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SOLUTIONS OF THIRD ORDER DIFFERENCE

EQUATIONS WITH QUASIDIFFERENCES

Abstract. In this paper, third order difference equations are considered. We study the

nonlinear third order difference equation with quasidifferences. Using Riccati transformation

techniques, we establish some sufficient conditions for each solution of this equation to be

either oscillatory or converging to zero. The result is illustrated with examples.
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1. INTRODUCTION

In this paper we consider the nonlinear difference equation of the form

∆(an∆(bn∆yn)) + pnf(yn+l) = 0, (1)

where l ∈ {0, 1, . . .}. Here ∆ denotes the forward difference operator ∆xn = xn+1−xn

for x : N → R. Sequences (an) and (bn) are positive sequences such that

∞
∑

n=1

1

an

= ∞ and
∞
∑

n=1

1

bn

= ∞. (2)

Sequence (pn) is positive, too. Function f : R → R is continuous and such that

uf(u) > 0 for u 6= 0, (3)
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and there exists a positive real number K such that

f(u)

u
> K for u > ǫ > 0. (4)

By a solution of equation (1), we mean a nontrivial sequence (xn) which satisfies

equation (1) for n sufficiently large. A solution of equation (1) is said to be oscillatory

if for every positive integer M there exists n > M such that xnxn+1 6 0. Otherwise,

it is called nonoscillatory.

Let r(i) (i = 1, 2, . . . ,m) be positive real sequences. For any real sequence x we

denote

L0(xn) = xn,

Li(xn) = r(i)
n ∆Li−1(xn), i = 1, 2, . . . ,m, n ∈ N.

Following above definition, we can say that we consider a third order difference

equation with quasidifferences.

In recent years, the study of the oscillatory and asymptotic properties of solutions

of nonlinear difference equations and their applications has been a subject of great

interest; see for example monographs by Agarwal [1], Elaydi [4] and Kelley and

Peterson [6]. The study of third order difference equations has also received much

attention. Third order linear difference equations were studied in Saker [11], Smith

[12], [13], Smith and Taylor [14], and nonlinear ones were studied by Andruch-Sobiło

and Migda [2], Došla and Kobza [3], Graef and Thandapani [5], Kobza [7], Migda,

Schmeidel and Drozdowicz [9], Popenda and Schmeidel [10], and by Thandapani and

Mahalingam [15].

2. PRELIMINARY RESULTS

We start with generalized Knaster Theorem proved by Migda in [8].

Theorem 1. Suppose that

∞
∑

n=1

1

r
(i)
n

= ∞ for all i = 1, 2, . . . ,m.

Let x : N → R\{0} be a sequence of a constant sign. If Lm(xn) is of a constant sign

and not identically zero for n > M and for some j ∈ {1, 2}

(−1)jxnLm(xn) > 0 for n > M,

then there exists an integer l ∈ {0, 1, . . . ,m} with m + l + j even, such that

xnLi(xn) > 0 for large n and i = 0, 1, . . . , l;

(−1)l+ixnLi(xn) > 0 for all n > M, i = l + 1, l + 2, . . . ,m.
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Suppose that y is a nonoscillatory solution of equation (1) and condition (4)

holds. Because p is a positive sequence, then quasidifference ∆(an∆(bn∆yn)) is of

a constant sign and not identically zero for sufficiently large n. Using above and

putting, in the Theorem 1:

m = 3, r(1) = b, r(2) = a and r(3) ≡ 1,

we obtain the following special case of Theorem 1.

Theorem 2. Let (yn) be a nonoscillatory solution of equation (1). Assume that

conditions (2) and (3) hold. Then exactly one of the following cases holds for all

sufficiently large n:

yn > 0, ∆yn > 0, ∆(bn∆yn) > 0, (or yn < 0,∆yn < 0,∆(bn∆yn) < 0)

yn > 0, ∆yn < 0, ∆(bn∆yn) > 0, (or yn < 0,∆yn > 0,∆(bn∆yn) < 0).

3. MAIN RESULT

By using the Riccati transformation techniques we establish sufficient conditions for

each solution to be oscillatory or tend to zero.

Theorem 3. Assume conditions (2), (3) and (4) hold,

anbn > 1, for n ∈ N, (5)

lim inf
n→∞

n−1
∑

k=1

1

bk

n−1
∑

j=1

1

aj

∞
∑

i=n

pi = ∞, (6)

and there exists a positive sequence ρ such that

lim sup
n→∞

n
∑

i=n1

[

Kρipi −
(∆ρi)

2

4ρi(i − n0)ai+1bi+1

]

= ∞, for n1 > n0, (7)

where K is given by (4). Then every solution y of equation (1) is oscillatory or tends

to zero.

