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THE REACTANCE WAVE DIFFRACTION PROBLEM

BY A STRIP IN A SCALE

OF BESSEL POTENTIAL SPACES

Abstract. We consider a boundary-transmission problem for the Helmholtz equation, in

a Bessel potential space setting, which arises within the context of wave diffraction theory.

The boundary under consideration consists of a strip, and certain reactance conditions are

assumed on it. Operator theoretical methods are used to deal with the problem and, as

a consequence, several convolution type operators are constructed and associated to the

problem. At the end, the well-posedness of the problem is shown for a range of regularity

orders of the Bessel potential spaces, and for a set of possible reactance numbers (dependent

on the wave number).
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1. INTRODUCTION

We will consider a plane wave diffraction problem with reactance conditions [5, 6, 16,

17] on a finite strip [8, 9, 10]. The analysis will be taken from an operator-theoretical

viewpoint.

The problem is initially presented in the form of a boundary-transmission value

problem. All the conditions will be then assembled in a single equation characterized

by an operator acting between Bessel potential spaces. Although this first operator

is not given in explicit form, it turns out that the construction of specific operator

relations lead us to related explicit convolution operators. As about these convolution

type operators, a new chain of operator relations based on factorization procedures
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leads us to the invertibility of all of them in a smoothness parameters range of

the Bessel potential spaces in use. Consequently, the well-posedness of the wave

diffraction problem is obtained, including the continuous dependence on the data in

a scale of spaces.

As mentioned, the theory will be developed in the framework of Bessel potential

spaces. A Bessel potential space can be defined as the linear space of distributions,

φ = rRn→Ωϕ, that are obtained by restricting to Ω ⊂ R
n the elements of the space

Hs(Rn) =
{
ϕ ∈ D′(Rn) : ‖ϕ‖Hs(Rn) = ‖F−1(1 + |ξ|

2
)
s/2

· Fϕ‖L2(Rn) < +∞
}
,

where s ∈ R and

(Fϕ)(ξ) =

∫

Rn

eiξ·xϕ(x) dx , ξ ∈ R
n . (1.1)

Moreover, the Hs(Ω) space endowed with the norm

‖φ‖Hs(Ω) = inf
{
‖ϕ‖Hs(Rn) : ϕ ∈ Hs(Rn), rRn→Ωϕ = φ

}

becomes a Banach space. For I ⊆ R+, we will by H̃
s(I) denote the closed subspace

of Hs(R) defined by the distributions with support contained in I. Moreover, in the

special case of s = 0, we will use the more common notation of L2
+(R) and L2(R+)

for representing the Lebesgue spaces H̃0(R+) and H0(R+), respectively.

2. FORMULATION OF THE WAVE DIFFRACTION PROBLEM

We will consider the problem of wave diffraction by a finite strip with reactance

conditions. The finite strip is denoted here by Σ =]0, a[ where the dependence on

one variable was dropped due to perpendicular wave incidence (which leads us from

strips to intervals); see Figure 1.

Fig. 1. The geometry of the problem

From the mathematical point of view, the problem can be formulated in a

Bessel potential space setting as the following boundary-transmission problem for
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the Helmholtz equation: Find ϕ ∈ L2(R2), with ϕ|R2
±
∈ Hs(R2

±), s > 1/2, such that

(
∆ + k2

)
ϕ = 0 in R

2
±, (2.1)

{
ϕ+

0 − ϕ−
0 = h1

ϕ+
1 − ϕ−

1 + qϕ+
0 = h2

on Σ, (2.2)

{
ϕ+

0 − ϕ−
0 = 0

ϕ+
1 − ϕ−

1 = 0
on R \ Σ, (2.3)

where R
2
± represents the upper/lower half-plane, k ∈ C (with Im k > 0) stands for

the wave number, ϕ±
0 = ϕ|y=±0, ϕ

±
1 = (∂ϕ/∂y)|y=±0, q ∈ C is the reactance number

and the elements h1 ∈ rR→ΣH̃
s−1/2(Σ), h2 ∈ rR→ΣH̃

s−3/2(Σ) are arbitrarily given

(since the dependence on the data is to be studied for well-posedness). The Bessel

potential spaces of order s > 1/2, s− 1/2 and s− 3/2 are naturally involved due to

the (generalized) Trace Theorem [4]. Note also that since for j = 0, 1 the traces ϕ±
j

belong to the Bessel potential spaces on the real line Hs−1/2−j(R), it is natural to

use the operator rR→Σ in view of the above characterization of the data h1 and h2

(which appear in the Σ ⊂ R boundary).

