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Abstract. We discuss analytical and numerical properties of the multi-configuration
time-dependent Hartree–Fock method for the approximate solution of the time-dependent
multi-particle (electronic) Schrödinger equation which are relevant for an efficient implemen-
tation of this model reduction technique. Particularly, we focus on a discretization and low
rank approximation in the evaluation of the meanfield terms occurring in the MCTDHF
equations of motion, which is crucial for the computational tractability of the problem. We
give error bounds for this approximation and demonstrate the achieved gain in performance.
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1. INTRODUCTION

In this paper we discuss analytical and numerical aspects of the multi-configuration
time-dependent Hartree–Fock method (MCTDHF) for the approximate solution of
the time-dependent Schrödinger equation

i
∂ψ

∂t
= Hψ, (1)

where the complex-valued wave function ψ = ψ(x(1), . . . , x(f), t) explicitly depends on
time t and, in the case considered here, the positions x(1), . . . , x(f) ∈ R

3 of electrons
in an atom or molecule. The Hamiltonian H is time-dependent and has the form

H(t) :=

f
∑

k=1

(

1

2

(

−i∇(k) −A(t)
)2

+ U(x(k)) +
∑

l<k

V (x(k) − x(l))

)

, (2)
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where

U(x) := − Z

|x| , Z ∈ N, (3)

V (x− y) :=
1

|x− y| , (4)

A(t) := (a1(t), a2(t), a3(t)). (5)

A(t) is a smooth (vector-valued) function in t modeling an ultrafast laser pulse, and
∇(k) is the nabla operator w. r. t. x(k) only.

1.1. THE MCTDHF METHOD

In MCTDHF as put forward in [6, 27, 28], the multi-electron wave function ψ from
(1) is approximated by a function satisfying the ansatz

u =
∑

(j1,...,jf )

aj1,...,jf
(t)φj1(x

(1), t) · · ·φjf
(x(f), t) =:

∑

J

aJ(t)ΦJ (x, t). (6)

Using (6) for the electronic Schrödinger equation, the Pauli principle implies that
those solutions u are considered only which are antisymmetric under exchange of any
two of their arguments x(j), x(k). This assumption is particular to the MCTDHF
approach, as compared with the multi-configuration time-dependent Hartree method
(MCTDH) proposed in [2, 3, 20, 21] for quantum molecular dynamics. Antisymmetry
reduces the number of equations considerably. Particularly, the assumption implies
antisymmetry in the coefficients aJ . Formally, multi-indices J = (j1, . . . , jf ) vary for
jk = 1, . . . , N, k = 1, . . . , f . However, due to the simplifications resulting from the
antisymmetry assumption, only

(

N
f

)

equations for aJ have to be solved in the actual
computations.

In the case of the electronic Schrödinger equation, which we are focussing on here,
we further have to take into account electron spin. However, as was explained, for
example, in [15] this does not change our considerations concerning the equations of
motion associated with MCTDHF. Consequently, we ignore spin and concentrate on
the representation (6).

The Dirac–Frenkel variational principle [8, 10] is used to derive differential equa-
tions for the coefficients aJ and the single-particle functions φj . Thus, for u in

M =







u : u(x, t) =
∑

(j1,...,jf )

aj1,...,jf
(t)φj1(x

(1), t) · · ·φjf
(x(f), t)







, (7)

where aJ (t) ∈ C and φjk
(·, t) ∈ L2, we require

〈

δu

∣

∣

∣

∣

i
∂

∂t
−H

∣

∣

∣

∣

u

〉

f

= 0, (8)
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where δu varies in the tangent space TuM of M at u:

TuM =







δu : δu(x, t) =
∑

J



δaJΦJ (x, t) + aJ (t)

f
∑

k=1

δφjk
(x(k))

∏

l 6=k

φjl
(x(l), t)











,

with δaJ ∈ C and δφjk
∈ L2. By 〈·|·〉f we denote the usual inner product in L2 w. r. t.

f spatial variables. Recall that for an operator H,

〈ψ|H|ψ̃〉f = 〈ψ|Hψ̃〉f =

∫

· · ·
∫

ψ(Hψ̃) dx(1) · · · dx(f).

