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FUNDAMENTAL SOLUTION OF THE PROBLEM
DESCRIBING SHIP MOTION IN WAVES

Abstract. The problem describing a ship motion in waves comprises the Laplace equation,
boundary condition on wetted surface of the ship, condition on the free surface of the sea in
the form of a differential equation, the radiation condition, and a condition at infinity. This
problem can be transformed to a Fredholm equation of second kind, and then numerically
solved using the boundary element method, if the fundamental solution of the problem
is known. This paper presents the derivation of the fundamental solution. In physical
interpretation, the fundamental solution represents the moving and pulsating source under
free surface of the sea. The free surface elevation, generated by the source for different
forward speed and frequency of pulsation, is presented in this paper.
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1. INTRODUCTION

A ship moving in waves diffracts sea waves and generates waves radiating off the
ship. Assuming that water is inviscid and incompressible, as well as that the flow is
irrotational, the flow around the ship is described by the potential flow theory.

The diffraction and radiation potential velocity fields in the sea are determined
by the following boundary-value problem [3]:

1. Laplace equation

∆ϕ(x) = 0, x ∈ R−3 \ V, (1)

where V is a closed domain occupied by the ship, and R−3 = {x : x3 < 0},
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2. The boundary conditions:
— on the free surface x ∈ SF = {x : x3 = 0} \ V

−νϕ(x)− 2iτ
∂ϕ(x)
∂x1

+
1
k0

∂2ϕ(x)
∂x2

1

+
∂ϕ(x)
∂x3

= 0, (2)

where ν = ω2
E

g , τ = ωEu0
g , k0 = g

u2
0
, ωE is the encounter frequency, ωE =

ω(1− ωu0/g cos β), ω is the wave frequency, u0 is the ship forward speed, and
g is the gravity acceleration;

— on the wetted surface of the ship:
• for diffraction potential

∂ϕD(x)
∂n

= −∂ϕW (x)
∂n

, x ∈ S, (3)

where ϕW is the potential of the undisturbed waves on the free surface,
determined by the function

ϕW (x) = i
g

ω
ekx3−ik·x,

k = k(cos β, sinβ, 0), β is the angle between the wave vector k and axis x1,
x = (x1, x2, 0), ω is the wave frequency, k = ω2/g, S is the wetted surface
of the ship, and n = (n1, n2, n3) is the normal vector, outward to the ship;

• for the radiation potential

∂ϕR
ri(x)
∂n

= ni, (4)

∂ϕI
ri(x)
∂n

= 0, i = 1 . . . 6, x ∈ S,

3. The conditions at infinity:
— for ship forward speed u0 = 0:

1◦ radiation condition [2]:

lim
ρ→∞

√
ρ(

∂ϕ

∂ρ
+ iνϕ) = 0, (5)

2◦ condition at infinity on the free surface:

lim
ρ→∞

√
ρ|ϕ| ≤ c, x ∈ SF = {x : x3 = 0}, (6)

where ρ =
√

(x1 − y1)2 + (x2 − y2)2, and c is a constant;
— for ship forward speed u0 > 0:

1◦ condition imposed on the wave system generated:
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• for τ ≤ 1
4 (τ = ωEu0

g ):
one wave with forward phase velocity greater than the ship speed, es-
capes from the ship; one wave with forward phase velocity, lower than
the ship speed, follows the ship; two waves with backward phase velocity
move away from the ship;

• for τ > 1
4 : no wave in front of the ship is generated; two waves with

backward phase velocity move away from the ship;
(The formulation of the radiation conditions for ship with forward speed in
strict mathematical form still poses a problem).

