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A DYNAMICAL INVERSE PROBLEM

FOR A PARABOLIC EQUATION

Abstract. A problem of dynamical reconstruction of unknown distributed or boundary

disturbances acting upon nonlinear parabolic equations is discussed. A regularized algorithm

which allows us to reconstruct disturbances synchro with the process under consideration is

designed. This algorithm is stable with respect to informational noises and computational

errors.
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1. INTRODUCTION

A problem of dynamical reconstruction of unknown inputs of parabolic systems is

considered. Both distributed and boundary disturbances may play a role of these

inputs. A system described by a parabolic equation is supposed to be functioning

on a given interval T = [0, ϑ]. Evolution of its phase state x(t), t ∈ T (system

trajectory) is determined by some input (disturbance) u(·) belonging to a given

functional set P (·). This input is unknown, as is the phase trajectory x(·). However,

there are some sensors which allow us to perform inaccurate measurements of outputs

x(τi) at discrete sufficiently frequent time moments τi ∈ T , τi < τi+1. It is required

to reconstruct a disturbance u∗(·) generating x(·): u∗(·) = u∗(·;x(·)). Since precise

reconstruction of u∗(·) is impossible (due to the measurement error), it is necessary

to design an algorithm for calculating an approximation to u∗(·). The smaller is the

value of measurement error and the denser is the partition of the interval T , the

better the approximation must be. The problem under discussion is treated within

the framework of the class of inverse problems. A posteriori formulations of inverse

problems for distributed equations were investigated by numerous authors [1–3].
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A method of dynamical reconstruction of input for a finite-dimensional dyna-

mical system affine in disturbance was suggested in [4]. This method was effectively

conformed in [5, 6] to solving different inverse problems for systems described by

partial differential equations. It is based on the theory of positional control [7] in the

combination with regularization methods of smoothing functional and discrepancy

[3], well-known in the theory of ill-posed problems.

The aim of this paper (continuing the results of [5, 6, 8, 9]) is to demonstrate

(based on the theory of boundary control developed in [10–14]) the possibilities

of applying the method of auxiliary positional-controlled models to investigate the

problems of reconstruction of unknown distributed or boundary disturbances acting

upon nonlinear parabolic equations. The structure of the paper is as follows. The

general scheme of an approach to solving the problems in question is presented in

Section 1. Then (Section 2) the problem of reconstruction of distributed or boundary

disturbances in parabolic equations is investigated.

2. METHOD OF POSITIONAL CONTROL WITH A MODEL

Let us pass to actual formulation of the problem under consideration and describing

an approach to its solution.

There is a dynamical system Σ functioning on a time interval T = [0, ϑ] and

described by a parabolic equation. At every moment t, its state is characterized

by an element x(t) of an infinite-dimensional space X. A motion of the system

x(t) = x(t; 0, x0, u(·)) starts from an initial state x0 under the action of an input

(disturbance) u(·) ∈ P (·) ⊂ L2(T ;U). At discrete sufficiently frequent time moments

τi ∈ T , τi = τi−1 + δ, i ∈ [1 : m], τ0 = 0, τm = ϑ, system phase states x(τi)

are inaccurately measured. The measurement results are elements ξi ∈ Ξ satisfying

inequalities

χ(x(τi), ξi) ≤ h. (1)

Here U , X, and Ξ are spaces of disturbances, outputs, and measurements, respec-

tively (U is a uniformly convex Banach space), Ξ(x(·), h) is a set of admissible

measurements, i. e., of piecewise constant functions t → ξ(t) ∈ Ξ with property (1),

χ is a criterion for a measurement error, h ∈ (0, 1) is a parameter of measurement

accuracy. Let the symbol xa,b(·) denote a function x(t), t ∈ [a, b] (which is considered

as an element of a functional space), the symbol Pτi,τi+1
denote the restriction of a

set of functions P (·) ⊂ L2(T ;U) to the half-interval [τi, τi+1).

The problem consists in the construction of a family of algorithms

Dh : {τi, ξi} 7−→ vτi,τi+1
(·) ∈ Pτi,τi+1

such that the following convergence takes place under an appropriate relation between

h and δ = δ(h)

‖vh(·) − u∗(·;x(·))‖L2(T ;U) → 0 as h→ 0, (2)
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where

vh(·) = Dhξ(·),

u∗(·;x(·)) is an element of the set of controls U(x(·)) ∈ P (·) generating the output

x(·).

