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POLYNOMIAL QUASISOLUTIONS OF LINEAR
DIFFERENTIAL-DIFFERENCE EQUATIONS

Abstract. The paper discusses a linear differential-difference equation of neutral type with
linear coefficients, when at the initial time moment t = 0 the value of the desired function
x(t) is known. The authors are not familiar with any results which would state the solvability
conditions for the given problem in the class of analytical functions. A polynomial of some
degree N is introduced into the investigation. Then the term “polynomial quasisolution”
(PQ-solution) is understood in the sense of appearance of the residual ∆(t) = O(tN ), when
this polynomial is substituted into the initial problem. The paper is devoted to finding
PQ-solutions for the initial-value problem under analysis.
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1. INTRODUCTION

Application of mathematical modeling methods in investigation of various processes
often leads to investigation of differential equations of diverse structure. Unlike ordi-
nary differential equations, functional differential equations admit taking account of
the process prehistory. Linear differential-difference equations (LDDEs) with constant
delay are among the most studied functional differential equations. In the first turn,
it is reasonable to note the fundamental works of A.A. Myshkis [1], E. Pinni [2], R.
Bellman and K.L. Cooke [3], N.V. Azbelev, V.P. Maksimov and L.F. Rakhmatullina
[4]. In numerous works, the problem in which the initial function was given for the
initial set one way or anther was considered as the main one. As far as LDDEs are
concerned, it was shown that assigning the initial function guarantees the existence
of the unique solution in both the positive direction of the axis of the independent
variable and the negative one. But, as a rule, these solutions were not analytical
on an interval whose length exceeded the delay. Some LDDEs, like those where the
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problem’s parameters are constant or have some special representation, form an ex-
ception. In this case, it is possible to apply Euler’s classical method, which represents
the desired solution in the form of an exponential function and presumes finding
the roots of the characteristic quasi-polynomial generated by the initial problem. In
this case, it is possible to find the particular solutions having analytical structure on
the total domain of the independent variable. In the more general case, when the
problem’s parameters are time-dependent, no results concerning the existence of an-
alytical solutions of LDDEs are known. The paper considers a method of polynomial
quasisolutions for the investigation of neutral type LDDEs.

2. STATEMENT OF THE PROBLEM

Consider the following initial problem for a neutral type LDDE

dx̄(t)/dt + p(t)dx̄(t− 1)/dt = a(t)x̄(t− 1) + f̄(t), (2.1)

t ∈ J = (−∞,∞), x̄(0) = x0.

Here

a(t) = a0 + a1t, p(t) = p0 + p1t, f̄(t) =
F∑

n=0

f̄ntn. (2.2)

Let

x̄(t) =
∞∑

n=0

x̄ntn (2.3)

be a formal solution of problem (2.1). In this case, it is not possible to apply the
classical method of undetermined coefficients, since it is impossible to construct
the recurrent formula for defining the undetermined coefficients x̄n in (2.3). The
infinite-dimensional linear system of equations expressed in terms of x̄n obtained in
this case cannot nowadays be analyzed in the aspect of obtaining the coefficients x̄n.

Introduce the polynomial

x(t) =
N∑

n=0

xntn. (2.4)

In this case,

ẋ(t) =
N∑

n=0

nxntn−1, x(t− 1) =
N∑

n=0

xn(t− 1)n =
N∑

n=0

x̃ntn, (2.5)

where

x̃n =
N−n∑
i=0

(−1)iCi
n+ixn+i, Cm

n =
n!

m!(n−m)!
.
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Write out the relations

a(t)x(t− 1) = (a0 + a1t)
N∑

n=0

x̃ntn =
N+1∑
n=0

āntn, (2.6)

p(t)ẋ(t− 1) = (p0 + p1t)
N∑

n=0

nx̃ntn−1 =
N∑

n=0

p̄ntn, (2.7)

where

ān =


a0x̃0, n = 0,

a0x̃n + a1x̃n−1, 1 ≤ n ≤ N,

a1x̃N , n = N + 1.

(2.8)

p̄n =


p0x̃1, n = 0,

(n + 1)p0x̃(n + 1) + np1x̃n, 1 ≤ n ≤ N − 1,

p1Nx̃N , n = N.

