
Jeff R. Cash

THE NUMERICAL SOLUTION OF NONLINEAR

TWO-POINT BOUNDARY VALUE PROBLEMS

USING ITERATED DEFERRED CORRECTION

– A SURVEY

Abstract. The use of iterated deferred correction has proved to be a very efficient approach

to the numerical solution of general first order systems of nonlinear two-point boundary

value problems. In particular the two high order codes TWPBVP.f, based on mono-implicit

Runge–Kutta (MIRK) formulae, and TWPBVPL.f based on Lobatto Runge–Kutta formulae

as well as the continuation codes ACDC.f and COLMOD.f are now widely used. In this

survey we describe some of the problems involved in the derivation of efficient deferred

correction schemes. In particular we consider the construction of high order methods which

preserve the stability of the underlying formulae, the choice of the mesh choosing algorithm

which is based both on local accuracy and conditioning, and the computation of continuous

solutions.

Keywords: Deferred Correction, boundary value problems, conditioning, mesh selection.

Mathematics Subject Classification: 65L05, 65L06, 65L20.

1. INTRODUCTION

In recent years some powerful codes have been developed for the numerical solution

of the general first order system of nonlinear two-point boundary value problems

dy

dx
= f(x, y), a ≤ x ≤ b, g(y(a), y(b)) = 0. (1.1)

There are of course many important types of boundary value problems which do not

fall into this class, such as eigenvalue problems, problems with integral constraints,

problems posed on semi-infinite intervals, singular problems etc. but for the purpose

of this paper we will confine our attention to (1.1). However there has been a lot of

Opuscula Mathematica • Vol. 26 • No. 2 • 2006

269



work carried out on singular problems where special attention has to be paid to the

singular point. In particular Weinmuller et al. ([31]) have considered the solution of

boundary value problems with a singularity of the first kind. They consider a deferred

correction based on the implicit Euler method and show that their scheme retains

the classical order of convergence. The interested reader is referred to ([31]) and

related work. In what follows we consider some boundary value codes. In particular

we mention the collocation codes COLSYS ([1]) and COLNEW ([12]), the defect

correction code MIRKDC of Enright and Muir ([2]), the top order methods of

Trigiante and his co-workers ([20, 24, 5]) and the deferred correction codes of Cash

([3, 4]). The striking thing about these codes is that the way in which they attempt

to find the solution of (1.1) is, in each case, very different as we will show.

In this survey we consider the solution of (1.1) using iterated deferred correc-

tion. We will explain some of the important components which go to make up a

deferred correction scheme and we will point out the major differences between the

deferred correction approach and others that have been proposed. One of the codes

that has been popular for some time for the numerical solution of boundary value

problems is COLSYS ([1]). This code is based on the widely used technique of po-

lynomial collocation. In this approach the solution of (1.1) is approximated by a

piecewise polynomial function P (x) defined on a discrete mesh π. The coefficients

of this approximating polynomial are uniquely determined by requiring P to satisfy

the boundary conditions and also to satisfy the differential equation at certain points

in each subinterval of the mesh (the collocation points). The link between collo-

cation and implicit Runge–Kutta methods for initial value problems is well known

([13]) and so it is not surprising that the solution of (1.1) in the initial value case

using collocation on Gauss points (as used by COLSYS) is equivalent to solving

(1.1) using Gauss Runge–Kutta methods. It is natural to ask, in view of what has

been done for initial value problems, whether it would be more efficient to solve

(1.1) using a different class of Runge–Kutta methods since Gauss methods although

having excellent accuracy and stability properties are expensive to implement. One

class of Runge–Kutta methods which has been found to be particularly efficient for

the numerical solution of boundary value problems, are mono-implicit Runge–Kutta

(MIRK) [6] methods. The important property of this particular class of methods is

that for initial value problems they are implicit only in the single unknown yn+1

while for boundary value problems they are implicit only in yn and yn+1. Although

MIRK formulae are standard Runge–Kutta methods, and so can be expressed using

the well known Butcher tableau notation, it is much more illuminating to write them

in the special form

yn+1 = yn + h
s

∑

i=1

bi f(xn + ci h, Yi) (1.2)

Yi = (1 − vi) yn + vi yn+1 + h
s

∑

j=1

xij f(xn + cj h, Yj), i = 1, . . . , s.

270 Jeff R. Cash



The formula (1.2) can now be conveniently written in the following tableau form

c1 v1 x11 x12 . . . x1s

c2 v2 x21 x22 . . . x2s

...
...
...

...
...