Using well-known constructions of the theory of ill-posed problems [3], we intro-

duce the following straightforward definition.

Definition. A family Dh, h ∈ (0, 1), of operators acting from Ξ(x(·), h) into P (·) is

called regularized if for any output x(·)

ν(x(·)) = lim
h→0

sup
{

‖Dhξ(·) − u∗(·;x(·))‖L2(T ;U) : ξh(·) ∈ Ξ(x(·), h)
}

= 0.

The problem discussed in this paper consists in the construction of regularized

families of Volterra operators Dh, h ∈ (0, 1).

The approach to its solution (described below) is based on the well-known

principle of the theory of positional control — the principle of auxiliary controlled

models. Its essence consists in the following. An auxiliary dynamical system M

(a model) whose motion is a solution of a specific parabolic equation is chosen.

Hereinafter, this motion is denoted by

wh(t) = wh(t; 0, w∗, v
h
t0,t(·)), t ∈ T, (3)

w∗ is an initial state of the model, v
h(·) ∈ P (·) is a control. Once the model has been

chosen, the algorithm of input reconstruction is identified with the feedback control

law in the model. The initial state w∗ is fixed before the control process starts. Model

control laws, being called strategies according to the terminology of the theory of

positional control [7], are identified with pairs (∆h,Uh), where ∆h = {τh,i}
mh

i=0 is a

partition of the interval T into half-intervals [τh,i, τh,i+1), τh,i+1 = τh,i + δ, δ = δ(h),

τh,0 = 0, τh,mh
= ϑ, Uh is a function relating an element

vh
τi,τi+1

(·) = Uh(τi, ξi, ψi) ∈ Pτi,τi+1
(4)

to every triple (τi, ξi, ψi), i ∈ [0 : mh − 1]. Here τi = τh,i, ξi = ξt0,τi
(τi), ξt0,τi

(·) ∈

Ξ(x(·), h)t0,τi
is an admissible measurement ξ(t), t0 ≤ t ≤ τi, w

h(τi) is a model phase

state at moment τi, x(·) is a system phase trajectory, ψi ∈ Ξ is a result of inaccurate

measurement of state wh(τi):

χ1(w
h(τi), ψi) ≤ h,

χ1 is a criterion for a measurement error for model trajectory.

Thus, for every h ∈ (0, 1) the triple (M,∆h,Uh) determines some algorithm

Dh on the set of measurements ξ(·) ∈ Ξ(x(·), h), forming output vh(·) = Dhξ(·)

by feedback principle (3), (4). A regularized family Dh, h ∈ (0, 1), is suggested to

be constructed from algorithms of such kind (we identify every algorithm Dh with
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the triple (M,∆h,Uh)). So the problem consists in the construction of a regularized

family of algorithms Dh = (M,∆h,Uh), h ∈ (0, 1), of form (3), (4).

The operation of the algorithm Dh (for a fixed h) may be outlined as follows.

Before the moment t0, a partition ∆ = ∆h = {τi}
m
i=0, (τi = τh,i, m = mh) of

the interval T and an auxiliary model M are chosen and fixed. The operation is

decomposed into m− 1, m = mh, identical steps. At the i-th step carried out during

the interval [τi, τi+1), the following sequence of actions is fulfilled. The output x(τi)

is measured inaccurately, i. e., the element ξi with property (1) is calculated. Then

the model control is determined by rule (4) and the memory correction is realized:

the new part of the trajectory wh(t) = w(t; τi, w
h(τi), w

h
τi,τi+1

(·)), t ∈ (τi, τi+1], is

formed instead of wh(τi). The procedure stops at the time ϑ.

3. DISTURBANCE RECONSTRUCTION FOR PARABOLIC SYSTEMS

Let a system Σ be described by the following parabolic equation

xt(t, η) − ∆x(t, η) = f(t, η) + (B1u1(t))(η) + Φ(x(t, η))

in T × Ω = Q, T = [0, ϑ]
(5)

with the initial condition

x(0, η) = x0(η) in Ω (6)

and the boundary condition

x(t)|Γ = B2u2(t), t ∈ T. (7)

Here Ω ⊂ Rn is an open bounded domain with a sufficiently smooth boundary Γ, ∆

is the Laplace operator, f(·) ∈ L2(T ;L2(Ω)) is a given disturbance, H = L2(Ω), Φ(·)

is a Lipschitz function, B1 ∈ L(U1;L2(Ω)) and B2 ∈ L(U2;L2(Γ)) are continuous

linear operators, U1 and U2 are uniformly convex Banach spaces.