(2.9)

Let us conduct the dimension analysis of the polynomials obtained as a as a result
of substitution of polynomial (2.4) into equation (2.1). The derivative derivative ẋ(t)
is represented as a polynomial of degree F . Hence, to ensure that – after substitution
of (2.4)–(2.7) into (2.1) and comparison of the degrees for the similar powers of t – the
last coefficient xN in (2.4) is defined by the given coefficient f̄F in (2.2) it is necessary
that N = F + 1. In this case, the degree of the polynomial in (2.6) is equal to F + 2.

Define a function f(t) of the form

f(t) =
F+2∑
n=0

fntn, (2.10)

where fi = f̄i, i = 0, F , fF+i, i = 1, 2, are some unknown coefficients.

Definition 2.1. The problem

ẋ(t) + p(t)ẋ(t− 1)/dt = a(t)x(t− 1) + f(t), t ∈ J, x(0) = x̄(0) = x0. (2.11)

is said to be coordinated with respect to degrees of the polynomials for problem (2.1).

Assuming in (2.4)–(2.7) that N = F + 1 and substituting these expressions (as
well as (2.10)) into (2.11), we obtain

F+1∑
n=0

nxntn−1 +
F+1∑
n=0

p̄ntn =
F+2∑
n=0

āntn +
F+2∑
n=0

fntn.

By equating coefficients for equal powers of t, we obtain

nxn = ān−1 − p̄n−1 + fn−1, 1 ≤ n ≤ F + 1,

0 = āF+1 − p̄F+1 + fF+1, n = F + 2,

0 = āF+2 + fF+2, n = F + 3.
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Remark 2.1. According to formula (2.10), the first F coefficients of the polynomial
f(t) are determined by the coefficients of the polynomial f̄(t) of problem (2.1). Hence,
the cases are admitted when some leading or even all coefficients f̄n in (3.2) are zero.

Since the degree of the polynomial x(t) is F + 1, by virtue of this remark it is
possible to choose a degree of the polynomial f̄(t) depending on the desired degree of
the polynomial x(t) by adding the corresponding number of zero terms to f̄(t), i.e., to
find solutions of the given problem in the form of polynomials (2.4) of diverse degrees.

Definition 2.2. If there exists a polynomial of degree F + 1

x(t) =
F+1∑
n=0

xntn, t ∈ J, (2.12)

which identically satisfies problem (2.11), then this polynomial will be called a poly-
nomial quasisolution (PQ-solution) of problem (2.1).

3. MAIN RESULTS

Rewrite problem (2.11), which has been coordinated with respect to the degree of
polynomials, in the form

ẋ(t) + p(t)ẋ(t− 1)/dt = a(t)x(t− 1) + f(t), t ∈ J, x(0) = x0. (3.1)

Let us find the PQ-solution of form (2.4)

x(t) =
N∑

n=0

xntn, t ∈ J. (3.2)

Then, according to (2.10) and Remark 2.1, for the function f(t) there is

f(t) =
F∑

n=0

fntn + ∆(t), (N > F + 1), (3.3)

where fi = f̄i, i = 0, F are known coefficients; ∆(t) = fntN + fN+1t
N+1, fN and

fN+1 are unknown coefficients.
Substituting (3.2) and (3.3) into (3.1) and taking account of (2.8) and (2.9), with

the use of the method of undetermined coefficients we obtain



x1 = a0x̃0 − p0x̃1 + f0,

2x2 = a0x̃1 + a1x̃0 − (2p0x̃2 + p1x̃1) + f1,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

nxn = a1x̃n−2 + [a0 − (n− 1)p1]x̃n−1 − p0nx̃n + fn−1, 3 ≤ n ≤ N.

(3.4)
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Let us transform the coefficient x̃n in (2.5) as follows

x̃n =
N−n∑
i=0

(−1)iCi
n+ixn+i = xn +

N∑
i=n+1

C̄n
i xi, n = 0, N − 1; x̃N = xN , (3.5)

where C̄i
n+i = C̄n

n+i = (−1)iCi
n+i.

