Klara R. Janglajew, Kim G. Valeev
 CONSTRUCTION OF AN INTEGRAL MANIFOLD FOR LINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS

Abstract

In this paper we establish sufficient conditions for the existence of an asymptotic integral manifold of solutions of a linear system of differential-difference equations with a small parameter. This integral manifold is described by a linear system of differential equations without deviating argument.

Keywords: system with deviating argument, integral manifold of solutions, fundamental matrix, exponential dichotomy.

Mathematics Subject Classification: 34K06.

1. INTRODUCTION AND PRELIMINARIES

The theory of linear differential equations with deviating argument is well established. There are numerous important papers on the subject. One of the classical works here is [2]. For a recent account of the theory, we refer the reader to [1] and the references given there.

We consider the linear system of differential equations with deviating argument

$$
\begin{align*}
& \frac{d X(t)}{d t}=A(t) X(t)+\mu \sum_{k=1}^{n}\left(A_{k}(t) X\left(t+\tau_{k}(t)\right)+B_{k}(t) Y\left(t+\tau_{k}(t)\right)\right) \\
& \frac{d Y(t)}{d t}=B(t) Y(t)+\mu \sum_{k=1}^{n}\left(C_{k}(t) X\left(t+\tau_{k}(t)\right)+D_{k}(t) Y\left(t+\tau_{k}(t)\right)\right) \tag{1}
\end{align*}
$$

where $t \geq 0, \quad \mu$ is a small parameter, $\quad \operatorname{dim} X(t)=p, \operatorname{dim} Y(t)=q$,

$$
\begin{equation*}
\left|\tau_{k}(t)\right| \leq \tau \quad(k=1, \ldots, n ; t \geq 0) \tag{2}
\end{equation*}
$$

We assume that the matrices in System (1) are bounded:

$$
\begin{align*}
&\|A(t)\| \leq \alpha_{0}, \\
& \sum_{k=1}^{n}\left\|A_{k}(t)\right\| \leq \alpha \tag{3}\\
& \sum_{k=1}^{n}\left\|B_{k}(t)\right\| \leq \alpha, \quad \sum_{k=1}^{n}\left\|C_{k}(t)\right\| \leq \alpha, \sum_{k=1}^{n}\left\|D_{k}(t)\right\| \leq \alpha
\end{align*}
$$

If the parameter $\mu=0$, System (1) decouples into two independent subsystems. Let the system

$$
\frac{d X(t)}{d t}=A(t) X(t)
$$

have a fundamental matrix of solutions $P(t, s)$ normalized at $t=s$ and satisfy the condition

$$
\begin{equation*}
\|P(t, s)\| \leq c_{1} e^{\varepsilon|t-s|} \quad\left(c_{1} \geq 1, \varepsilon>0\right) \tag{4}
\end{equation*}
$$

Let the system

$$
\frac{d Y(t)}{d t}=B(t) X(t)
$$

have a fundamental matrix of solutions $Q(t, s)$ normalized at $t=s$ and satisfy the condition

$$
\begin{equation*}
\|Q(t, s)\| \leq c_{2} e^{\lambda|t-s|} \quad\left(c_{2} \geq 1, \lambda>\varepsilon\right) \tag{5}
\end{equation*}
$$

Thus, for $\mu=0$, System (1) possesses an exponential dichotomy with an exponent σ, where $-\lambda<\sigma<-\varepsilon$ (see [3]).
We will construct an integral manifold of solutions of System (1) in the form of ($[3,4]$)

$$
\begin{equation*}
\frac{d X(t)}{d t}=H(t, \mu) X(t), \quad Y(t)=K(t, \mu) X(t) \tag{6}
\end{equation*}
$$

Let a fundamental matrix of solutions of System (6) be denoted by $N(t, s, \mu)$, it follows that

$$
\begin{equation*}
X(t)=N(t, s, \mu) X(s) \tag{7}
\end{equation*}
$$

From this we obtain

$$
\begin{array}{r}
X\left(t+\tau_{k}(t)\right)=N\left(t+\tau_{k}(t), t . \mu\right) X(t), \\
Y\left(t+\tau_{k}(t)\right)=K\left(t+\tau_{k}(t), \mu\right) N\left(t+\tau_{k}(t), t, \mu\right) X(t) \tag{8}
\end{array}
$$