For the case when Σ is a half-line, the corresponding problem has previously

been considered by many authors as a Sommerfeld type problem. In [17, §5], such

a half-line problem was also regarded as a certain class of general screen problems

that were analyzed upon the boundary conditions considered.

The reason to consider the data in the restricted tilde spaces rR→ΣH̃
s−1/2(Σ)

and rR→ΣH̃
s−3/2(Σ) is a consequence of the overlapping of the information in (2.2)

and (2.3). Such realizations of the data are known as compatibility conditions [19]

and appear in several different kinds of wave diffraction problems. In fact, the first

compatibility condition follows directly from the first equations in (2.2) and (2.3),

whilst the second one follows from the second equations in (2.2) and (2.3) and by

noting that we have the continuous embedding Hs−1/2(Σ) →֒ rR→ΣH̃
s−3/2(Σ).

From the operator-theoretical point of view, the problem (2.1)–(2.3) can be

described with use of a single operator

L(s) : Ds(L(s)) →
(
rR→ΣH̃

s−1/2(Σ)
)
×

(
rR→ΣH̃

s−3/2(Σ)
)

(2.4)

defined as L(s)ϕ = (h1, h2)
T if D(L(s)) is provided to be the subspace of Hs(R2

+) ×

Hs(R2
−) whose functions satisfy Helmholtz equation (2.1) and transmission condition

(2.3). The operator L(s) is then said to be associated with the reactance problem.

In what follows, we will analyze whether L(s) is a bounded and invertible operator.

This will guarantee the well-posedness of the problem, including the continuous

dependence upon the data.
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3. CORRESPONDING EQUATIONS WITH CONVOLUTION TYPE

OPERATORS ON TILDE SPACES

In this section we shall explore the structure behind the operator L(s) defined in

(2.4). This will be done within the framework of convolution type operators. To this

end, we will first consider some operator extension procedures of the following type.

Definition 1. Let us consider two operators W1 : X1 → Y1 and W2 : X2 → Y2,

acting between Banach spaces.

(i) W1 and W2 are said to be algebraically equivalent after extension if there exist

additional Banach spaces Z1 and Z2 and invertible linear operators E : Y2 × Z2 →

Y1 × Z1 and F : X1 × Z1 → X2 × Z2 such that
[
W1 0

0 IZ1

]
= E

[
W2 0

0 IZ2

]
F. (3.1)

(ii) If, in addition to (i), the invertible and linear operators E and F in (3.1)

are bounded, then we will say that W1 and W2 are topologically equivalent after

extension operators (or simply say thatW1 andW2 are equivalent after extension

operators [1]).

(iii) W1 and W2 are said to be equivalent operators in the particular case when

W1 = EW2F , for some bounded invertible linear operators E : Y2 → Y1 and

F : X1 → X2.

We remark that the equivalence after extension notion (ii) is equivalent to the

notion of matricial coupling – which is well-known to be very important in solving

certain classes of integral equations, and is also important in (linear algebra) matrix

completion problems (cf. e.g. [1]). In the present work we will use above notion (i) in

the proof of Theorem 3, notion (ii) in Theorems 2, 3 and 7, and notion (iii) in the

proof of Theorem 3 and in Corollary 6.

Let

t(ξ) =
(
ξ2 − k2

)1/2
, ξ ∈ R (3.2)

denote the branch of the square root that tends to +∞ as ξ → +∞ with branch

cuts along ±k± iη, η ≥ 0. Then the following result on the structure of the operator

L(s) and related convolution type operators holds true.