2◦ condition at infinity on the free surface

lim
ρ→∞

√
ρ|ϕ| ≤ c, x ∈ SF = {x : x3 = 0},

where ρ =
√

(x1 − y1)2 + (x2 − y2)2, and c is constant,
4. The condition at the sea bottom:

lim
x3→−∞

∂ϕ(x)
∂x3

= 0. (7)

It is assumed that the solution of the problem has the following form of a single
potential layer [1]:

φ(x) =
∫
S

µ(y)E(x, y)dSy −
u2

0

g

∫
l

µ(y)E(x, y)n2
1dly, (8)

where µ is the complex function describing the source density, l = ∂S, and n =
(n1, n2, n3) is the normal vector, outward to the ship. Function E(x, y) occurring in
formula (8) is the fundamental solution to the above problem, satisfying the Laplace
equation and boundary conditions, except the condition on the wetted ship surface. In
the physical interpretation, the fundamental solution represents the velocity potential
generated by pulsating source of unit strength and translating with forward speed
under the free surface.

The following form of function E occurring in formula (8) is assumed [3]:

E(x, y) = − 1
4π

[
1

|x− y|
− 1
|x− z|

+ G(x, z)
]

, x, y ∈ R−3 , x 6= y, (9)

where x = (x1, x2, x3), y = (y1, y2, y3), z = (y1, y2,−y3),

|x− y| =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2,

|x− z| =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 + y3)2, (10)

ωE is the encounter pulsation frequency, and G is a harmonic function which is to be
determined from Laplace equation (1) and the equation on the free surface (2).
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Assuming the solution of problem (1)–(8) in the form of a single potential layer
transforms the differential problem to the following Fredholm integral equation of
second kind

1
2
µ(x) +

∫
S

µ(y)
∂

∂ny
E(x, y)dsy −

u2
0

g

∫
ι

µ(y)
∂

∂ny
E(x, y)n2

1(y)dly = un(x), (11)

xεS,

where un is the boundary condition on wetted surface (3) or (4).

2. FUNDAMENTAL SOLUTION OBTAINED BY KHASKIND

Substituting E to Laplace equation (1) and to condition (2) on the free surface,
and applying the Fourier transform and the reverse Fourier transform, the function
G is obtained in an integral form. The fundamental solution obtained in such a
way formally satisfies equations (1) and (2), but it cannot be used to determine the
flow around the ship numerically, as the integrand is a singular function and the
integration is over an infinite domain. Therefore, a different approach is applied in
the next chapter to construct a function G convenient for numerical computations.

Khaskind [2] applied artificial viscosity to remove the singularities in the integrand
and obtained the following form of function G:

G(x, z, ωE , u0) =

= − ν

π

πZ
−π

∞Z
0

λeλ(x3−z3)+iλχ

τ2λ2 cos2 ϑ − 2τνλ(1− iβ) cos ϑ − νλ + ν2(1− 2iβ)
dλdϑ,

(12)

satisfying the following condition on the free surface

−ν(1− 2iβ)G(x, z)− 2iτ(1− iβ)
∂G(x, z)

∂x1
+

1

k0

∂2G(x, z)

∂x2
1

+
∂G(x, z)

∂x3
=

= 2
∂

∂x3

1

|x − z| , (13)

where ν = ω2
E

g , τ = ωEu0
g , k0 = g

u2
0
, ωE is the encounter frequency, u0 is the forward

speed of the ship, β = µ1/2ωE , and µ1 is the artificial viscosity.
Equation (13), containing the viscosity coefficient β = µ1/2ωE , results from equa-

tion (2) after including the artificial viscosity µ1 and substituting fundamental solu-
tion (9) to this equation [2]. The viscosity is assumed equal to zero after obtaining a
satisfactory form of function G. Function (12) also satisfies Laplace equation (1).

The singular points of integrand (12) satisfy the equation

τ2λ2 cos2 ϑ− 2τνλ(1− iβ) cos ϑ− νλ + ν2(1− 2iβ) = 0. (14)
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The roots of the equation are the following complex numbers:

λ1 = ν
1 + 2τ(1− 2iβ) cos ϑ +

p
1 + 4τ cos ϑ − 4τiβ cos ϑ − 4τ2β2 cos2 ϑ

2τ2 cos2 ϑ
,

λ2 = ν
1 + 2τ(1− 2iβ) cos ϑ −

p
1 + 4τ cos ϑ − 4τiβ cos ϑ − 4τ2β2 cos2 ϑ

2τ2 cos2 ϑ
.