Following [10, 11], we give the definition of a solution. Let σ be the Dirichlet

map (harmonic extension of boundary data) defined by

σu2 = h⇐⇒

{

∆h = 0 in Ω,

h = u2 in Γ, u2 ∈ L2(Γ),

σ : continuous L2(Γ) → H.

Introduce the map

t→ p(t; ·, ·, ·) : H × L2(T ;U) × C(T ;H) → C(T ;H),

p(t;x0, u(·), z(·)) = S(t)x0 +A

t
∫

0

S(t− τ)σB2u2(τ) dτ +

+

t
∫

0

S(t− τ){f(τ) +B1u1(τ) + Φ(z(τ))} dτ, t ∈ T.
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Here Ah = ∆h, h ∈ D(A) = H0
1 (Ω) ∩ H2(Ω) is the generator of a contracting

semigroup of continuous linear operators {S(t); t ≥ 0} in H.

The function x(·) = x(·; 0, x0, u(·)) ∈ C(T ;H) satisfying the integral equation

x(t) = p(t;x0, u(·), x(·)) ∀ t ∈ T

is called a solution of equation (5)–(7) corresponding to a control u(·) ∈ P (·).

Let us formulate the problem under consideration. Unknown input disturbances

u1(·) and u2(·) act upon the system. Let u(t) = {u1(t), u2(t)} ∈ P = P1 × P2 for

a. a. t ∈ T, P1 ⊂ U1, P2 ⊂ U2 are convex, bounded, and closed sets. At discrete,

sufficiently frequent time moments

τi ∈ T, τi = τi−1 + δ, i ∈ [1 : m− 1], τ0 = 0, τm = ϑ

phase states of system (5)–(7) x(τi, η) = x(τi; 0, x0, u(·)) ∈ H = L2(Ω) are inaccura-

tely measured. Results of measurements (elements ξi ∈ H) satisfy the inequalities

|ξi − x(τi)|H ≤ h, (8)

where h is the measurement accuracy.

The operators B1 and B2, as well as the function Φ are assumed to be inaccu-

rately known. Namely, we know families of continuous linear operators Bh
1 and B

h
2

as well as of function Φh such that

|B1 −Bh
1 |L(U1,L2(Ω)) ≤ h, |B2 −Bh

2 |L(U2,L2(Γ)) ≤ h,

|Φ(x) − Φh(x)|H ≤ h, ∀x ∈ L2(Ω).

The problem consists in designing a family Dh, h ∈ (0, 1), of algorithms of dynami-

cal reconstruction of an unknown input disturbance u∗(·) = {u∗1(·), u
∗
2(·)} ∈ P (·) =

{u(·) = {u1(·), u2(·)} ∈ L2(T ;U) : u1(t) ∈ P1, u2(t) ∈ P2 for a. a. t ∈ T} generating

an unknown output x(·), x(·; 0, x0, u∗(·)). Here U = U1 × U2 is the space of distur-

bances, the symbol x(·; 0, x0, u∗(·)) denotes the solution of equation (5) with initial

and boundary conditions (6)–(7) and control u(·) = u∗(·).

In this section, we design the rule for constructing the family Dh, h ∈ (0, 1),

based on the scheme outlined in Section 1.

Let us pass to solving the problem of constructing aregularized family of ope-

rators Dh = (M,∆h,Uh), h ∈ (0, 1). Following the approach described above, it is

first necessary to choose an auxiliary system (a model). As the model, we take the

following linear system described by the parabolic equation

wt(t, η) − ∆w(t, η) = f(t, η) + (Bh
1 v

h
1 (t))(η) + vh

3 (t, η) in T × Ω,

w(0, η) = w0(η) in Ω
(9)

with the Dirichlet boundary condition

w(t)|Γ = Bh
2 v

h
2 (t), t ∈ T.
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By a solution of (9) generated by controls {vh
1 (·), vh

2 (·)} ∈ P (·) and vh
3 (·) ∈ L2(T ;H),

we mean a function wh(·) = w(·; 0, w0, v
h(·)) ∈ C(T ;H), vh(·) = {vh

1 (·), vh
2 (·), vh

3 (·)},

determined by the equality [12]

wh(t) = S(t)w0 +A

t
∫

t0

S(t− τ)σBh
2 v

h
2 (τ) dτ +

+

t
∫

0

S(t− τ){f(τ) +Bh
1 v

h
1 (τ) + vh

3 (τ)} dτ, t ∈ T. (10)

As is known [12, 13], such a solution exists and is unique if vh(·) ∈ P (·)×L∞(T ;H).