Theorem 2. Let s− 1/2 /∈ N. The operator L(s) is equivalent after extension to the

convolution type operator

W̃Φ,Σ = rR→ΣF
−1Φ · F : H̃s−3/2(Σ) → rR→ΣH̃

s−3/2(Σ), (3.3)

where F denotes the Fourier transformation (cf. (1.1) for n = 1), and

Φ = 1 − qt−1/2, (3.4)

with q being the reactance number in (2.2), and t−1 the inverse of the function t

defined in (3.2) (and which depends on the wave number k).
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Proof. Note first the well-known fact [11, 17] that a function ϕ ∈ L2(R2), with

ϕ|R2
±
∈ Hs(R2

±), satisfies Helmholtz equation (2.1) if and only if it can be expressed

as

ϕ(x, y) = F−1
ξ 7→xe

−t(ξ)yFx7→ξϕ
+
0 (x)χR+

(y) + F−1
ξ 7→xe

t(ξ)yFx7→ξϕ
−
0 (x)χR−

(y) (3.5)

for (x, y) ∈ R
2, where Fx7→ξϕ(x, y) =

∫
R
ϕ(x, y)eiξxdx, and χR+

and χR−
denote the

characteristic functions of the positive and negative half-line, respectively.

Define the space

Zs =

{
(φ, ψ) ∈

[
Hs−1/2(R)

]2

:

φ− ψ ∈ H̃s−1/2(Σ), F−1t · F(φ+ ψ) ∈ H̃s−3/2(Σ)

}
.

Then (under the present conditions) the trace operator T0 : D(L(s)) → Zs defined

by

T0ϕ = ϕ0 :=

[
ϕ+

0

ϕ−
0

]

is an invertible operator. In fact, such a trace operator is continuously invertible with

the inverse operator K : ϕ0 7→ ϕ defined by representation formula (3.5). Moreover,

with the help of the operators T0 and K, the operator L
(s) can be rewritten in the

form of an operator matrix composition depending on W̃Φ,Σ (which can be checked

by direct computation):

L(s) =

[
0 rR→Σ

IrR→Σ
eHs−1/2(Σ)

q
2rR→Σ

][
W̃Φ,Σ 0

0 I eHs−1/2(Σ)

]
WΦ1,RT0, (3.6)

where WΦ1,R is the convolution operator on the whole line

WΦ1,R = F−1Φ1 · F : Zs → H̃s−3/2(Σ) × H̃s−1/2(Σ),

with

Φ1 =

[
−t −t

1 −1

]
.

Now it can easily be verified that the matrix operator

[
0 rR→Σ

IrR→Σ
H̃s−3/2(Σ) q

2rR→Σ

]
,

which maps rR→ΣH̃
s−3/2(Σ)× H̃s−1/2(Σ) into rR→ΣH̃

s−1/2(Σ)× rR→ΣH̃
s−3/2(Σ), is

a bounded invertible operator with the inverse
[
− q

2IrR→Σ
eHs−1/2(Σ) IrR→Σ

eHs−3/2(Σ)

l0
s−1/2

|rR→Σ
eH
(Σ) 0

]
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(where l0 denotes the zero extension operator). Additionally,WΦ1,RT0 is continuously

invertible with the inverse operator

KW−1
Φ1,R = KWΦ−1

1
,R : H̃s−3/2(Σ) × H̃s−1/2(Σ) → D(L(s)).

Consequently, (3.6) represents a factorization of the operator L(s) in the form of an

equivalence after extension relation between L(s) and the convolution type operator

on a finite interval, W̃Φ,Σ, defined in (3.3).

Due to the basic properties of the Fourier transformation, the operator F−1Φ ·

F in (3.3) has the form of a convolution operator (on the real line). Such kind

of operators, when composed with restriction operators like rR→Σ and defined on

domains having elements supported on Σ, are known as convolution type operators

(on finite intervals) in the operator theory literature, cf., e.g., [3, 9].

From now on we will always be considering s− 1/2 /∈ N (besides s > 1/2).