(15)

Denoting the above fomulae for β = 0 by

λ1 = ν
1 + 2τ cos ϑ +

√
1 + 4τ cos ϑ

2τ2 cos2 ϑ
,

λ2 = ν
1 + 2τ cos ϑ−

√
1 + 4τ cos ϑ

2τ2 cos2 ϑ
, (16)

the following form of the roots

λ1 = λ1 − i
µ1

2u cos ϑ

√
1 + 4τ cos ϑ + 1√

1 + 4τ cos ϑ
+ O(µ2

1),

λ2 = λ2 − i
µ1

2u cos ϑ

√
1 + 4τ cos ϑ− 1√

1 + 4τ cos ϑ
+ O(µ2

1). (17)

is obtained for small µ1 = 2βωE .
Numbers λ1 and λ2 are:

— real for |ϑ| < π − ϑ0,
— complex for ϑ ∈ [−π, π + ϑ0) ∪ (π − ϑ0, π],

where

ϑ0 =
{

0 dla |τ | ≤ 1
4

arccos 1
4|τ | dla τ > 1

4 .
(18)

The formulae imply that for ϑ rendering λ1 and λ2 real:

— the sign of the imaginary part of λ1 depends on cos ϑ, and
— the sign of the imaginary part of λ2 depends on the sign of τ , but does not depend

on ϑ, as
√

1 + 4τ cos ϑ− 1
cos ϑ

=
4τ√

1 + 4τ cos ϑ + 1
.

Further transformations of (12) by Khaskind [2], using roots λ1 and λ2, resulted
in very complicated functions in the form of double integrals (one over an infinite
domain) with integrands rapidly oscillating.

Functions in such forms cannot be used in the numerical computations, therefore,
formula (12) will be transformed, using the above determined λ1 and λ2, to a feasible
form easy for practical application. Considerations will be carried for τ > 0 (the case
τ < 0 is analogous).
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3. FUNDAMENTAL SOLUTION USEFUL
FOR NUMERICAL COMPUTATIONS

Using the following decomposition of the integrand in (12) into simple fractions

1
τ2 cos2 ϑ(λ− λ1)(λ− λ2)

=
1
νp

(
λ1

λ− λ1

− λ2

λ− λ2

)
,

where p =
√

1 + 4τ cos ϑ− 4τiβ cos ϑ− 4τ2β2 cos2 ϑ, function (13) can be written in
the form

G = −ν

π

π∫
−π

1
νp

∞∫
0

(
λ1

λ− λ1

− λ2

λ− λ2

)
eλ(x3−z3)+i λχdλdϑ. (19)

In further transformations the following theorem on complex variable functions will
be used [5]:

Theorem 1. If the function

F (z) =

b∫
a

ω(t)
t− z

dt

is determined in the complex plane and ω is a smooth function, then

F (ξ ± 0) = ±i πω(ξ) + P.V.

a∫
b

ω(t)
t− ξ

dt, ξ ∈ (a, b) ⊂ R,

where P.V. stands for the principal value of the integral.

Taking the limits as λ1 → λ1 and λ2 → λ2 in (19), using (15) and the above
theorem, the following form of function G is obtained:

G(x, z;ωE , u0) = − 1
π P.V.

π−ϑ0∫
−π+ϑ

1√
1+4τ cos ϑ

∞∫
0

λ1
λ−λ1

eλ(x3−z3)+iλχdλdϑ+

+ 1
π P.V.