Proof. Let (yn) be a nonoscillatory solution of (1). Without loss of generality, let us

assume yn > 0 eventually. Hence, by Theorem 2, one of the following cases

yn > 0, ∆yn > 0, ∆(bn∆yn) > 0, (8)

yn > 0, ∆yn < 0, ∆(bn∆yn) > 0, (9)

holds for all sufficiently large n.

We consider case (8) first. Let n0 ∈ N be so large that condition (8) holds, for

n > n0. Let ρ be a positive sequence. We define wn by some modification of the

Riccati substitution

wn = ρn

an∆(bn∆yn)

yn+l

= an∆(bn∆yn)
ρn

yn+l

.

Oscillatory and asymptotically zero solutions of third order difference (. . . ) 363



Thus w is a positive sequence, too. Hence

∆wn = an+1∆(bn+1∆yn+1)∆

(

ρn

yn+l

)

+
ρn

yn+l

∆(an∆(bn∆yn)).

Using equation (3), we obtain

∆wn = an+1∆(bn+1∆yn+1)∆

(

ρn

yn+l

)

−
ρn

yn+l

pnf(yn+1) =

= an+1∆(bn+1∆yn+1)

(

yn+l∆ρn − ρn∆yn+l

yn+lyn+l+1

)

−
ρn

yn+l

pnf(yn+l).

Condition (8) implies that lim
n→∞

yn > 0. Then there exists ǫ > 0 such that yn > ǫ for

sufficiently large n.

From condition (4) there follow

−f(yn+1) 6 −Kyn+1,

for some constant K. Thus, we obtain

∆wn 6
∆ρn

ρn+1
wn+1 −

ρn∆yn+l(an+1∆(bn+1∆yn+1))

yn+lyn+l+1
−

ρn

yn+l

Kpnyn+l.

Because for n > n0 the sequence y increases, then

∆wn 6
∆ρn

ρn+1
wn+1 −

ρn∆yn+l(an+1∆(bn+1∆yn+1))

(yn+l+1)2
− ρnKpn.

Because for n > n0 the sequence (bn∆yn) is positive and sequence

(∆(an(∆(bn∆yn)))) decreases, we see that

bn∆yn − bn0
∆yn0

=
n−1
∑

i=n0

∆(bi∆yi) > (n − n0)∆(bn+1∆yn+1).

The sequence (bn∆yn) decrease for large n, hence

−∆yn+l < −
(n − n0)∆(bn+1∆yn+1)

bn+l

.

From the above,

∆wn <
∆ρn

ρn+1
wn+1 −

ρn(n − n0)(an+1∆(bn+1∆yn+1))
2

(yn+l+1)2an+1bn+1
− Kρnpn =

=
∆ρn

ρn+1
wn+1 −

ρn(n − n0)w
2
n+1

ρ2
n+1an+1bn+1

− Kρnpn.
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Using condition (5), we obtain

∆wn 6
∆ρn

ρn+1an+1bn+1
wn+1 −

ρn(n − n0)w
2
n+1

ρ2
n+1an+1bn+1

− Kρnpn =

= −Kρnpn +
(∆ρn)2

4ρn(n − n0)an+1bn+1
−

−
ρn(n − n0)

ρ2
n+1an+1bn+1

w2
n+1 +

∆ρn

ρn+1an+1bn+1
wn+1 −

(∆ρn)2

4ρn(n − n0)an+1bn+1
=

= −Kρnpn +
(∆ρn)2

4ρn(n − n0)an+1bn+1
−

−

(

wn+1

ρn+1

√

ρn(n − n0)

an+1bn+1
−

∆ρn

2
√

ρn(n − n0)an+1bn+1

)2

<

< −Kρnpn +
(∆ρn)2

4ρn(n − n0)an+1bn+1
= −

(

Kρnpn −
(∆ρn)2

4ρn(n − n0)an+1bn+1

)

.

Summing the above inequality from n1 > n0 to n, we get

wn+1 − wn1
< −

n
∑

i=n1

(

Kρipi −
(∆ρi)

2

4ρi(i − n0)ai+1bi+1

)

.