4. NEW RELATED OPERATORS LEADING TO THE FREDHOLM

PROPERTY

Our final goal is to study the invertibility of the operator W̃Φ,Σ defined in (3.3). To

this end, in the first step, we will make use of other convolution type operators in

such a process. We do this by first considering an auxiliary bounded and invertible

convolution type operator, and then extending the operator W̃Φ,Σ with use of the

announced auxiliary operator, which will allow us to work in the L2-space setting.

All this will lead to the Fredholm property at the end of the present section.

We recall that a bounded linear operator W : X → Y is called a Fredholm

operator if kerW has a finite dimension and imW has a finite codimension (in Y ).

In particular, Fredholm operators have closed range and are generalized invertible.

Additionally, for Fredholm operators W the Fredholm index is defined by

indW = dim kerW − dim cokerW.

4.1. AUXILIARY OPERATORS

We start by considering the auxiliary convolution type operator

Wt−1,Σ = rR→ΣF
−1t−1 · F : H̃s−3/2(Σ) → Hs−1/2(Σ) (4.1)

that will help us to identify some additional properties of W̃Φ,Σ.

Theorem 3. The convolution type operator Wt−1,Σ, defined in (4.1), is equivalent

after extension to the Wiener–Hopf operator

WΥ,R+
= rR→R+

F−1Υ · F : [L2
+(R)]2 → [L2(R+)]2, (4.2)

with

Υ = ζs−1

[
ζ−1/2 τ−a 0

1 ζ1/2 τa

]
, (4.3)
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where ζ = λ−/λ+ and λ±(ξ) = ξ ± k, τb(ξ) = exp[iξb], for ξ ∈ R.

This means that there are bounded and invertible linear operators E1 and F1 and

Banach spaces X and Y such that

[
Wt−1,Σ 0

0 IX

]
= E1

[
WΥ,R+

0

0 IY

]
F1. (4.4)

Proof. It is known from [14, Theorem 2.1] (see also [7, 15] for some generalizations)

that Wt−1,Σ is algebraically equivalent after extension to the new Wiener–Hopf

operator

WΥ1,R+
= rR→R+

F−1Υ1·F : H̃s−3/2(R+)×H̃s−1/2(R+) → Hs−3/2(R+)×Hs−1/2(R+),

with a Fourier symbol

Υ1 =

[
τ−a 0

t−1 τa

]
.

Thus, identity (3.1) in Definition 1(i) holds withW1 andW2 being replaced byWt−1,Σ

and WΥ1,R+
(and for some linear invertible – not necessarily bounded – operators E

and F ).

Next we show that the Wiener–Hopf operator WΥ1,R+
is equivalent to WΥ,R+

.

Here, the operator equivalence in question is constructed in an explicit way and can

be directly obtained by computing the following operator composition

WΥ1,R+
= E2WΥ,R+

F2, (4.5)

where E2 and F2 are defined by

E2 = rR→R+
F−1

[
λ
−s+3/2
− 0

0 λ
−s+1/2
−

]
· F l0 :

[L2(R+)]2 → Hs−3/2(R+) ×Hs−1/2(R+)

and

F2 = l0rR→R+
F−1


λ

s−3/2
+ 0

0 λ
s−1/2
+


 · F : H̃s−3/2(R+) × H̃s−1/2(R+) → [L2

+(R)]
2
.

In fact, the bounded operators E2 and F2 are invertible with

E−1
2 = rR→R+

F−1


λ

s−3/2
− 0

0 λ
s−1/2
−


 · F l0 :

Hs−3/2(R+) ×Hs−1/2(R+) → [L2(R+)]2 (4.6)
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and

F−1
2 = l0rR→R+

F−1


λ

−s+3/2
+ 0

0 λ
−s+1/2
+


 · F :

[L2
+(R)]2 → H̃s−3/2(R+) × H̃s−1/2(R+) (4.7)

(see [21, §2.10.3]). In view of the structure of the Fourier symbols of E2 and F2 [21],

it follows that the right hand-side of (4.5) can be rewritten in the form of an unique

Wiener–Hopf operator with Υ1 as its Fourier symbol.

