of the time-dependent Schrodinger equation in ultrafast laser dynamics, WSEAS Trans. Math. 3 (2004), 584-590.
  • [13] O. Koch, W. Kreuzer, Performance of MCTDHF implementations, AURORA TR-2004-14, Inst. for Anal, and Sci. Comput., Vienna Univ. of Technology, Austria, 2004, available at http://www.vcpc.univie.ac.at/aurora/publications/.
  • [14] O. Koch, W. Kreuzer, A. Scrinzi, MCTDHF in ultrafast laser dynamics, AURORA TR-2003-29, Inst. for Appl. Math, and Numer. Anal., Vienna Univ. of Technology, Austria, 2003, Available at http://www.vcpc.univie.ac.at/aurora/publications/.
  • [15] O. Koch, W. Kreuzer, A. Scrinzi, Approximation of the time-dependent electronic Schrodinger equation by MCTDHF, Appl. Math. Comput. 173 (2006), 960-976.
  • [16] O. Koch, C. Lubich, Regularity of the multi-configuration time-dependent Hartree approximation in quantum molecular dynamics, to appear in M2AN Math. Model. Numer. Anal, available at http://www.othmar-koch.org/research.html.
  • [17] R. Kosloff, Quantum molecular dynamics on grids, Dynamics of Molecules and Chemical Reactions (R.E. Wyatt and J.Z. Zhang, eds.), Marcel Dekker, New York, 1996, pp. 185-230.
  • [18] C. Lubich, A variational splitting integrator for quantum molecular dynamics, Appl. Num. Math. 48 (2004), 355-368.
  • [19] C. Lubich, On variational approximations in quantum molecular dynamics, Math. Comp. 74 (2005), 765-779.
  • [20] H.-D. Meyer, U. Manthe, L.S. Cederbaum, The multi-configurational time-dependent Hartree approach, Chem. Phys. Lett. 165 (1990), 73-78.
  • [21] H.-D. Meyer, G. A. Worth, Quantum molecular dynamics: Propagating wavepackets and density operators using the multi-configuration time-dependent Hartree (MCTDH) method, Theo. Chem. Ace. 109 (2003), 251-267.
  • [22] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983.
  • [23] M. Reed, B. Simon, Methods of modern mathematical physics II: Fourier analysis, self-adjointness, Academic Press, New York-San Francisco-London, 1975.
  • [24] M. Schechter, Spectra of partial differential operators, North-Holland, Amsterdam, 1971.
  • [25] A. Scrinzi, N. Elander, A finite element implementation of exterior complex scaling for the accurate determination of resonance energies, J. Chem. Phys. 98 (1993), 3866-3875.
  • [26] L. Trefethen, Spectral methods in MATLAB, SIAM, Philadelphia, 2000.
  • [27] J. Zanghellini, M. Kitzler, T. Brabec, A. Scrinzi, Testing the multi-configuration time-dependent Hartree-Fock method, J. Phys. B: At. Mol. Phys. 37 (2004), 763-773.
  • [28] J. Zanghellini, M. Kitzler, C. Fabian, T. Brabec, A. Scrinzi, An MCTDHF approach to multi-electron dynamics in laser fields, Laser Physics 13 (2003), no. 8, 1064-1068.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH4-0007-0099
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.