Let a family {∆h} of partitions ∆h = {τi}
m
i=0, τi = τh,i, m = mh, τ0 = 0, tm = ϑ

of the interval T with diameters δ = δ(h) be chosen. We determine the positional

strategy (∆h,Uh) assuming that

Uh(τi, ξi, ψi) = {vh
1 (t), vh

2 (t), vh
3 (t) : t ∈ δi}, (11)

vh
1 (t) = vh

1i, t ∈ δi, (12)

2(s∗i , A
−1Bh

1 v
h
1i)H + α(h)|vh

1i|
2
U1

≤ inf
{

2(s∗i , A
−1Bh

1 v1)H + α(h)|v1|
2
U1

: v1 ∈ P1

}

+ hδ,

vh
2 (t) = v∗(t− τi) for a. a. t ∈ δi, (13)

2

δ
∫

0

(

∂

∂n
∆−1S(δ − s)s∗i

∣

∣

∣

Γ
, Bh

2 v∗(s)

)

L2(Γ)

ds+ α(h)

δ
∫

0

|v∗(s)|
2
U2
ds ≤ (14)

≤ inf{2

δ
∫

0

(

∂

∂n
∆−1S(δ − s)s∗i

∣

∣

∣

Γ
, Bh

2 v(s)

)

L2(Γ)

ds+ α(h)

δ
∫

0

|v(s)|2U2
ds :

v(s) ∈ P2 for a. a. s ∈ [0, δ]} + hδ,

s∗i = A−1(ψi − ξi), |ψi − wh(τi)|H ≤ h,

vh
3 (t) = Φh(ξi) for a. a. t ∈ δi. (15)

Turning back to the general scheme (Section 1), we conclude that all its elements

are determined; here Ξ = H,

χ(x(τi), ξi) = |ξi − x(τi)|H , χ1(y
h(τi), ψi) = |ψi − yh(τi)|H ,

y∗ = w0, yh(·) = y(·; 0, y∗, v
h(·)) = wh(·) = w(·; 0, w0, v

h(·)).

The family Dh = (M,∆h,Uh) is given by (9)–(15).

Let ϕx(·) be the continuity modulus of a function t → x(t) ∈ H in T , i. e.,

ϕx(δ) = sup{|ϕ(x(t1)) − ϕ(x(t2))| : t1, t2 ∈ T, |t1 − t2| < δ}, U(x(·)) be the set of

all controls from P (·) which are compatible with an output x(·), i. e.,

U(x(·)) = {u(·) ∈ P (·) : x(·) = x(·; 0, x0, u(·))} .
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In other words,

U(x(·)) =







u(·) = {u1(·), u2(·)} ∈ P (·) :

x(t) − S(t)x0 −

t
∫

0

S(t− τ){f(τ) + Φ(x(τ))} dτ =

= A

t
∫

0

S(t− τ)σB2u2(τ) dτ +

t
∫

0

S(t− τ)B1u1(τ) dτ ∀ t ∈ T







.

It is easily seen that this set is convex, bounded, and closed in L2(T ;U). Therefore,

it consists of the single element u∗(·) = u∗(·;x(·)) = {u1∗(·), u2∗(·)} with minimal

L2(T ;U)-norm. Let the following conditions of concordance of parameters be fulfilled.

Condition 1.

δ(h) → 0+, α(h) → 0+, {δ(h) + h+ ϕx(δ(h))}α−1(h) → 0 as h→ 0.

In this case, the following theorem holds.

Theorem 1. Let the model initial state w0 = wh
0 ∈ H be such that

|x0 − wh
0 |H ≤ h.