We now study the Fredholm property of the Wiener–Hopf operator WΥ,R+
. The

Fourier symbol Υ (see (4.3)) of the Wiener–Hopf operator WΥ,R+
belongs to the

C∗-algebra of the semi-almost periodic (SAP) two by two matrix functions on the

real line (see [3, 20]). This means that Υ belongs to the smallest closed subalgebra

of [L∞(R)]
2×2
which contains the (classical) algebra of (two by two) almost periodic

elements and the (two by two) continuous matrices with possible jumps at infinity.

Additionally, the element in the second row and first column of Υ (that is, the lifted

Fourier symbol of Wt−1,Σ) is ζ
s−1, and the determinant of Υ is equal to ζ2(s−1).

Thus, using the well-known criteria for the Fredholm property of such operators

(see, e.g., [2]), we conclude that WΥ,R+
is a Fredholm operator with Fredholm index

−2[s− 1], where [θ] denotes the integer part of the real number decomposed in the

form θ = [θ] + {θ} with −1/2 < {θ} < 1/2 (for θ − 1/2 /∈ Z).

Now, since WΥ,R+
is equivalent to WΥ1,R+

and algebraically equivalent after

extension to Wt−1,Σ (through operator identity (4.5)), and by noting the structure

of identity (4.5), it follows that also the operators WΥ1,R+
and Wt−1,Σ are Fredholm

operators with Fredholm index −2[s−1]. Moreover, from the operator identities pro-

vided by both the equivalence relation and the algebraic equivalence after extension

relation, we conclude that the corresponding defect spaces of all the three operators

WΥ,R+
, WΥ1,R+

and Wt−1,Σ have the same dimensions. From this, and since by [1,

Theorem 3] Fredholm operators in Banach spaces are equivalent after extension if

and only if their corresponding defect spaces have equal dimensions, we arrive at the

last statement of Theorem 3.

We will now be concerned with the factorization of the Fourier symbol Υ.

The factorization will be done in such a way that the influence of the oscillating

behavior (at infinity) of the elements in Υ will be absent in the new main factor and,

additionally, it will allow the identification of the inverse of the corresponding Wiener–

Hopf operator. In view of these goals, we propose the following factorization for Υ:

Υ =

[
τ−aρ −1

1 0

]
×

×

[
ζs−1 ζs−1τa

(
ζs−1/2 − ρ

)

ζs−1τ−a

(
ρ− ζs−3/2

)
ζs−1ρ

(
ζs−1/2 + ζs−3/2 − ρ

)
]
×

[
1 τaρ

0 1

]
=
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=

([
τ−aρ −1

1 0

] [
1 0

τ−a

(
ρ− ζs−3/2

)
1

] [
λs−1
− 0

0 λs−1
−

])
×

×

([
λ−s+1

+ 0

0 λ−s+1
+

] [
1 τa

(
ζs−1/2 − ρ

)

0 1

] [
1 τaρ

0 1

])

=: Υ−Υ+. (4.8)

Here we are using the normalized sine function

ρ(ξ) =
2

π

ξ∫

0

sin y

y
dy

which reveals the following useful behavior at infinity

ρ(ξ) = signξ + O
(
|ξ|

−1
)
.

It is also important to observe that

τ±aρ ∈ H∞
± , (4.9)

i.e., τ±aρ are functions bounded and holomorphic in the upper/lower half-planes.

Theorem 4. For [s−1] = 0 (i.e., 1/2 < s < 3/2), the Wiener–Hopf operator WΥ,R+

is invertible with its inverse being given by the formula

W−1
Υ,R+

= rR→R+
F−1Υ−1

+ · F l0rR→R+
F−1Υ−1

− · F . (4.10)

Proof. The result is a direct consequence of the structure of Υ− and Υ+ (particularly

because of (4.9)) and of the corresponding factorization (4.8), involving also the

(generalized) L2–factorization [18] of
[
ζs−1 0

0 ζs−1

]
=

[
λs−1
− 0

0 λs−1
−

] [
λ−s+1

+ 0

0 λ−s+1
+

]
(4.11)

due to −1/2 < s− 1 < 1/2.