If the solutions of System (6) satisfy (1), then

$$
\begin{align*}
H(t, \mu)= & A(t)+\mu \sum_{k=1}^{n}\left(A_{k}(t) N\left(t+\tau_{k}(t), t, \mu\right)+\right. \tag{9}\\
& \left.+B_{k}(t) K\left(t+\tau_{k}(t), \mu\right) N\left(t+\tau_{k}(t), t, \mu\right)\right)
\end{align*}
$$

$$
\begin{align*}
\frac{\partial K(t, \mu)}{\partial t}+ & K(t, \mu)\left(A(t)+\mu \sum_{k=1}^{n}\left(A_{k}(t) N\left(t+\tau_{k}(t), t, \mu\right)+\right.\right. \\
+ & \left.\left.B_{k}(t) K\left(t+\tau_{k}(t), \mu\right) N\left(t+\tau_{k}(t), t, \mu\right)\right)\right)= \\
= & B(t) K(t, \mu)+\mu \sum_{k=1}^{n}\left(C_{k}(t) N\left(t+\tau_{k}(t), t, \mu\right)+\right. \tag{10}\\
& \left.+D_{k}(t) K\left(t+\tau_{k}(t), \mu\right) N\left(t+\tau_{k}(t), t, \mu\right)\right) .
\end{align*}
$$

We now proceed to considering the auxiliary matrix differential equation

$$
\begin{equation*}
\frac{\partial K(t, \mu)}{\partial t}=B(t) K(t, \mu)-K(t, \mu) A(t)+F(t) \tag{11}
\end{equation*}
$$

where $\|F(t)\| \leq b$ for $t \geq 0$. It is easy to check that the matrix

$$
\begin{equation*}
K(t, \mu)=\int_{0}^{t} Q(t, s) F(t) P(s, t) d s \tag{12}
\end{equation*}
$$

is a solution of (11). In addition, under conditions (4) and (5), we obtain

$$
\begin{equation*}
\|K(t, \mu)\|=c_{1} c_{2} \int_{0}^{t} e^{-\lambda(t-s)} \sup \|F(t)\| e^{\varepsilon(t-s)} \leq \frac{c_{1} c_{2}}{\lambda-\varepsilon} \sup \|F(t)\|, \quad t \geq 0 . \tag{13}
\end{equation*}
$$

Application of (11) and (12) enables us to write System (10) in the form

$$
\begin{align*}
K(t, \mu) & =\mu \int_{0}^{t} Q(t, s) \sum_{k=1}^{n}\left(C_{k}(s)+D_{k}(s) K\left(s+\tau_{k}(s), \mu\right)-\right. \tag{14}\\
& \left.-K(s, \mu) A_{k}(s)-K(s, \mu) B_{k}(s) K\left(s+\tau_{k}(s), \mu\right)\right) N\left(s+\tau_{k}(s), t, \mu\right) P(s, t) d s
\end{align*}
$$

Our purpose here is to give a proof that an integral manifold of solutions of System (1) exists in form (6).

2. SUCCESSIVE APPROXIMATIONS

System (9),(14) of matrix equations defines the matrices $H(t, \mu), \quad K(t, \mu)$ and it can be solved by the method of successive approximations. We start this process by letting $H_{0}(t, \mu)=0, K_{0}(t, \mu)=0$ and

$$
\begin{align*}
H_{j+1}(t, \mu)= & A(t)+\mu \sum_{k=1}^{n}\left(A_{k}(t) N_{j}\left(t+\tau_{k}(t), t, \mu\right)+\right. \\
& \left.+B_{k}(t) K_{j}\left(t+\tau_{k}(t), \mu\right) N_{j}\left(t+\tau_{k}(t), t, \mu\right)\right) \\
K_{j+1}(t, \mu)= & \mu \int_{0}^{t} Q(t, s) \sum_{k=1}^{n}\left(C_{k}(s)+D_{k}(s) K_{j}\left(s+\tau_{k}(s), \mu\right)-\right. \tag{15}\\
& \left.-K_{j}(s, \mu) A_{k}(s)-K_{j}(s, \mu) B_{k}(s) K_{j}\left(s+\tau_{k}(s), \mu\right)\right) \times \\
& \times N_{j}\left(s+\tau_{k}(s), t, \mu\right) P(s, t) d s
\end{align*}
$$

for $\mathrm{j}=0,1,2, \ldots$

Let $N_{j}(t, s, \mu)$ be a fundamental matrix of solutions of the system

$$
\begin{equation*}
\frac{d X(t)}{d t}=H_{j}(t, \mu) X(t) \quad(j=0,1,2, \ldots) \tag{16}
\end{equation*}
$$