Then the convergence

{vh
1 (·), vh

2 (·)} → u∗(·;x(·)) = {u1∗(·;x(·)), u2∗(·;x(·))} in L2(T ;U) as h→ 0

takes place and, consequently, the family Dh = (M,∆h,Uh) of form (9)–(15) is

regularized.

Before proving the theorem, we describe the sequence of actions necessary to

execute the algorithm Dh. Additionally, we give auxiliary statements.

The operation of the algorithm Dh of form (9), (11)–(15) for fixed h ∈ (0, 1) is

carried out according to the following scheme. Before the process, a value of h ∈ (0, 1)

and a partition ∆h = {τi}
m
i=0, τi = τhi, m = mh, with a diameter δ = δ(h) = δ(∆h)

are fixed. The operation of the algorithm is decomposed into (m− 1) identical steps.

At the i-th step carried out during the interval δi = [τi, τi+1], we calculate the control

vh
τi,τi+1

(·) = Uh(τi, ξi, ψi)

by means of mapping Uh of form (11)–(15) Then the model phase trajectory is

recalculated: we find wh(τi+1) = wh(τi+1; τi, w
h(τi), v

h
τi,τi+1

(·)) instead of wh(τi).

The procedure stops at the time ϑ.

Let us pass to auxiliary statements. It is easily seen that the following lemmas

hold.
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Lemma 1. A solution of equation (9) possesses the semigroup property, i. e., for any

t ∈ (0, ϑ), ∆t > 0, t+ ∆t ≤ ϑ, v(·) ∈ P (·) × L∞(T ;H) the equality

w(t+ ∆t; 0, w0, v(·)) = w(t+ ∆t; t, w(t), v(·))

is valid.

Lemma 2. A bundle of solutions of equation (5)–(7) XT = {x(·; 0, x0, u(·)) : u(·) ∈

P (·)} is bounded in C(T ;H).

The proof of the lemma is based on boundedness of the set P (·), Lipschitz

property of the function Φ, inequality (3.14) [13]

|AS(t)σB2u2|H ≤ ct−7/8|B2u2|L2(Γ), t > 0, u2 ∈ U2

and contractibility of the semigroup {S(t); t ≥ 0}.

Let P3(·) ⊂ L∞(T ;H) be an arbitrary bounded set. The following lemma may

be proved in a way similar to that in the proof of Lemma 2.

Lemma 3. A bundle of solutions of equation (9)

WT = {w(·; 0, w0, v(·)) : v(·) = {v1(·), v2(·), v3(·)} ∈ P (·) × P3(·)}

is bounded in C(T ;H).

Let

ε(t) = |A−1(wh(t) − x(t))|2H +

+ α(h)

t
∫

0

{

|vh
2 (s)|2U2

+ |vh
1 (s)|2U1

− |u2∗(s)|
2
U2

− |u1∗(s)|
2
U1

}

ds,

where the control

vh(t) = Vh(τi, ξi, ψi), t ∈ [τi, τi+1)

is calculated from (11)–(15). For x(·) ∈ XT , by Ξh(x(·)), we denote the set of all

piecewise constant functions ξ(t) : T → H satisfying supt∈T |ξ(t) − x(t)| ≤ h. For

ψ(·) ∈WT the set Ξh(ψ(·)) is defined by analogy.

Lemma 4. The inequality

εi ≡ ε(τi) ≤ k(δ + h+ ϕx(δ)), i ∈ [1 : m],

holds uniformly in all ξ(·) ∈ Ξh(x(·)), ψ(·) ∈ Ξh(ψ(·)), h ∈ (0, 1), and partitions

∆ = {τi}
m
i=0 of the interval T with diameters δ ≤ 1.
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Proof. By virtue of Lemma 1,

εi+1 =

∣

∣

∣

∣

∣

∣

A−1







S(δ)(wh(τi) − x(τi)) +

+A

δ
∫

0

S(δ − τ)σB2

(

vh
2 (τi + τ) − u2∗(τi + τ)

)

dτ +

+

δ
∫

0

S(δ − τ)
[

B1(v
h
1 (τi + τ) − u1∗(τi + τ)) + vh

3i − Φ(x(τi + τ))
]

dτ







∣

∣

∣

∣

∣

∣

2

H

+

+ α(h)

τi+1
∫

0

{

|vh
2 (s)|2U2

+ |vh
1 (s)|2U1

− |u2∗(s)|
2
U2

− |u1∗(s)|
2
U1

}

ds ≤

≤
3

∑

j=1

Jji + α(h)