Corollary 5. If [s − 1] = 0, then the convolution type operator Wt−1,Σ, defined in

(4.1), is bounded and invertible with its inverse being

W−1
t−1,Σ = B11 ,

where B11 is the operator in the first block (with respect to the natural space decom-

position) of the operator matrix
[
B11 B12

B21 B22

]
= F−1

1

[
rR→R+

F−1Υ−1
+ · F l0rR→R+

F−1Υ−1
− · F 0

0 IY

]
E−1

1 ,

and E1 and F1 are the same as in Theorem 3.

Proof. The result follows directly from Theorems 3 and 4 in conjunction with (4.4)

and (4.10).
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4.2. FREDHOLM OPERATORS FOR THE WAVE DIFFRACTION PROBLEM

Taking advantage of the composition of the operators Wt−1,Σ and W̃Φ,Σ, we now

arrive at the following result.

Corollary 6. Let [s− 1] = 0. The operator W̃Φ,Σ is equivalent to

WΦ,Σ,s−1/2 = rR→ΣF
−1Φ · F l : Hs−1/2(Σ) → Hs−1/2(Σ), (4.12)

where l : Hs−1/2(Σ) → Hs−1/2(R) is an extension operator (whose particular choice

does not affect the definition of WΦ,Σ,s−1/2).

Proof. From Theorem 3 and the special form of Φ (see (3.4)), the following equivalent

equations follow:

W̃Φ,Σf = g

Wt−1,Σl0W̃Φ,Σf = Wt−1,Σl0g

rR→ΣF
−1Φ · F lWt−1,Σf = Wt−1,Σl0g

(4.13)

for f ∈ H̃s−3/2(Σ) and g ∈ rR→ΣH̃
s−3/2(Σ), where l is an operator of extension

whose particular form does not affect the left hand-side of (4.13). In fact, equation

(4.13), which involves the action of the operator WΦ,Σ,s−1/2, can be written in the

form

ϕ(ξ) −
q

2

a∫

0

F−1t−1(ξ − x)ϕ(x) dx = ψ(ξ) , ξ ∈ Σ.

It is clear that the above equation is dependent on ϕ ∈ Hs−1/2(Σ) and independent

of the remaining part of the extension lϕ = lWt−1,Σf ∈ Hs−1/2(R).

Now, instead of studying WΦ,Σ,s−1/2 directly, we consider the following image

and domain extension of WΦ,Σ,s−1/2

WΦ,Σ,0 = rR→ΣF
−1Φ · F l0 : L2(Σ) → L2(Σ), (4.14)

which is a linear and bounded operator. From the Fredholm theory of Wiener–Hopf

operators with continuous Fourier symbols (see e.g. [12]), it follows that for [s −

1] = 0 we have dim cokerWΦ,Σ,s−1/2 = dim cokerWΦ,Σ,0 and dim kerWΦ,Σ,s−1/2 =

dim kerWΦ,Σ,0. This is also a consequence of the structure of Φ (which can be

presented in terms of operators as the identity plus additional smoothing) and of

the space embedding Hs−1/2(Σ) →֒ L2(Σ). Moreover, if we have the knowledge of

W−1
Φ,Σ,0 (the inverse of WΦ,Σ,0), then a representation of the inverse of WΦ,Σ,s−1/2

can be derived from W−1
Φ,Σ,0 by use of the corresponding space restrictions.

Let us denote by Sk the set of all complex reactance numbers q which turn

the continuous Fourier symbol Φ away from zero (cf. Fig. 2 for the wave number

k = 5 + i/2 and the reactance number q = 10 − 10i ∈ S5+i/2).
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Fig. 2. The graph of Φ for k = 5 + i/2 and q = 10 − 10i

Theorem 7. Let q ∈ Sk. The convolution type operator WΦ,Σ,0 is equivalent after

extension to the following Fredholm operator with vanishing Fredholm index:

WΨ,R+
= rR→R+

F−1Ψ · F l0 : [L2(R+)]
2
→ [L2(R+)]2,

where

Ψ =

[
τ−a 0

Φ τa

]

and τa(ξ) = exp[iξa] for ξ ∈ R.