Substituting (3.5) into (3.4) for n = N + 2− k, k = 0, 1, . . . we have:
— for n = N + 2,

0 = a1xN + fN+1;

— for n = N + 1,

0 = a1xN−1 + (a1C̄
1
N + [a0 −Np1])xN + fN ;

— for n = N ,

0 = a1xN−2 + (a1C̄
1
N−1 + [a0 − (N − 1)p1])xN−1+

+ (a1C̄
2
N + [a0 − (N − 1)p1]C̄1

N −N(p0 + 1))xN + fN ;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
— for n = N − s,

0 = a1xN−s−2 + (a1C̄
1
N−s−1 + [a0 − (N − s− 1)p1]xN−s−1+

+ (a1C̄
2
N−s + [a0 − (N − s− 1)p1]C̄1

N−s−
− (N − s)(p0 + 1))xN−s+

+
s∑

i=1

(a1C̄
2+i
N−s+i + [a0 − (N − s− 1)p1]C̄i+1

N−s+i − (N − s)p0C̄
i
N−s+i)xN−s+i+

+ fN−s−1.

Rewrite these equalities in the form

aNNxN + fN+1 = 0,

aN−1,N−1xN−1 + aN−1,NxN + fN = 0,

aN−2,N−2xN−2 + aN−2,N−1xN−1 + aN−2,NxN + fN−1 = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aN−s,N−sxN−s + aN−s,N−s+1xN−s+1 + . . . + aN−s,NxN + fN−s−1 = 0,

(3.6)
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where

aNN = a1;

aN−1,N−1 = a1,

aN−1,N = a1C̄
1
N + [a0 −Np1];

aN−2,N−2 = a1,

aN−2,N−1 = a1C̄
1
N−1 + [a0 − (N − 1)p1],

aN−2,N = a1C̄
2
N + [a0 − (N − 1)p1]C̄1

N −N(p0 + 1);

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aN−s,N−s = a1,

aN−s,N−s+1 = a1C̄
1
N−s+1 + [a0 − (N − s + 1)p1],

aN−s,N−s+2 = a1C̄
2
N−s+2 + [a0 − (N − s + 1)p1]C̄1

N−s+2 − (N − s + 2)(p0 + 1),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aN−s,N−s+k = a1C̄

k
N−s+k + [a0 − (N − s + 1)p1]C̄k−1

N−s+k − (N − s + 2)p0C̄
k−2
N−s,

k ≥ 3.

(3.7)
The analysis of equalities (3.7) renders the following lemma true.
Lemma 3.1. The general term of the sequence {xn}N

n=1, generated by system
(3.6), is defined by the formula

xN−s =
s∑

i=0

KN−s,N−s+ifN−s+i+1, (3.8)

where

KN−s,N−s = − 1
aN−s,N−s

,

KN−s,N−r = − 1
aN−s,N−s

s−r∑
i=1

aN−s,N−s+iKN−s+i,N−r, s > r.

Proof. Express the unknown coefficients xn of PQ-solution (3.2) in terms of the un-
known coefficients fN and fN+1 of polynomial (3.3).

aNNxN = −fN+1 ⇒ xN = KNNfN+1, KNN = − 1
aNN

;

aN−1,N−1 + aN−1,NxN = −fN ⇒ xN−1 = KN−1,N−1fN + KN−1,NfN+1.
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Here
KN−1,N−1 = − 1

aN−1,N−1
, KN−1,N = − aN−1,N

aN−1,N−1
KNN ;

aN−2,N−2 + aN−2,N−1xN−1 + aN−2,NxN = −fN−1 ⇒

xN−2 = KN−2,N−2fN−1 + KN−2,N−1fN + KN−2,NfN+1,

where
KN−2,N−2 = − 1

aN−2,N−2
, KN−2,N−1 =

aN−2,N−1

aN−2,N−2
KN−1,N−1,

KN−2,N =
aN−2,N−1

aN−2,N−2
KN−1,N +

aN−2,N

aN−2,N−2
KN,N .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Finally, by the mathematical induction method we obtain the formula

xN−s =
s∑

i=0

KN−s,N−s+ifN−s+i+1,

where

KN−s,N−s = − 1
aN−s,N−s

;

KN−s,N−r = − 1
aN−s,N−s

s−r∑
i=1

aN−s,N−s+iKN−s+i,N−r, s > r,

which proves the statement of the lemma.

Return to formula (3.4). Taking into account (3.5), rewrite the first equality in
the form

x1 = a0x̃0 − p0x̃1 + f0 =

= a0(x0 − x1 + x2 − . . . + (−1)NxN )− p0(x1 − 2x2 + 3x3 − . . . + N(−1)N+1xN ) + f0.