We will subsequently also use inner products with subscripts 1, 2 or f − 1 to denote
inner products over the respective number of degrees of freedom.

It was shown in [16] that the set M in conjunction with a full-rank-condition for
the density matrix ρ defined in (14) below can be endowed with the structure of a
manifold, justifying the application of the variational principle as explained above.
We do not give details here, but henceforth sloppily refer to M as a manifold under
the assumption that ρ is nonsingular.

In order to define a unique solution of (8), we impose additional constraints:

〈

φj

∣

∣φk

〉

1
= δj,k, t ≥ 0, (9)

〈

φj

∣

∣

∣

∣

∂φk

∂t

〉

1

= 0, t ≥ 0. (10)

The variational principle (8) and the additional restrictions (9), (10) finally yield
equations of motion for the coefficients and single-particle functions in (6):

i
daJ

dt
=
∑

K

〈ΦJ |H|ΦK〉f aK , ∀J, (11)

i
∂φj

∂t
= (I − P )

N
∑

k=1

N
∑

l=1

ρ−1
j,l H l,kφk, j = 1, . . . , N, (12)

where

ψj := 〈φj |u〉1 , (13)

ρj,l := 〈ψj |ψl〉f−1 , (14)

Hj,l := 〈ψj |H|ψl〉f−1 , (15)

and P is the orthogonal projector onto the space spanned by the functions φj .
For the remainder of this paper, we will focus on the solution of system (11), (12).

After stating analytical prerequisites like existence, uniqueness and regularity of the
solutions of (1) and (11), (12) in Section 1.2, we will briefly discuss the numerical
methods used for the equations of motion in Section 1.3. Section 2 is devoted to a
technical detail which is crucial for the successful numerical solution of (11), (12):
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in the right-hand side of (12), the evaluation of the meanfield operator matrix H
according to (15) constitutes the computationally most expensive part of the algo-
rithm. A discretization and low rank approximation in the evaluation of the involved
integrals, which was proposed in [6], serves to make the problem computationally
tractable. In Section 2 we analyze this approximation and demonstrate that at the
cost of a moderate loss of precision, a big gain in efficiency can be achieved. The main
new result of this paper is that the approximation is justified theoretically and error
bounds can be given, thus ensuring a reliable evaluation of the differential equations
(11), (12).

1.2. ANALYTICAL RESULTS

Before turning to the numerical treatment of the MCTDHF equations of motion, we
discuss the question of the well-posedness of the problem at hand (existence, unique-
ness and regularity of the solution, as well as smooth dependence on the initial data,
cf. [9, Def. VI.9.1]). This is an important prerequisite for the analysis of numerical
methods. Both in the study of the integration of (11), (12) according to Section 1.3,
and the analysis of the approximation described in Section 2, the (spatial) regularity
of the single-particle functions φj is an essential requirement. More precisely, we
demand that the solutions are in certain Sobolev spaces Hm for m ≥ 1. The Sobolev
space H1 consists of all ψ ∈ L2 with

‖ψ‖H1 := ‖ψ‖ + ‖|∇ψ|‖ <∞.

We will also consider the space H2 ⊆ L2, where we require

‖ψ‖H2 := ‖ψ‖ + ‖|∇ψ|‖ + ‖∆ψ‖ <∞,

and similarly for Hm with m > 2. All derivatives are meant in the weak sense, see
for example [5, Ch. 1]. ‖ · ‖ denotes the usual norm in L2.

First, to demonstrate the well-posedness of (1) we use [9, VI.9.5]. To this end, [24,
Cor. X.4.2] is used to show that H(t) is essentially self-adjoint for all t. For A(t) ≡ 0,
denote by D the domain of the closure of H. What remains to be shown is that the
closure of H(t) has the same domain for every t. This is proven with [23, Thm. X.12]
on noting that ∇ is infinitesimally small with respect to ∆ [23, Thm. X.22]. From
results in [11] and [22], it is clear that D = H2. Now, if A(t) ∈ C1, then Ȧ(t) in place
of A(t) in (2) defines a perturbation which may be treated analogously as above.
Thus we conclude that the corresponding operator is self-adjoint and maps H2 into
L2. Consequently, Ḣ(t) is well-defined and t 7→ H(t)x is differentiable w. r. t. t for
every x ∈ H2, and the requirements of [9, VI.9.5] are satisfied. Consequently, there
exists a unique classical solution ψ ∈ H2 of (1) for all t ≥ 0, and this solution depends
smoothly on the initial data.