Proof. Since Φ(±∞) = 1 and Φ(ξ) 6= 0, for all ξ ∈ R, the operator WΨ,R+
has the

Fredholm property (see, for example, [2, Theorem 4.1]). Further, WΨ,R+
has zero

Fredholm index since the continuous function on the real line Φ has no jumps at

infinity and traces out a curve in the complex plane that leaves zero outside of

its interior delimited domain (cf., e.g., the Fredholm index formula (2.14) in [13,

Theorem 2.10]). The statement of the theorem now follows by arguing similarly as

in the proof of Theorem 3.

From Theorem 7 and the equivalence relations between the operators L(s), W̃Φ,Σ,

WΦ,Σ,s−1/2, and WΦ,Σ,0 the following corollary follows directly now.

Corollary 8. If q ∈ Sk and 1/2 < s < 3/2, then the operators L(s), W̃Φ,Σ,

WΦ,Σ,s−1/2, and WΦ,Σ,0 are Fredholm operators with zero Fredholm index.

5. ANALYSIS OF THE FOURIER SYMBOL Ψ AND INVERTIBILITY

OF RELATED OPERATORS

We are now in a position to prove the invertibility of all our main convolution

type operators arising from the wave diffraction problem. In doing this, we need a

new operator factorization scheme provided with the help of an auxiliary invertible

Wiener–Hopf operator.

The reactance wave diffraction problem by a strip (. . . ) 299



Lemma 9. If q ∈ Sk, then the Wiener–Hopf operator

WΦ,R+
= rR→R+

F−1Φ · F l0 : L2(R+) → L2(R+)

is invertible with the inverse W−1
Φ,R+

= rR→R+
F−1Φ−1

+ ·F l0rR→R+
F−1Φ−1

− ·F l0, where

Φ± = exp

{
1

2
(I ± SR) log

(
1 −

q

2
t−1

)}
(5.1)

and SR is the Cauchy integral operator on R:

(SRf) (ξ) =
1

πi

∫

R

f(x)

x− ξ
dx

(where the integral is understood in the principal value sense).

Proof. Note that for q ∈ Sk the Fourier symbol Φ = 1 − q t−1/2 is a non-vanishing

continuous function on the real line with the same non-zero limits at ±∞. Thus,

by virtue of the well-known Fredholm criterium for Wiener–Hopf operators with

continuous Fourier symbols (see, e.g., [3, Theorem 2.15]), it follows that WΦ,R+
is

a Fredholm operator. Further, we observe that as ξ moves from −∞ to +∞, the

point Φ(ξ) traces out a continuous oriented closed curve in C \ {0} starting from

Φ(−∞) = 1 till Φ(0) and then coming back again by the same way to Φ(+∞) = 1

(cf. the example of Fig. 2). Therefore, the graph of Φ has zero windings around the

origin (recall also the definition of the set Sk), and it follows that WΦ,R+
has a zero

Fredholm index.

On the other hand, since WΦ,R+
is a scalar Wiener–Hopf operator with a non-

zero Fourier symbol, Coburn Theorem (see [3, Theorem 2.5]) can be applied to derive

that kerWΦ,R+
= {0} or the range of WΦ,R+

is dense and then closed in L2(R+).

Consequently,WΦ,R+
is invertible. By the factorization theory of continuous functions

(see [18, Chapter III, §5]) we obtain representation (5.1) for the construction of the

inverse operator.

Theorem 10. Let q ∈ Sk. The Wiener–Hopf operator WΨ,R+
: [L2(R+)]

2
→

[L2(R+)]
2
is a bounded and invertible operator.

Proof. The operator WΨ,R+
is bounded because Ψ is an essentially bounded function.