...

cs vs xs1 xs2 . . . xss

b1 b2 . . . bs

(1.3)

This characterisation of MIRK formulae in terms of the matrix X helps conside-

rably in their derivation and shows clearly their special structure. We illustrate this

by considering the well known Clippinger–Dimsdale formula (this is also the Lobatto

IIIA formula of order 4) written using the well known Butcher notation [19]:

0 0 0 0
1

2

5

24

1

3

−1

24

1 1

6

2

3

1

6

1

6

2

3

1

6

(1.4)

It is clear that this formula can be rewritten in the form

yn+1 − yn =
h

6
(k1 + 4k2 + k3) (1.5)

where

k1 = f(xn, yn),

k2 = f

(

xn+ 1

2

,
yn + yn+1

2
−
h

8
(k3 − k1)

)

,

k3 = f(xn+1, yn+1).

(1.6)

If we now introduce the notation used in (1.2) we can rewrite this equation as

0 0 0 0 0

1 1 0 0 0
1

2

1

2

1

8

−1

8
0

1

6

1

6

2

3

(1.7)

We note that the matrix X is lower triangular and it is this which gives MIRK

formulae their desirable property of being implicit in the single unknown yn+1 for

initial value problems. We also note that the link between the modified notation

which uses the matrix X and the standard Butcher notation is given by the identity

A = X + vbT . (1.8)

The numerical solution of nonlinear two-point boundary value problems (. . . ) 271



In what follows we will consider a particularly efficient approach to the implementa-

tion of Runge–Kutta methods in a deferred correction framework. In this approach,

which was originally proposed by Fox [14], we need to define two operators which

will be used to characterise our deferred correction method. The first operator, which

we will denote by φ, computes a cheap low order numerical approximation to the

solution of (1.1) while the second, denoted by ψ computes an estimate of the local

error in φ. Using these two operators our deferred correction formula can be written

in the form

φ(η) = 0, (1.9)

φ(η̄) = ψ(η). (1.10)

A general framework for proving accuracy results for deferred correction schemes of

the form (1.9), (1.10) was given in an influential paper by Skeel [15]. In what follows

we present his main theorem.

Consider the approximate numerical solution of (1.1) on a mesh

π : a = x1 < x2 < . . . < xN+1 = b.

Denote by ∆y the restriction of the continuous solution y(x) to the finite grid π.

Then we have the following theorem:

Theorem 1.1. Let φ be a stable numerical method and assume that the following

conditions hold for the deferred correction (1.9), (1.10):

(i) ‖η − ∆y‖ = O(hp),

(ii) ‖ψ(∆y) − φ(∆y)‖ = O(hr+p),

(iii) ψ(∆w) = O(hr),

for arbitrary functions w having at least r continuous derivatives. Here ‖.‖ is a suitable

finite norm defined in [15]. If φ(η̄) = ψ(η) then

‖η̄ − ∆y‖ = O(hr+p) .

The question now is how to define the two operators φ and ψ. In particular we

want the scheme (1.9), (1.10) to be of high order while at the same time being cheap

to implement. In what follows we will adopt a particular form of deferred correction

which was first proposed by Fox [14] and later refined by Lindberg [16]. The proposal

was as follows: Let φi, φj be two Runge–Kutta formulae of order i and j respectively

where i < j. Consider the algorithm defined by

φi(η) = 0, (1.11)

φi(η̄) = −φj(η), (1.12)

which does of course lie in the general framework defined by (1.9), (1.10). It is

immediately clear that if we make these choices for φ and ψ then the first two

272 Jeff R. Cash



conditions of Skeel’s theorem are trivially satisfied. It is the third condition of Skeel’s

theorem that it is not straightforward to satisfy. To explain how to satisfy this

third equation we consider the case p = 4, r = 2 in Theorem 1 and let φ4, φ6 be

two Runge–Kutta formulae of order 4 and 6 respectively. Consider the algorithm

defined by

φ4(η) = 0, (1.13)

φ4(η̄) = −φ6(η). (1.14)

If we now appeal to Skeel’s theorem it follows that η̄ is an order 6 approximation to

∆y proving that

φ4(∆w) − φ6(∆w) = O(h2) (1.15)

for arbitrary functions ∆w having the necessary smoothness properties. An analysis

of condition (1.15) was carried out by Cash and Silva [17] in the case where φ4

and φ6 are Lobatto formulae. They showed that when this choice of Runge–Kutta

methods was made (1.15) was not satisfied and an explicit computation showed that

the deferred correction scheme (1.13), (1.14) only raised the order of the overall

scheme from 4 to 5. This may seem a little surprising since both φ4 and φ6 are

symmetric Runge–Kutta formulae. However a closer examination reveals that the

usual definition of symmetry is inappropriate if we wish to ensure that (1.15) holds.

What we need to do is to redefine our Runge–Kutta formulae so that they are

specially tuned to boundary value problems. The key to this is to note that it is not

φ4(η̄) = −φ6(η̄), (1.16)

which we require to be symmetric in the scheme (1.13),(1.14) but instead we require

φ4(η̄) = −φ6(η) (1.17)

to be symmetric. This means that we need to modify our formulae so that they are

appropriate for solving boundary value problems and this we now do.