Next, we turn to the well-posedness of the equations of motion (11), (12). This
point is crucial for the numerical treatment of the MCTDHF equations. If the poten-
tial part U + V in (2) is smooth, a regularity result from [16] carries over to the case
of MCTDHF. This can be stated as follows:
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Theorem 1.1. Consider the system (11), (12) together with initial conditions chosen

such that the orthonormality constraints (9) are satisfied and the density matrix ρ
defined in (14) is nonsingular. Assume that the potential U + V in (2) is bounded

and twice continuously differentiable, with bounded first and second derivatives. If the

initial data for φj is in the Sobolev space H2, then there is a t∗ > 0 such that for

t ∈ [0, t∗] there exists a unique classical solution of the MCTDHF equations (11), (12)
satisfying

aJ ∈ C2([0, t∗],C), φj ∈ C1([0, t∗], L2) ∩ C([0, t∗], H2).

The solution can be continued in time until the density matrix ρ becomes singular.

It depends Lipschitz continuously with respect to the H2 norm on the initial data.

Moreover, for u defined by aJ , φj via (6), we have u(t) ∈ H2 for t ∈ [0, t∗], and u
solves the Dirac–Frenkel variational equation (8).

It is important to note that the above theorem cannot guarantee the existence
of the solution u for all times t > 0. Rather, equations (11), (12) break down when
the density matrix ρ becomes singular. It is the subject of ongoing investigation
whether this may actually happen, and under what circumstances such a break-down
is possible. In practice, a regularization is employed to prevent the algorithm from
failing, see [2, 16]. We would like to stress, however, that the assumption on ρ is
crucial for the whole approach, as the set M from (7) does not represent a manifold
if ρ becomes singular.

Theorem 1.1 can easily be extended to yield higher regularity of the solution,
u ∈ Hm for m > 2, if the initial data has the same regularity and the potential
is sufficiently smooth with bounded derivatives [16]. However, for the unbounded
potential in (2), such a result has not been proven yet. An extension of Theorem 1.1
to this case is a major focus of ongoing research.

In practical model computations, regularized potentials are often employed. For
instance, [6] treats examples in one spatial dimension with a screened Coulomb po-

tential, see also [15]. In these situations, the regularity results from [16] carry over.
This has important consequences for the approximation properties of the MCTDHF
approach. According to [19, Theorem 4.1], the error of the MCTDHF approximation
to the exact wave function is — for sufficiently short time intervals — of the same order
of magnitude as the error of the best approximation in the approximation manifold.
This result requires H2 regularity of the approximate wave function. The regularity
is also needed to ensure good performance of numerical methods used to solve the
MCTDHF equations, both for space discretization and for the variational splitting
integrator of [18] for the discretization in time. In Section 1.3, we will give a short
description of numerical methods for the integration of (11), (12) and explain the role
of regularity in more detail.

1.3. NUMERICAL TREATMENT

To compute the solution of (11), (12) numerically, the method of lines is used. First,
space discretization is applied to derive a system of ordinary differential equations.
In our code [6] which is designed for problems in one space dimension, we use the
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pseudospectral method [26] at a uniform grid on a suitably truncated domain. We
found that this method is advantageous as compared with space discretization by
finite differences. Firstly, for problems with a sufficiently regular solution, the error
decreases exponentially when the spatial grid is refined [26]. Moreover, the spec-
trum of the differential operator is approximated well even by the eigenvalues of its
discretization with large modulus [17]. For numerical comparisons, see [12, 13]. To
achieve a good rate of convergence of the approximation, a highly regular solution u is
desirable. Theorem 1.1 and its extension to higher regularity provides the necessary
theoretical background.

For spatial dimension higher than one, parallelization becomes an important issue.
In that case, the pseudospectral method is not optimal due to the non-locality of
the basis functions, and finite elements appear favorable for space discretization [7].
In this case, an adaptive choice of non-uniform spatial grids should be considered
(this does not make sense in general when the pseudospectral method is used). The
extension of the existing MCTDHF code to higher dimension is currently work in
progress.