From that there follows:

a0x0 = (a0 +p0 +1)x1−(a0 +2p0)x2 +(a0 +3p0)x3− . . .+(−1)N+1(a0 +Np0)xN −f0

or

x0 = (1 +
p0 + 1

a0
)x1 − (1 + 2

p0

a0
)x2 + . . .− (−1)N+1(1 + N

p0

a0
)xN −

f0

a0
.

Introduce the notations:

V1 = 1 +
p0 + 1

a0
, V2 = −(1 + 2

p0

a0
), . . . , Vn = (−1)n+1(1 + n

p0

a0
).
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Then

x0 = V1x1 + V2x2 + . . . + VNxN −
f0

a0
. (3.9)

Taking into account (3.8), express the coefficients xn in terms of the coefficients
fi, i = 1, N + 1:

x0 =
N∑

i=0

K0,ifi+1 = K00f1 + K01f2 + K02f3 + . . . + K0,N−1fN + K0,NfN+1 =

=
N∑

k=0

fN+1−kK0,N−k,

x1 =
N−1∑
i=0

K1,i+1fi+2 = K11f2 + K12f3 + . . . + K1,N−1fN + K1,NfN+1 =

=
N−1∑
k=0

fN+1−kK1,N−k,

x2 =
N−2∑
i=0

K2,i+2fi+3 = K22f3 + . . . + K2,N−1fN + K2,NfN+1 =

=
N−2∑
k=0

fN+1−kK2,N−k,

xm =
N−m∑
i=0

Km,i+mfi+m+1 = Km,mfm+1 + . . . + Km,N−1fN + Km,NfN+1 =

=
N−m∑
k=0

fN+1−kKm,N−k,

xN = KNNfN+1.

Substitute the coefficients xn thus obtained into (3.9)

x0 = V1

N−1∑
k=0

fN+1−kK1,N−k + V2

N−2∑
k=0

fN+1−kK2,N−k + . . .

+Vm

N−m∑
k=0

fN+1−kKm,N−k + VNKNNfN+1 −
f0

a0
. (3.10)

Transform this formula, groupping the terms with the same coefficients fN+1−i, i =
1, N − 2.
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— For fN+1,

V1K1,N + V2K2,N + . . . + VmKm,N + . . . + VNKNN ;

— for fN ,

V1K1,N−1 + V2K2,N−1 + . . . + VmKm,N−1 + . . . + VN−1KN−1,N−1;

— for fN−1,

V1K1,N−2 + V2K2,N−2 + . . . + VmKm,N−2 + . . . + VN−2KN−2,N−2;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

— for fN−m,

V1K1,N−m+1 + V2K2,N−m−1 + . . . + VN−m−1KN−m−1,N−m−1;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

when f2,
V1K11.

These transformations lead to the formula

x0 =
N−1∑
k=0

(
N−k∑
i=1

ViKi,N−k)fN+1−k −
f0

a0
. (3.11)

Denote

K̄0,N−k =
N−k∑
i=1

ViKi,N−k

and rewrite (3.11) as follows:

x0 =
N−1∑
k=0

K̄0,N−kfN+1−k −
f0

a0
.

Theorem 3.1. For the initial value problem

dx(t)
d(t)

+ p(t)
dx(t− 1)

dt
= a(t)x(t− 1) + f(t), t ∈ J = (−∞,∞), x(0) = x0, (3.12)

let the following conditions hold:

a(t) = a0 + a1t, p(t) = p0 + p1t, f̄(t) =
F∑

n=0

f̄ntn.
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Then this problem has the unique PQ-solution of the form x(t) =
N∑

n=0
xntn (N > F+1)

with the residual ∆(t) = fN tN + fN+1t
N+1 if the determinant

D =

∣∣∣∣∣ K0,N K0,N−1

K̄0,N K̄0,N−1

∣∣∣∣∣
is nonzero.

Proof. Consider formula (3.8) when s = N

x0 =
N∑

k=0

K0,N−kfN+1−k. (3.13)

Write equalities (3) and (3.13) separating the terms with the unknown coefficients fN

and fN+1

x0 = K0,NfN+1 + K0,N−1fN +
N∑

k=2

K0,N−kfN+1−k,

x0 = K̄0,NfN+1 + K̄N−1,NfN +
N−1∑
k=2

K̄0,N−kfN+1−k − f0
a0

.