Hence

−wn1
< −

n
∑

i=n0

(

Kρipi −
(∆ρi)

2

4ρi(i − n0) − ai+1bi+1

)

,

which yields
n
∑

i=n1

(

Kρipi −
(∆ρi)

2

4ρi(i − n0)ai+1bi+1

)

< C

for all large n. The above inequality contradicts (7).

Next we consider case (9). Since y is a positive and decreasing sequence, it follows

that

lim
n→∞

yn = c > 0.

Set c > 0. This implies that there exists n2 ∈ N such that yn > c for n > n2.

Therefore, from equation (1) and condition (4), we get

∆(an∆(bn∆yn)) + Kcpn 6 0, for n > n2.

Hence

∆(an∆(bn∆yn)) 6 −Kcpn.

Choose n3 so large that inequality given by (9) holds, and n4 = max{n2, n3}.

Summing the above inequality from n4 to n − 1, we obtain

an∆(bn∆yn) 6 an4
∆(bn4

∆yn4
) − Kc

n−1
∑

i=n4

pi. (10)
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Two cases are possible:

1◦
∞
∑

i=1

pi = ∞,

or

2◦
∞
∑

i=1

pi < ∞.

In case 1◦, the left hand side of inequality (10) is positive for n > n4, but the

left hand side of this inequality approaches minus infinity. This contradiction give us

c = 0.

Consider case 2◦. Set max
[ c

2
,2c]

f(x) = m. Since x ∈ [ c
2 , 2c], c > 0 and (3) there is

m > 0. From equation (1) and continuity of function f , we get

0 < an∆(bn∆yn) =
∞
∑

i=n

pif(yi+l) 6 m

∞
∑

i=n

pi,

for sufficiently large n. Hence

lim
n→∞

an∆(bn∆yn) = 0.

Letting n → ∞ in (10), from the above we obtain

ak∆(bk∆yk) > Kc

∞
∑

i=k

pi.

Rewrite it as follows

an∆(bn∆yn) > Kc

∞
∑

i=n

pi.

Dividing by an and summing the above inequality from n1 to n − 1 we obtain

bn∆yn − bn4
∆yn4

> Kc

n−1
∑

j=n4

1

aj

∞
∑

i=n

pi.

Since bn4
∆yn4

> 0 we get

bn∆yn > Kc

n−1
∑

j=n4

1

aj

∞
∑

i=n

pi.

Dividing by bn and summing again we derive

yn − yn4
> Kc

n−1
∑

k=n4

1

bj

n−1
∑

j=n4

1

aj

∞
∑

i=n

pi.
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Since yn4
> 0 we obtain

yn > Kc

n−1
∑

k=n4

1

bk

n−1
∑

j=n4

1

aj

∞
∑

i=n

pi.

Since (9) and (6) hold, this is not possible. This contradiction give us c = 0. The

proof is complete.

Example 1. Consider the difference equation

∆3yn + 8yn = 0. (11)

All assumption of Theorem 3 hold (with ρn ≡ 1). It is easy to check that yn = (−1)n

is an oscillatory solution of equation (11).

Example 2. Consider the difference equation

∆3yn +
1

4
yn+1 = 0. (12)

All assumption of Theorem 3 hold (with ρn ≡ 1). It is easy to check that yn = 1
2n
is

a solution of equation (12) which tends to zero as n tends to infinity.

Example 3. Consider the difference equation

∆

(

2

n − 1
∆(2n∆yn)

)

+ 2n−1y2
n+1 = 0. (13)

All assumption of Theorem 3 hold (with ρn ≡ 1). It is easy to check that yn = 1
2n
is

an solution of equation (13) which tends to zero as n tends to infinity.

Example 4. Consider the difference equation

∆2((n + 1)∆yn)) +
2

(n + 1)(n + 2)
yn = 0. (14)

All assumptions of Theorem 3 hold (with ρn = n). It is easy to check that yn = 1
n

is a solution of equation (14) which tends to zero as n tends to infinity.

Example 5. Consider the difference equation

∆2((n + 1)∆yn)) +
2

n(n + 2)
yn+1 = 0. (15)

All assumption of Theorem 3 hold (with ρn = n). It is easy to check that yn = 1
n
is

a solution of equation (15) which tends to zero as n tends to infinity.
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Example 6. Consider the difference equation

∆2((n + 1)∆yn)) +
2

n(n + 1)
yn+2 = 0. (16)

All assumption of Theorem 3 hold (where ρn = n). It is easy to check that yn = 1
n

is a solution of equation (16) which tends to zero as n tends to infinity.
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