τi+1
∫

0

{

|vh
2 (s)|2U2

+ |vh
1 (s)|2U1

− |u2∗(s)|
2
U2

− |u1∗(s)|
2
U1

}

ds, (16)

where

J1i = |si|
2
H , si = A−1S(δ)(wh(τi) − x(τi)),

J2i = 2



si,

δ
∫

0

S(δ − τ)σB2

(

vh
2 (τi + τ) − u2∗(τi + τ)

)

dτ





H

,

J3i = 2



si, A
−1

δ
∫

0

S(δ − τ)B1

(

vh
1 (τi + τ) − u1∗(τi + τ)

)

dτ





H

,

J4i = 2



si, A
−1

δ
∫

0

S(δ − τ)
{

vh
3i − Φ(x(τi + τ))

}

dτ





H

,

J5i = 3











∣

∣

∣

∣

∣

∣

δ
∫

0

S(δ − τ)σB2

(

vh
2 (τi + τ) − u2∗(τi + τ)

)

dτ)

∣

∣

∣

∣

∣

∣

2

H

+

+

∣

∣

∣

∣

∣

∣

A−1

δ
∫

0

S(δ − τ)B1

(

vh
1 (τi + τ) − u1∗(τi + τ)

)

dτ

∣

∣

∣

∣

∣

∣

2

H

+

+

∣

∣

∣

∣

∣

∣

A−1

δ
∫

0

S(δ − τ)
{

vh
3i − Φ(x(τi + τ))

}

dτ

∣

∣

∣

∣

∣

∣

2

H











.
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Since the semigroup {S(t); t ≥ 0} is contracting, the operator A−1 commutates with

S(δ), the function Φ(·) is Lipschitz, and the following inequalities hold:

|Φh(ξi) − Φ(x(τi + τ))|H ≤ h+ Lh+ Lϕx(δ), τi ∈ [0, δ],

J1i ≤ |A−1(wh(τi) − x(τi))|
2
H , (17)

J4i ≤ 2δ(1 + L)L|A−1
(

wh(τi) − x(τi))
)

|H |A−1|L(H;H)(h+ ϕx(δ)} ≤ k0δ(h+ ϕx(δ)).

(18)

Here L is a Lipschitz constant for the function Φ(·). Moreover by virtue of the

boundedness of sets P1 and P2 and relations A
−1 ∈ L(H;H), σ ∈ L(L2(Γ);H), there

is

J5i ≤ k1δ
2, (19)

where k1 is a constant in [0,+∞). Notice that

A

t
∫

0

S(t− s)x ds = S(t)x− x ∀x ∈ H.

Therefore,

|A−1{S(t)x− x}|H ≤ t|x|H . (20)

From (8), (13), (20) and Lemmas 2, 3, there follows

|si − s∗i |H = |A−1{S(δ)(wh(τi) − x(τi)) − (ψi − ϕi)}|H ≤ k2(h+ δ). (21)

Consequently,

J2i ≤ 2



s∗i ,

δ
∫

0

S(δ − τ)σ
(

Bh
2 v

h
2 (τi + τ) −B2u2∗(τi + τ)

)

dτ





H

+ k3δ{h+ δ}. (22)

It is known [13] that

σ∗S(t)x =
∂

∂n
∆−1S(t)x|Γ ∀x ∈ H. (23)

Thus, by virtue of (14), (22), (23),

J2i + α(h)

τi+1
∫

0

{|vh
2 (s)|2U2

− |u2∗(s)|
2
U2
} ds ≤

≤ (1 + k3)δ(h+ δ) + α(h)

τi
∫

0

{

|vh
2 (s)|2U2

− |u2∗(s)|
2
U2

}

ds. (24)
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Analogously, using (20), Lemmas 2, 3, and the boundedness of the set P (·) in

L∞(T ;U), we derive

J3i + α(h)

τi+1
∫

0

{|vh
1 (s)|2U1

− |u1∗(s)|
2
U1
} ds ≤

≤ 2



si, A
−1

δ
∫

0

Bh
1

(

vh
1 (τi + τ) − u1∗(τi + τ)

)

dτ





H

+

+ α(h)

τi+1
∫

0

{|vh
1 (s)|2U1

− |u1∗(s)|
2
U1
} ds+ k4(δ

2 + h) ≤

≤ 2



s∗i , A
−1

δ
∫

0

Bh
1

(

vh
1 (τi + τ) − u1∗(τi + τ)

)

dτ





H

+

+ α(h)

τi+1
∫

τi

{|vh
1 (s)|2U1

− |u1∗(s)|
2
U1
} ds+ k5δ(δ + h)+

+ α(h)

τi
∫

0

{|vh
1 (s)|2U1

− |u1∗(s)|
2
U1
} ds.