By default, we use explicit Runge–Kutta methods for the time integration of the
ODEs resulting after space discretization. For reasonably smooth data and moderate
spatial grid spacing, these methods were found to work dependably and retain their
classical convergence orders, thereby yielding an efficient method for time integration.
Extensive test results reported in [13] support this claim, see also [12].

For difficult problems and fine spatial grids, however, a more robust, low-order
alternative is given by variational splitting introduced in [18] for the nonlinear PDEs
arising from MCTDH in quantum molecular dynamics. This method is based on a
symmetric operator splitting of the Hamiltonian H(t) from (2), commonly referred
to as Strang splitting. This makes it possible to treat separately the kinetic part

consisting of the unbounded differential operator and the potential part U + V . In
numerous situations, this can be exploited to reduce the number of evaluations of the
meanfield operators by choosing larger time steps in the integration of the potential
part. This is a crucial factor for the tractability of the computational problem, see
Section 2. Variational splitting yields a second order approximation for the solution of
the full problem (8) if the potential is smooth with bounded derivatives and if u ∈ H2,
see [18]. Thus the regularity result in Theorem 1.1 is an important prerequisite to
derive error bounds for this time integrator.

2. APPROXIMATION OF THE MEANFIELD OPERATORS

To make the numerical solution of the equations of motion (11), (12) computation-
ally tractable, some care is required in the evaluation of the right-hand side of the
differential equations. The computationally most demanding part is represented by
the evaluation of the meanfield operators (15), see also [14, Fig. 2.3]. This becomes
clear when we realize that the computations involve the evaluation of integrals of the
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form

〈φ1|V |φ2〉2 = 〈φ1(r)|V (r − r′)|φ2(r
′)〉2 =

∫

R3

∫

R3

φ1(r)V (r − r′)φ2(r
′) dr′ dr, (16)

where φ1, φ2 are any single-particle functions from (6). Note that it is necessary
to compute a considerable number of evaluations of integrals (16): the contributions
from a large set of single-particle functions are necessary because the system under
consideration is highly correlated [6].

To reduce the computational effort necessary for the evaluation of (16), a proce-
dure based on discretization and low rank approximation is proposed in [6], which
approximates the full integral in R

6 as a sum (of moderate length) of products of
integrals in R

3. Here, we are going to derive bounds for the error introduced by this
approximation.

Following [6], we choose a discretization in terms of a set of basis functions B =
{|i〉 = i(r) : i = 1, . . . , L} and approximate V by

V ≈ Vapp = RV R, (17)

where R is the orthogonal projection onto the subspace B spanned by B. As basis
functions we use real-valued functions with finite support defined on a subgrid of the
spatial grid used to solve (11), (12). In general, it is natural to use polynomial finite
elements on a suitable subdivision of the spatial domain. The details may vary from
case to case. Here, we attempt to give a general idea of what error bounds can be
expected if the space partition is sensible and the choice of finite elements corresponds
with the task at hand. The notions used in the subsequent presentation are explained,
for example, in [5].

We consider for B the nodal basis for globally continuous finite elements consist-
ing of piecewise polynomials of degree ≤ m − 1. The resulting finite elements are
conforming, i. e., B ⊆ H1 [4, Thm. II.5.2]. For simplicity and ease of presentation, we
will henceforth mostly address the special case of finite elements with m = 2 in one
spatial dimension. These were also used in the computations reported in [6]. However,
our results extend easily to the more general case laid out above. We will state the
corresponding error bounds at appropriate places and refer to the auxiliary results we
require from the literature for the general case. Note that in an extension of the code
[6] which is currently being developed for problems in two spatial dimensions, tensor
products of the one-dimensional finite elements defined in [25] are used. Our results
trivially carry over in that case as well, since the approximation errors are bounded
from below by the best approximations in two dimensions and from above in terms
of the bounds for one dimension. Since these have the same asymptotic behavior as
the diameter of the space partition goes to zero, the tensor products yield analogous
results and we will not discuss this special case further.