(3.14)

Rewrite these relations in the form of a linear system with respect to coefficients fN

and fN+1
K0,NfN+1 + K0,N−1fN = x0 −

N∑
k=2

K0,N−kfN+1−k,

K̄0,NfN+1 + K̄0,N−1fN = x0 −
N−1∑
k=2

K̄0,N−kfN+1−k + f0
a0

.

(3.15)

Denote

D1 =

∣∣∣∣∣∣∣∣∣∣
x0 −

N∑
k=2

K0,N−kfN+1−k K0,N−1

x0 −
N−1∑
k=2

K̄0,N−k + f0
a0

K̄0,N−1

∣∣∣∣∣∣∣∣∣∣
,

D2 =

∣∣∣∣∣∣∣∣∣∣
K0,N x0 −

N∑
k=2

K0,N−kfN+1−k

K̄0,N x0 −
N−1∑
k=2

K̄0,N−kfN+1−k + f0
a0

∣∣∣∣∣∣∣∣∣∣
.

Since the determinant of system (3.15) is nonzero by assumption, we find the solution
using Cramer’s rule

fN =
D2

D
, fN+1 =

D1

D
.
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Then from the chain of equalities (3.6) we obtain all the coefficients xn, the
PQ-solution in form (3.2) and the residual

∆(t) = fN + fN+1t
N+1 =

D2

D
tN +

D1

D
tN+1.

This proves the theorem.

Let F < N − 1. Introduce a coefficient fN−1 and consider it as a free parameter.
Rewrite linear system (3.15) in the form{

K0,NfN+1 + K0,N−1fN + K0,N−2fN−1 = W1,

K̄0,NfN+1 + K̄0,N−1fN + K̄0,N−2fN−1 = W2,
(3.16)

where

W1 = x0 −
N∑

k=3

K0,N−kfN+1−k, W2 = x0 −
N−1∑
k=3

K̄0,N−kfN+1−k +
f0

a0
.

Transform (3.16) as follows:{
K0,NfN+1 + K0,N−1fN = W1 −K0,N−2fN−1,

K̄0,NfN+1 + K̄0,N−1fN = W2 − K̄0,N−2fN−1.
(3.17)

This system has a solution if the determinant

D =

∣∣∣∣∣ K0,N K0,N−1

K̄0,N K̄0,N−1

∣∣∣∣∣ (3.18)

is nonzero.
Let D 6= 0. Hence (3.17) is an underdetermined linear system, and it has an

infinite number of solutions.
Denote

D1 =

∣∣∣∣∣ W1 −K0,N−1 K0,N−1

W2 − K̄0,N−2 K̄0,N−1

∣∣∣∣∣ and D2 =

∣∣∣∣∣ K0,N W1 −K0,N−2

K̄0,N W2 − K̄0,N−2

∣∣∣∣∣ .

Since the determinant of system (3.17) is nonzero, using Cramer’s rule we find the
coefficients fN and fN+1 as functions of fN−1:

fN =
D2

D
= ϕ1(fN−1), fN+1 =

D1

D
= ϕ2(fN−1).

Then for the residual ∆(t) we derive

∆(t) = fN−1t
N−1 + ϕ1(fN−1)tN + ϕ2(fN−1)tN+1. (3.19)

These results prove the following theorem.
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Theorem 3.2. For initial value problem (3.12), let the conditions of Theorem 3.1
hold.

Then this problem has an infinite set of PQ-solutions of the form x(t) =
N∑

n=0
xntn

with the residuals ∆(t) = fN−1t
N−1 + ϕ1(fN−1)tN + ϕ2(fN−1)tN+1, if

D =

∣∣∣∣∣ K0,N K0,N−1

K̄0,N K̄0,N−1

∣∣∣∣∣ (3.20)

is nonzero.

Since some of the coefficients fN−i, i = 1, 2 . . . may be chosen as free parameters,
from Theorems 3.1 and 3.2, we may derive the following result.

Corollary 3.1. There exist PQ-solutions of degree N for problem (3.1), having dif-
ferent residuals ∆(t) with estimates O(tN−k), k = 1, 2, . . ..

Some numerical results on PQ-solutions for LDDEs of delay type have been pub-
lished in [6].
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