Hence, using (12), it follows that

J3i + α(h)

τi+1
∫

0

{|vh
1 (s)|2U1

− |u1∗(s)|
2
U1
} ds ≤

≤ α(h)

τi
∫

0

{|vh
1 (s)|2U1

− |u1∗(s)|
2
U1
} ds+ k5δ(δ + h). (25)

Taking into account estimates (16), (17)–(19), (24) and (25), and Lemmas 2, 3, we

conclude that

εi+1 ≤ εi + k6(h+ ϕx(δ)) + k7δ(δ + h) ≤ ε0 + k8δ(δ + h+ ϕx(δ)).

Thus,

εi ≤ |A−1(x0 −w0)|
2
H + k8ϑ(δ+ h+ϕx(δ)) ≤ k(δ+ h+ϕx(δ)), i ∈ [1 : m]. (26)

Lemma is proved.
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Introduce the set

U1(x(·)) =







u(·) =
{

u1(·), u2(·)} ∈ P (·) : A−1{x(t) − S(t)x0 −

−

t
∫

0

S(t− τ)
{

f(τ) + Φ(x(τ))} dτ
}

=

=

t
∫

0

S(t− τ)σB2u2(τ) dτ +A−1

t
∫

0

S(t− τ)B1u1(τ) dτ ∀ t ∈ T







. (27)

Lemma 5. The equality U(x(·)) = U1(x(·)) is true.

We give a proof for the case B1 ≡ 0. Let u(·) = u1(·) ∈ U1(x(·)). Then, by virtue

of (3.13) [14] and the relation σ ∈ L(L2(Γ);L2(Ω)), there is

t→ A

t
∫

0

S(t− τ)σB2u2(τ) dτ ∈ L2(T ;H). (28)

Applying the operator A to the right and left-hand sides of equality (27) and using

(28), we obtain u1(·) ∈ U(x(·)). The inverse statement may be proved in the same

manner.

Lemma 6. Let x0i → x0 in H, γi → 0+, vi(·) = {vh
1i(·), v

h
2i(·)} → u0(·) =

{u1(·), u2(·)} weakly in L2(T ;U), vi(·) ∈ P (·), vh
3i(·) → Φ(x(·)) in L2(T ;H) as

i→ ∞,

sup
t∈T

|A−1x(t) −A−1wi(t)|H ≤ γi, (29)

where wi(·) is the solution of equation (9) for v
h
j (·) = vh

ji(·), j ∈ [1 : 3]. Then the

inclusion

u0(·) ∈ U(x(·))

is valid.

Proof. Introduce the function

x∗(t) = A−1p(t;x0, u0(·), x(·)).

There is

sup
t∈T

|x∗(t) −A−1x(t)|H ≤ sup
t∈T

|x∗(t) − yi(t)|H + sup
t∈T

|yi(t) −A−1x(t)|H ,

yi(t) = A−1wi(t).
(30)

By virtue of the assumption of the lemma, the second term on the right-hand side

of inequality (30) tends to zero as i → ∞. We shall show that this property is also

valid for the first term.
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Assuming the contrary, we conclude that for some subsequence {yij
(·)} ∈ {yi(·)},

tj → t∗ ∈ T (as j → ∞), the following inequality is true:

0 < ε < |x∗(tj) − yij
(tj)|

2
H =

=



 A−1{S(tj)(x0 − x0ij
) +A

tj
∫

0

S(tj − τ)σB2{u2(τ) − u2ij
(τ)} dτ +

+

tj
∫

0

S(tj − τ)
{

B1{u1(τ) − u1ij
(τ)) + Φ(x(τ)) − vh

3ij
(τ)} dτ

}

, x∗(tj)− yij
(tj)