Supposing that the inequalities

$$
\left\|H_{j}(t, \mu)\right\| \leq h_{j}, \quad\left\|K_{j}(t, \mu)\right\| \leq k_{j}
$$

take place, we find the estimates

$$
\left\|N_{j}(t, s, \mu)\right\| \leq e^{h_{j}|t-s|}, \quad\left\|N_{j}\left(t+\tau_{k}(t), t, \mu\right)\right\| \leq e^{\tau h_{j}}
$$

And owing to System (15) it follows that

$$
\begin{align*}
h_{j+1} & \leq \alpha_{0}+|\mu| \alpha\left(1+k_{j}\right) e^{\tau h_{j}} \\
k_{j+1} & \leq|\mu| \alpha \beta\left(1+k_{j}\right)^{2} e^{\tau h_{j}} \tag{17}
\end{align*}
$$

where

$$
\beta \equiv \frac{c_{1} c_{2}}{\lambda-\varepsilon}
$$

In order for the sequences $\left\{h_{j}\right\}$ and $\left\{k_{j}\right\}$ to be bounded from below, i.e.

$$
h_{j} \geq h>0, \quad k_{j} \geq k>0, \quad j=0,1,2, \ldots
$$

it is necessary and sufficient that the system of nonlinear equations

$$
\begin{equation*}
\alpha_{0}+|\mu| \alpha(1+k) e^{\tau h}=h, \quad|\mu| \alpha \beta(1+k)^{2} e^{\tau h}=k \tag{18}
\end{equation*}
$$

has a positive solution.
We need to find the largest value $\mu=\mu_{0}$ for which System (18) has multiple solutions.
In this connection h and k achieve the maximum. We obtain

$$
\begin{gather*}
\mu_{0}=\frac{2\left(\tau+\sqrt{\tau^{2}+4 \beta^{2}}\right.}{\alpha\left(\tau+2 \beta+\sqrt{\tau^{2}+4 \beta^{2}}\right.} \exp \left\{-\tau\left(\alpha+\frac{2}{\tau+2 \beta+\sqrt{\tau^{2}+4 \beta^{2}}}\right)\right\} \tag{19}\\
h=\alpha_{0}+\frac{k}{\beta(1+k)}, \quad k=\frac{2 \beta}{\tau+\sqrt{\tau^{2}+4 \beta^{2}}}
\end{gather*}
$$

It follows that for $|\mu| \leq \mu_{0}$ the sequences of matrices $H_{j}(t, \mu)$ and $K_{j}(t, \mu)$ $(\mathrm{j}=0,1,2, \ldots)$ are well defined and bounded in norm for $t \geq 0$.

3. CONVERGENCE

Let us turn to prove that the sequences of matrices $H_{j}(t, \mu)$ and $K_{j}(t, \mu)(j=$ $0,1,2, \ldots$) converge uniformly in t, for $t \geq 0$.
Let us introduce the notation

$$
\left\|H_{j}(t, \mu)-H_{j-1}(t, \mu)\right\| \leq u_{j}, \quad\left\|K_{j}(t, \mu)-K_{j-1}(t, \mu)\right\| \leq v_{j} \quad(j=1,2,3, \ldots)
$$

Then from System (15), for $\mu=\mu_{0}$ there follows:

$$
\begin{align*}
u_{j+1} & \leq \ell(1+k) \tau u_{j}+l v_{j} \\
v_{j+1} & \leq \ell \beta \tau(1+k)^{2} u_{j}+2 \ell \beta(1+k) v_{j} \tag{20}
\end{align*}
$$

where

$$
\ell \equiv \frac{1}{2 \beta(1+k)+\tau}
$$

The matrix of coefficients of the expression on the right hand side of (20)

$$
R(\mu)=\left(\begin{array}{cc}
\ell \tau(1+k) & \ell \\
\ell \beta \tau(1+k)^{2} & 2 \ell \beta
\end{array}\right)
$$

has the largest eigenvalue (in terms of the absolute value)

$$
\rho_{\max }=\frac{\left(2 \beta+\tau+\sqrt{\tau^{2}+4 \beta^{2}}\right)^{2}}{2\left(2 \beta+\sqrt{\tau^{2}+4 \beta^{2}}\right)\left(\tau+\sqrt{\tau^{2}+4 \beta^{2}}\right)} \equiv 1
$$