In the case of one space dimension, we consider an underlying uniform spatial grid
∆ = (x−K , . . . , xK) on a suitably truncated interval [−xend, xend]. We will not discuss
the (negligible) error introduced by the truncation in this paper. We heuristically
choose a subgrid Γ = (τ0 = x−K , . . . , τL+1 = xK) of ∆, where τj are denser near the
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core where solutions vary more rapidly (our analysis below shows that interval lengths
should be smaller where ∇2φi, i = 1, 2 is large). Now, the basis function |i〉 is the
continuous, piecewise linear function with i(τj) = δj,i. This is the nodal basis for the
piecewise linear, continuous finite element approximation on Γ. Note that trivially,
|i〉 ∈ H1 holds. The hat functions |i〉 are illustrated in Figure 1.

0

1

τ
0
=x

−K
τ
0
=x

−K
τ
L+1

=x
K

Fig. 1. The hat functions representing the nodal basis for linear finite elements
in one spatial dimension

We will always assume that our spatial subdivision is quasi-uniform [5,
Def. (4.4.13)], which for the grid Γ means that for some (moderate) constants κ̃, κ,

κ̃h ≤ τj+1 − τj ≤ κh, h :=
1

L
, (18)

holds for all L.
Now, the projection R used in (17) is characterized by

R =

L
∑

i,j=1

|i〉[Q−1]i,j〈j|, (19)

with the mass matrix Q given as

Qi,j = 〈i|j〉1. (20)

Obviously, Q is real, symmetric and nonsingular, and thus Q−1 is also symmetric. It is
easy to show that R2 = R and R is symmetric, 〈φ1|Rφ2〉1 = 〈Rφ1|φ2〉1. Consequently,
R is indeed the orthogonal projection onto B. Note also that, since R is bounded, R
is self-adjoint.
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Since the (real) multiplication operator V is self-adjoint, the approximation error
resulting from our discretization can be estimated as

|〈φ1|V − Vapp|φ2〉2| =

= |〈φ1|V |φ2 −Rφ2〉2 + 〈φ1 −Rφ1|V |Rφ2〉2| ≤
= |〈V φ1|φ2 −Rφ2〉2 + 〈φ1 −Rφ1|V Rφ2〉2| ≤

≤
{

const. (‖φ1‖‖φ2 −Rφ2‖ + ‖φ1 −Rφ1‖‖Rφ2‖) for V bounded,
const. (‖φ1‖H1‖φ2 −Rφ2‖ + ‖φ1 −Rφ1‖‖Rφ2‖H1) for V Coulomb.

(21)

For the estimate (21), see for example [19]. Note that of course the bound for the
Coulomb potential is particular to spatial dimension three, while the estimate for
smooth potentials is the same in any dimension.

For our further analysis we assume that φi ∈ H2, i = 1, 2. Sufficient conditions
for the regularity of the single-particle functions in the case of bounded potentials (as
is the case in our one-dimensional example, see [6]) have been given in Theorem 1.1.
We will now discuss the error committed by projecting a function φ ∈ H2 (truncated
to the domain of integration) to B for the case of one spatial dimension. In that case,
φ(x) = 0 for |x| ≥ xend.

The space B consists of all continuous, piecewise linear functions on Γ which vanish
for |x| ≥ xend. Since R is the orthogonal projection onto this space, Rφ represents
the best approximation in B w. r. t. the norm in L2. Consequently,

∫ xend

−xend

|φ(x) −Rφ(x)|2 dx =

L
∑

j=0

∫ τj+1

τj

|φ(x) −Rφ(x)|2 dx ≤

≤
L
∑

j=0

∫ τj+1

τj

|φ(x) − Pφ(x)|2 dx,
(22)

where Pφ is the continuous, piecewise linear interpolant of φ at Γ. According to [5,
Cor. (1.4.7)], every φ ∈ H2 can be represented by a continuous function, and thus the
interpolation is well defined. According to [5, Cor. (4.4.24)],

∫ τj+1

τj

|φ(x) − Pφ(x)|2 dx ≤ const. (τj+1 − τj)
4

∫ τj+1

τj

|∇2φ(x)|2 dx. (23)

Substituting (23) into (22), we obtain

‖φ−Rφ‖2 ≤ const.