H

≤

≤



A−1{S(tj)(x0 − x0ij
) +A

tj
∫

0

S(tj − τ)σB2{u2(τ) − u2ij
(τ)} dτ +

+

tj
∫

0

S(tj − τ)
{

B1{u1(τ) − u1ij
(τ)) + Φ(x(τ)) − vh

3ij
(τ)} dτ

}

,

x∗(tj) −A−1x(tj)





H

+ k1γj . (31)

Let K = sup
t∈T,i

|x∗(t) − yi(t)|H , K1 = sup
t∈T

|S(t)|L(H;H). From (31) we derive

0 < ε < |x∗(tj) − yij
(tj)|

2
H ≤ KK1|A

−1|L(H;H)|x0 − x0ij
|H +

+

tj
∫

0

(

(S(tj − τ)σB2)
∗(x∗(tj) − yij

(tj)), (u2(τ) − u2ij
(τ)

)

U2

dτ +

+

tj
∫

0

(

(A−1S(tj − τ)B1)
∗(x∗(tj) −A−1x(tj)), (u1(τ) − u1ij

(τ)
)

U1

dτ +

+K|A−1|L(H;H)

tj
∫

0

∣

∣

∣Φ(x(τ)) − vh
3ij

(τ)
∣

∣

∣

H
dτ. (32)

However, taking into account the conditions of the lemma and continuity of the

semigroup {S(t); t ≥ 0} and functions x∗(t), A
−1x(t) in H, we deduce that the right-

hand side of inequality (32) tends to zero as j → ∞. The contradiction obtained

allows us to conclude that

sup
t∈T

|x∗(t) −A−1x(t)|H = 0,

i. e.,

p(·;x0, u0(·), x(·)) = x(·).

Thus, u0(·) ∈ U(x(·)). Lemma is proved.
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Proof of Theorem. The proof is similar to the proofs of analogous statements

(see [4, 6]). We shall show that for an arbitrary sequence hj → 0+ as j → ∞, any

family {∆hj
} of partitions of the interval T with diameters δ(hj), {δ(hj) + hj +

ϕx(δ(hj))}α
−1(hj) → 0 as j → ∞, and any ξhj (·) ∈ Ξhj

(x(·)) the convergence

{vh
1j(·), v

h
2j(·)} → u∗(·;x(·)) in L2(T ;U) as j → ∞ (33)

takes place. Here controls vh
1j(·) and v

h
2j(·) are determined according to (12), (14)

for h = hj , ξ(·) = ξhj (·). Assuming the contrary, we conclude that there exists a

subsequence of the sequence vh
j (·) = {vh

1j(·), v
h
2j(·)} (for simplicity we denote it with

the same symbol vh
j (·)) such that

vh
j (·) = {vh

1j(·), v
h
2j(·)} → v0(·) = {v10(·), v20(·)} 6= u∗(·;x(·))

weakly in L2(T ;U) as j → ∞.
(34)

It is easily seen from Lemma 4 that under the conditions of the theorem one can

indicate a sequence {γj}, γj → 0 as j → 0 such that inequality (29) holds. Therefore,

from Lemma 6 it follows that

|v0(·)|L2(T ;U) ≥ |u∗(·;x(·))|L2(T ;U). (35)

Further, owing to the known properties of weak limit, we obtain

lim
j→∞

|vh
j (·)|L2(T ;U) ≥ |v0(·;x(·))|L2(T ;U). (36)

From Lemma 4 we derive

|vh
j (·)|2L2(T ;U) ≤ |u∗(·;x(·))|

2
L2(T ;U) + k{δ(hj) + hj + ϕx(δ(hj)}/α(hj),

where

|u∗(·;x(·))|
2
L2(T ;U) = |u1∗(·;x(·))|

2
L2(T ;U1)

+ |u2∗(·;x(·))|
2
L2(T ;U2)

.

Consequently,

lim
j→∞

|vh
j (·)|L2(T ;U) ≤ |u∗(·;x(·))|L2(T ;U). (37)

From (35)–(37) we deduce that

lim
j→∞

|vh
j (·)|L2(T ;U) = |u∗(·;x(·))|L2(T ;U). (38)

However, in a uniformly convex Banach space strong convergence is a consequence of

the weak convergence of functions and convergence of their norms. Therefore, taking

into account (34), (38), we conclude that convergence (33) takes place. The theorem

is proved.
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