π−ϑ0∫
−π+ϑ

1√
1+4τ cos ϑ

∞∫
0

λ2
λ−λ2

eλ(x3−z3)+iλχdλdϑ+

+i
π−ϑ0∫
−π+ϑ

λ1√
1+4τ cos ϑ

eλ1(x3−z3)+iλ1χsign(cos ϑ)dϑ−

−i
π−ϑ0∫
−π+ϑ)

λ2√
1+4τ cos ϑ

eλ2(x3−z3)+iλ2χdϑ−

− ν
πτ2

ϑ0∫
−ϑ0

1
cos2 ϑ

∞∫
0

λ
(λ−a)2+b2 eλ(x3−z3)−iλχdλdϑ.

(20)
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where

a =
1 + 2τ cos ϑ

2τ2 cos2 ϑ
, b =

√
|1 + 4τ cos ϑ|
2τ2 cos2 ϑ

.

In order to enable numerical computations of function (20), the principal values
(P.V.) of the integrals occurring in (20) are expanded into series. First, the following
integrals are expanded:

J1 =

∞∫
0

1
β − λ

eyλ cos xλdλ and J2 =

∞∫
0

1
β − λ

eyλ sinxλdλ, (21)

where β, x, y ∈ R and y < 0.
Let

J = J1 − iJ2 =

∞∫
0

1
β − λ

eλ(y−ix)dλ. (22)

Denoting z = x + iy, equation (22) can be written in the form

J = e−iβz

∞∫
0

1
β − λ

eiz(β−λ)dλ.

Substituting β − λ = u, and then izu = t, the following formula is obtained

J = J1 − iJ2 = e−iβz

izβ∫
−∞

et

t
dt = Ei(iβz), (23)

where Ei is the exponential integral function defined as follows:

E(z) =

z∫
−∞

et

t
dt, (24)

The integral is taken over an arbitrary path L in the complex plane cut along the
positive real axis [4].

In order to expand the exponential integral function into a function series, equation
(24) is written in the following form:

Ei(z) =

−1∫
−∞

et

t
dt +

0∫
−1

et − 1
t

dt +

z∫
0

et − 1
t

dt +

z∫
−1

dt

t
.

The sums of the two first integrals can be written (after substituting t = −u−1 in the
first, and t = −u in the second one) in the form

γ =

1∫
0

1− e−u − e−
1
u

u
du.
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This number is the Euler constant γ = 0, 57721 . . .; thus,

Ei(z) = γ + ln(−z) +

z∫
0

et − 1
t

dt,

where the main branch of the logarithm was assumed. The integrand on the right
side of the last equality is an entire function, thus its integral is an entire function
too, and can be expanded into series, convergent in the entire plane. Expanding the
integrand first, and then integrating term-wise gives

z∫
0

et − 1
t

dt =

z∫
0

∞∑
n=1

tn−1

n!
=

∞∑
n+1

zn

n!n
, |z| < ∞.

Thus,

Ei(z) = γ + ln(−z) +
∞∑

n+1

zn

n!n
. (25)

This function is well defined for all for points z of the plane cut along positive real
axis. Taking iβz = β(−y + ix) = βreiθ instead of z in (25), the following formula is
obtained

Ei(iβz) = γ + ln(βr) + i[θ − sign (Im iβz)π] +
∞∑

n=1

(βr)neinθ

n!n
. (26)

The principal value of integral (24) for z = iβz is computed in the following way:

P.V.
iβz∫
−∞

et

t dt = lim
ε→0

(
−iεz∫
−∞

+
iβz∫
iεz

)
et

t dt =

= lim
ε→0

[
−iεz∫
−∞

et

t dt +
iβz∫
iεz

et−1
t dt +

iβz∫
iεz

1
udu

]
=

= lim
ε→0

[
γ + ln(iεz) +

∞∑
n=1

(−iεz)n

nn! +
∞∑

n=1

(iβz)n

nn! −

−
∞∑

n=1

(iεz)n

nn! + ln(iβz)− ln(iεz)
]

,

which gives

P.V.

iβz∫
−∞

et

t
dt = lim

ε→0

[(
γ + ln(βr) +

∞∑
n=1

(βr)n cos θ

nn!