L
∑

j=0

‖∇2φ‖2
[τj ,τj+1]

(τj+1 − τj)
4, (24)

where ‖ · ‖[τj ,τj+1] denotes the L2 norm on the interval [τj , τj+1]. Hence, our conclu-
sions from this error analysis are:
1. The intervals [τj , τj+1] should be chosen smaller where ∇2φ is large.
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2. We can conclude an overall bound

‖φ−Rφ‖ = O(h2),

see also [5, Remark (4.4.27)]. Thus, for a bounded potential, an error bound of
O(h2) results in (21).
To complete the estimate of the discretization error for the Coulomb potential,

we have to consider ‖Rφ‖H1 . From [5, Thm. (4.5.11)] and the remark following the
proof of this proposition, it is clear that ‖Rφ‖H1 = O(1/h).

[5, Cor. (4.4.24)] indicates that the convergence order increases if more regularity
on φ is assumed and the basis functions are chosen as polynomials of higher degree
m − 1 > 1. Namely, ‖φ − Rφ‖ ≤ const. hm‖∇mφ‖ holds for φ ∈ Hm. This result
holds generally also in spatial dimensions greater than one. We sum up the results of
our previous analysis and this last observation in the following theorem.

Theorem 2.1. Let B be the nodal basis for globally continuous, piecewise polynomial

finite elements of degree m − 1 on a suitable quasi-uniform spatial partition with

diameter equal to h. Then, for the discretization error committed in approximation

(17), the bounds

|〈φ1|V − Vapp|φ2〉2| =

{

O(hm) for V bounded,

O(hm−1) for V Coulomb

hold.

As the last step in our error analysis, we consider the low rank approximation of
the discrete operator Vapp according to [6].

First, we rewrite (17) as

Vapp =

L
∑

i,j=1

L
∑

i′,j′=1

|i〉[Q−1]i,i′ Ṽi′,j′ [Q−1]j′,j〈j| =

L
∑

i,j=1

|i〉[Q−1Ṽ Q−1]i,j〈j|

with

Ṽi,j =

∫ ∫

i(r)V (r − r′)j(r′) dr′ dr.

Obviously, the matrix Ṽ is symmetric. We now rewrite Ṽ as follows: define a matrix
S by

Si,j :=

∫

i(r)g(r)j(r) dr

with a real function g > 0 which is large in regions where we wish to put an emphasis
in our computations, usually near the core. Obviously, S is symmetric, and it is easy
to see that S is positive definite. We now consider the generalized eigenvalue problem

Ṽ u = λSu.

We can rewrite this problem as an ordinary eigenvalue problem by using the prop-
erties of S. Since S is symmetric positive definite, we can compute the Cholesky
factorization

S = C̃T C̃,
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with a nonsingular upper triangular matrix C̃. Setting ũ := C̃u we obtain

(C̃T )−1Ṽ C̃−1ũ = λũ.

This eigenvalue problem has a symmetric matrix, and thus an orthogonal basis Ũ of
eigenvectors exists to the real eigenvalues λ1, . . . , λL. It is straightforward to show
that

Ṽ = ÛΛÛT ,

where
Û := C̃T Ũ , Λ = diag(λ1, . . . , λL).

Now we discard the contributions associated with eigenvalues with small modulus.
For simplicity of notation assume that λ1 ≥ λ2 ≥ · · · ≥ λL > 0, λi < ε for i > M ,
where ε is an error margin which can be freely chosen. Setting

Λε := diag(λ1, . . . , λM , 0, . . . , 0), Ṽε := ÛΛεÛ
T ,

we approximate Vapp by

Vapp ≈ Vlow :=

L
∑

i,j=1

|i〉[Q−1ṼεQ
−1]i,j〈j| =

=

M
∑

µ=1

L
∑

i,j=1

|i〉[Q−1Û ]i,µλµ[ÛTQ−1]µ,j〈j|.