For $|\mu|<\mu_{0}$, the absolute values of eigenvalues of the matrix $R(\mu)$ are less than 1 and, therefore, the terms of the series

$$
\begin{align*}
& H(t, \mu)=\sum_{j=0}^{\infty}\left(H_{j+1}(t, \mu)-H_{j}(t, \mu)\right) \tag{21}\\
& K(t, \mu)=\sum_{j=0}^{\infty}\left(K_{j+1}(t, \mu)-K_{j}(t, \mu)\right) \tag{22}
\end{align*}
$$

are bounded from above by the terms of the decreasing geometric progression. It follows that series (21) and (22) converge uniformly for $|\mu| \leq \mu_{1}<\mu_{0}$.

We can now formulate our main results.
Theorem 3.1. Let System (1) of differential-difference equations be dichotomic for $\mu=0$ and $t \geq 0$, caused by inequalities (4) and (5). If conditions (2) and (3) hold, then System (1) has an integral manifold of form (6), where the matrices H and K depend analytically on μ, provided $|\mu|<\mu_{0}$, where μ_{0} is given by (19).

The construction of integral manifolds in form (6) for systems of differential- difference equations can be used in the investigation of qualitative properties of this systems.

Example 3.2. For the delay system

$$
\begin{align*}
& \frac{d x(t)}{d t}=\mu \cos t x(t)+\mu a y(t-\tau), \tag{23}\\
& \frac{d y(t)}{d t}=-y(t)+\mu b x(t-\tau),
\end{align*}
$$

we are interested in the construction of an integral manifold of solutions in form (6)

$$
\frac{d x(t)}{d t}=h(t, \mu) x(t), \quad y(t)=k(t, \mu) x(t)
$$

The functions k and h are defined by the system

$$
\begin{align*}
h(t, \mu)= & \mu \cos t+\mu a k(t-\tau, \mu) \exp \int_{t}^{t-\tau} h(r, \mu) d r \\
& k(t, \mu)=\mu \int_{0}^{t}\left(e^{-(t-s)}(b-k(s, \mu)) \cos s-\right. \tag{24}\\
- & \left.a k(s, \mu) k(s-\tau, \mu)) \exp \int_{s}^{s-\tau} h(r, \mu) d r\right) d s
\end{align*}
$$

Solving System (24) by the method of successive approximations, we find

$$
h(t, \mu)=\mu \cos t+\mu^{2} a b+O\left(\mu^{3}\right) .
$$

The zero solution of the differential equation

$$
\frac{d x(t)}{d t}=\left(\mu \cos t+\mu^{2} a b+O\left(\mu^{3}\right)\right) x(t)
$$

and also the zero solution of System (23) are asymptotically stable for a sufficiently small values of $\mu>0$ and $a b<0$, and unstable if $a b>0$.

REFERENCES

[1] N.V. Azbelev, V.P. Maksimov, L.F. Rakhmatullina, Methods of modern theory of linear functional differential equations, R\&C Dynamics, Moscow-Izhewsk, 2000 (in Russian).
[2] A.D. Myshkis, On certain problems in the theory of differential equations with deviating argument, Uspekhi Mat. Nauk 32 (1977), No. 2, 173-202 (In Russian).
[3] K.G. Valeev, Splitting of matrix spectra, 'Vishcha Shkola', Kiev, 1986 (in Russian).
[4] K.G Valeev, O.A. Zhautykov, Infinite Systems of differential equations, 'Nauka', Kazah. SSR, Alma-Ata, 1974 (in Russian).
Klara R. Janglajew
jang@math.uwb.edu.pl
University of Białystok
Institute of Mathematics,
15-267 Białystok, Poland
Kim G. Valeev
Department of Mathematics,
Kiev National University of Economics
252057 Kiev, Ukraine
Received: November 2, 2005.