)
+ i

( ∞∑
n=1

(βr)n sin θ

nn!
+ θ

)]
.

This formula can be written as

P.V.

iβz∫
−∞

et

t
dt = f(r, θ) + ig(r, θ), (27)
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where

f(r, θ) = γ + ln(βr) +
∞∑

n=1

(βr)n cos nθ

n!n
, r 6= 0,

g(r, θ) = θ +
∞∑

n=1

(βr)n sinnθ

n!n
. (28)

Taking into account (23), (27), and the equality e−iβz = eβy(cos βx − i sinβx),
the following formulae determining the principal values of integrals (21) are obtained

P.V.J1 = eβy[f cos βx + g sinβx],

P.V.J2 = eβy[f sinβx− g cos βx], (29)

and thus

P.V.

∞∫
0

1
λ− β

eλ(y+ix)dλ = −P.V.(J1 + iJ2). (30)

Substituting (30) into (20) the function G, being the main component of funda-
mental solution (9), takes the following form

G(x, z;ωE , u0) = 1
π

π−ϑ0∫
−π+ϑ

λ1√
1+4τ cos ϑ

P.V.(J1 + iJ2)dϑ−

− 1
π

π−ϑ0∫
−π+ϑ

λ2√
1+4τ cos ϑ

P.V.(J1 + iJ2)dϑ +

+i
π−ϑ0∫
−π+ϑ

λ1√
1+4τ cos ϑ

eλ1[(x3−z3)+iχ]sign(cos ϑ)dϑ−

−i
π−ϑ0∫
−π+ϑ

λ2√
1+4τ cos ϑ

eλ2[(x3−z3)+iχ]dϑ−

− ν
πτ2

ϑ0∫
−ϑ0

1
cos2 ϑ

∞∫
0

λ
(λ−a)2+b2 eλ[(x3−z3)−iχ]dλdϑ, (31)

where β = λ1 in J1 and J2 in the first integral of formula (31) and β = λ2 in J1

and J2 in the second one. The remaining symbols occurring in J1 and J2 have the
following meaning:

r =
√

(x3 − z3)2 + χ2, θ = arctan
χ

−(x3 − z3)
,

where χ = (x1 − z1) cos ϑ + (x2 − z2) sinϑ.
Function (31) enables one to perform the numerical computations which, in turn,

enable the boundary value problem to be solved and the diffraction and radiation
velocity fields to be determined.
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The fundamental solution also makes possible the computation of the free surface
elevation ζ, generated by the pulsating source and translating under free sea surface,
according to the following formula [3]:

ζ = −1
g
Re(iωE − u0

∂

∂x1
)G, x ∈ SF = {x : x3 = 0}. (32)

m/s
2


s


rad

2
.
1


0
 =


=


u


w


m/s
12


s


rad

2


0
 =


=


u


w


Fig. 1. Free surface generated by source G(x, (0, 0,−1); ωE , u0), x1 ∈ [−50, 50],
x2 ∈ [−50, 50], x3 = 0



Fundamental solution of the problem describing ship motion in waves 481

4. CONCLUSIONS

The problem describing ship motion in waves [3] can be solved in practice if the
fundamental solution of the problem (1)—(8), determining the diffraction and radia-
tion velocity fields, is determined in the form enabling numerical computations of its
values. The paper presents the derivation of the fundamental solution from the one
obtained by Khaskind [2] to the form supporting numerical computation.

The derivation is based on Theorem 1, on the exponential integral function and
on the expansion of this integral into function series.

The fundamental solution in such form is used to determine the diffraction and
radiation velocity fields around the ship [3]. In this paper, function given by (31) was
used to compute the elevation of the sea free surface generated by a pulsating and
translating source under the free surface (see Fig. 1).
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