Thus we have achieved our goal of finding a representation of V in terms of a rea-
sonably short sum of products of potentials that depend on one spatial variable only.
The error introduced by the low rank approximation can be estimated as

|〈φ1|Vapp − Vlow|φ2〉2| =

∣

∣

∣

∣

∣

∣

L
∑

i,j=1

〈φ1|i〉1〈j|φ2〉1
L
∑

µ=M+1

[Q−1Û ]i,µλµ[ÛTQ−1]µ,j

∣

∣

∣

∣

∣

∣

≤

≤ ‖φ1‖‖φ2‖
L
∑

i,j=1

‖i‖‖j‖

∣

∣

∣

∣

∣

∣

L
∑

µ=M+1

[Q−1Û ]i,µλµ[ÛTQ−1]µ,j

∣

∣

∣

∣

∣

∣

≤

≤ const. ε h2
L
∑

i,j=1

L
∑

µ=M+1

|[Q−1Û ]i,µ||[ÛTQ−1]µ,j | ≤

≤ const. εh2
L
∑

i,j=1

[|Q−1Û ||ÛTQ−1|]i,j ≤

≤ const. εh2L‖Q−1Û‖2
2 ≤ const. εh2L‖Q−1‖2

2‖Û‖2
2 ≤

≤ const. ε,

where the absolute value of a matrix, |A|, is meant entry-wise. In the estimates above
we have used the following properties: since the spatial partition is quasi-uniform,
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Lh ≤ const. Trivially, ‖i‖ = O(h) for the basis functions |i〉. For the estimation of
the involved matrices, we use the spectral norm defined for A ∈ R

L×L as

‖A‖2 = max
i=1,...,L

σi,

where σi are the singular values of A. ¿From [1, Sec. 5.5] there follows ‖Q−1‖2 =
O(1/h), and moreover

‖Û‖2
2 = ‖S‖2 = O(h).

The last assertion follows from

ÛT Û = ŨT C̃C̃T Ũ = ŨT C̃SC̃−1Ũ ,

whence ÛT Û and S have the same eigenvalues, which for symmetric positive definite
matrices correspond with the singular values. Note that ‖S‖2 = O(h) follows from
[1, Sec. 5.5], because S is the mass matrix associated with the basis functions

√
g|i〉.

Finally, we have used a simple property that is formulated in the next lemma:

Lemma 2.1. Let X ∈ R
L×L be a nonsingular matrix. Then,

L
∑

i,j=1

[|XT ||X|]i,j ≤ L‖X‖2
2.

Proof. Under the assumptions of the lemma, XTX is symmetric positive definite, and
consequently

‖X‖2
2 = ‖XTX‖2 = max

06=y∈RL

yTXTXy

yT y
,

see for instance [1, Sec. 5.5]. Choose y with yk = ±1 such that [Xy]k =
∑L

i=1 |xk,i|.
It is easy to see that

yTXTXy

yT y
=

1

L

L
∑

k=1

(

L
∑

i=1

|xk,i|
)2

=
1

L

L
∑

i,j,k=1

|xk,i||xk,j | =
1

L

L
∑

i,j=1

[|XT ||X|]i,j . �

Thus, the error of our low rank approximation is bounded in terms of the error
margin ε, uniformly in the diameters of the spatial partition. We formulate this fact
in the following theorem:

Theorem 2.2. For φ1, φ2 ∈ L2, and an underlying spatial partition which is

quasi-uniform, the error introduced by the low rank approximation (25) satisfies

|〈φ1|Vapp − Vlow|φ2〉2| = O(ε)

independently of the diameter of the spatial partition, where ε is an error margin

which can be freely chosen.
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Fig. 2. Relative error |V − Vlow|/|V |

To conclude this section, we point out that the approximation of the meanfield
operators described above significantly reduces the computational effort needed to
solve the MCTDHF equations, while maintaining an acceptable level of accuracy.
This is illustrated by an example given in [6]: on an underlying equidistant grid
∆ = (x−K , . . . , xK) with K = 500 in one spatial dimension, the (heuristically chosen)
subgrid Γ = (τ0, . . . , τL+1) was used to define L = 83 basis functions, and yielded Vlow

with M = 55. Thus, the computational effort was significantly reduced. Still, the
error in the region of interest remained acceptably small. Figure 2 shows the relative
error introduced by our approximation, where the grayscale indicates the magnitude
of |V (x−y)−Vlow(x−y)|/|V (x−y)|. In the inner cross-shaped region of interest, the
relative error is below one percent. The figure is taken from [6], where the example
is explained in more detail.
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