We now prove the invertibility of WΨ,R+
. We start by factorizing WΨ,R+

into

the form

WΨ,R+
=

[
I rR→R+

F−1τ−a · F l0W
−1
Φ,R+

0 I

] [
C 0

0 WΦ,R+

]
×

×

[
0 −I

I W−1
Φ,R+

rR→R+
F−1τa · F l0

]
(5.2)
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where

C = rR→R+
F−1τ−a · F l0 W

−1
Φ,R+

rR→R+
F−1τa · F l0 : L2(R+) → L2(R+).

We recall that the existence of the inverse of WΦ,R+
is guaranteed by Lemma 9, since

q ∈ Sk.

From (5.2) and Lemma 9 it can be seen that WΨ,R+
is invertible if and only if

C is invertible. By (5.2) and Theorem 7, we conclude that C is a Fredholm operator

with a vanishing Fredholm index. Thus, to derive the invertibility of WΨ,R+
it is

enough to show that C is an injective operator, that is, 〈Cϕ,ϕ〉L2(R+) = 0 implies

ϕ = 0. Now for ϕ ∈ L2(R+),

〈Cϕ,ϕ〉L2(R+) =
〈
W−1

Φ,R+
rR→R+

F−1τa · F l0ϕ, rR→R+
F−1τa · F l0ϕ

〉
L2(R+)

.

Thus it is enough to show that

〈
W−1

Φ,R+
φ, φ

〉
L2(R+)

= 0 implies φ = 0 (5.3)

since the right a-shift operator rR→R+
F−1τa · F l0 : L2(R+) → L2(R+) is obviously

injective.

Let ψ = W−1
Φ,R+

φ. Then (5.3) is equivalent to

〈
ψ,WΦ,R+

ψ
〉

L2(R+)
= 0 implies ψ = 0. (5.4)

Since Φ = 1 − q t−1/2 and

〈
ψ,WΦ,R+

ψ
〉

L2(R+)
= 〈F l0ψ,Φ · F l0ψ〉L2(R) ,

it follows that (5.4) is true.

From Theorem 10 and the constructed equivalence relations between the ope-

rators L(s), W̃Φ,Σ, WΦ,Σ,s−1/2, and WΦ,Σ,0, we immediately obtain the following

assertion.

Corollary 11. If q ∈ Sk and 1/2 < s < 3/2, then the operators L(s), W̃Φ,Σ,

WΦ,Σ,s−1/2, and WΦ,Σ,0 are all invertible.

Bearing in mind Section 2, this corollary directly yields the following result on

the well-posedness of the wave diffraction problem within a range of regularity orders

of the Bessel potential spaces, and for a set of possible reactance numbers (dependent

on the wave number).

Corollary 12. If q ∈ Sk and 1/2 < s < 3/2, then there is a unique solution

ϕ ∈ L2(R2), with ϕ|R2
±

∈ Hs(R2
±), to the reactance diffraction problem (2.1)–(2.3).

This solution is continuously dependent on the given data.
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[1] Bart H., Tsekanovskii V. È.: Matricial coupling and equivalence after extension,

in: Operator Theory and Complex Analysis (Oper. Theory Adv. Appl.: Vol. 59;

eds.: T. Ando et al.). Birkhäuser, Basel, 1992, 143–160.
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[18] Mikhlin S.G., Prössdorf S., Singular Integral Operators, Springer-Verlag, Berlin,

1986.

[19] Moura Santos A., Speck F.-O., Teixeira F. S., Compatibility conditions in some

diffraction problems, Pitman Res. Notes Math. Ser. 361 (1996), 25–38.

[20] Sarason D., Toeplitz operators with semi almost periodic symbols, Duke Math.

J. 44 (1977), 357–364.

[21] Triebel H., Interpolation Theory, Function Spaces, Differential Operators (2nd

edition), Johann Ambrosius Barth, Heidelberg, 1995.

Lúıs P. Castro

lcastro@mat.ua.pt

University of Aveiro

Department of Mathematics

3810–193 Aveiro, Portugal

David Natroshvili

natrosh@hotmail.com

Georgian Technical University

Department of Mathematics

77 M. Kostava st., Tbilisi 0175, Republic of Georgia

Received: October 3, 2005.

The reactance wave diffraction problem by a strip (. . . ) 303