To motivate our new definition of symmetry we consider the standard s-stage

Runge–Kutta formula

yn+1 = yn + h
s

∑

i=1

biki (1.18)

ki = f



xn + cih, yn + h
s

∑

j=1

aijkj



 , 1 ≤ i ≤ s .

We rewrite this in the modified form

yn+1 = yn + h
s

∑

i=1

biki (1.19)

The numerical solution of nonlinear two-point boundary value problems (. . . ) 273



ki = f



xn + cih,
yn + yn+1

2
+ h

s
∑

j=1

(aij − bj/2)kj



 .

The Runge–Kutta formula (1.19) is defined to be BV-symmetric if

ci = 1 − cs+1−i, bi = bs+1−i, 1 ≤ i ≤ s (1.20)

aij −
1

2
bj =

1

2
bs+1−j − as+1−i,s+1−j , 1 ≤ i, j ≤ s. (1.21)

This definition is more transparent if we express it in terms of the coefficients of the

modified Runge–Kutta formula (1.19). Thus if we rewrite (1.19) in the form

yn+1 = yn + h
s

∑

i=1

biki (1.22)

ki = f



xn + cih,
yn + yn+1

2
+ h

s
∑

j=1

âijkj





then the conditions for BV-symmetry are (1.20) and

âij = −âs+1−i,s+1−j , 1 ≤ i, j ≤ s.

In what follows will will assume that the φi are expressed in the form (1.19). We can

now give the following lemma:

Lemma 1.1.

(i) The deferred correction scheme (1.13), (1.14) is symmetric if φ4 and φ6 are

BV-symmetric.

(ii) A symmetric deferred correction scheme satisfies condition (1.15).

(iii) The Runge–Kutta scheme (1.19) is BV-symmetric if and only if the underlying

formula (1.18) is symmetric.

The important practical implication of this lemma is that if we take two stan-

dard symmetric Runge–Kutta formulae φ4 and φ6, of order 4 and 6 respectively,

and rewrite them in the modified form (1.19), then the deferred correction scheme

(1.13), (1.14) based on these modified formulae is of order 6 and this has important

implications for the construction of our deferred correction schemes.

There are several ways in which the approach defined by (1.13), (1.14) can be

extended to derive higher order deferred correction algorithms. One approach would

be to add on extra deferred correction stages. If, for example, we add on one extra

stage to (1.13), (1.14) then we obtain a three stage algorithm of the form

φ4(η) = 0

φ4(η̄) = −φ6(η)

φ4(¯̄η) = −φ6(η) − φ8(η̄).

(1.23)

274 Jeff R. Cash



The two deferred correction codes TWPBVP.f and TWPBVPL.f are based on defer-

red correction formulae of precisely this form. In both cases the final solution is of

order 8. It is of course possible to use even more stages in our deferred correction

schemes. When the φ appearing in (1.23) are Lobatto formulae this is straightfor-

ward since high order Lobatto formulae are relatively easy to construct. For MIRK

formulae, however, this is more difficult since high order MIRK formulae are not so

straightforward to derive (see however [3]). However a tenth order MIRK formula has

been derived by Capper ([25]) and a tenth order Lobatto formula has been analysed

by Bashir-Ali ([26]). It would be of interest to see how these high order codes perform

when compared with existing ones especially when a high degree of accuracy is re-

quired. Another important point to note concerning our deferred correction schemes

is that we always start with order four. However this is a heuristic choice which can

easily be changed. If, instead, we were to start with order 6, and then our eighth order

deferred correction would have 2 stages, we would expect the new 2-stage formula

to be more accurate and stable but more expensive to implement than conventional

3-stage formulae which start at order 4. Here the term more accurate means smaller

error constants — the order of the two approaches would both be exactly the same.

The main computational cost of starting at order 6 would be in solving the nonlinear

algebraic equation φ6(η) = 0. However it would be of interest to investigate which of

these two approaches is superior and this is an area for future research.

All of the deferred correction schemes that we have considered so far raise the

order of accuracy by 2 for each deferred correction. An obvious question to ask is

whether we can get more rapid convergence i.e. can we find schemes of the form

described in Theorem 1 with r > 2? This question was answered in the affirmative

by Van Daele and Cash [18]. They showed that it is possible to construct a deferred

correction scheme of the general form described in Theorem 1 with r = p and in

particular they derived a two-stage “superconvergent” deferred correction scheme of

the form

φ4(η) = 0, (1.24)

φ4(η̄) = −φ8(η), (1.25)

where η̄ is of order 8. Although this marked a big theoretical breakthrough in the

analysis of deferred correction schemes these superconvergent methods do have some

computational drawbacks compared with the more conventional formula (1.11), (1.12)

with i = 4, j = 6. The particular problem experienced by (1.24), (1,25) concerns

local error estimation. For deferred correction schemes of the form (1.23) we can

control the error in

‖η̄ − ¯̄η‖ (1.26)

whereas for (1.24), (1.25) there is no obvious local error estimate apart from

‖η̄ − η‖. (1.27)

The numerical solution of nonlinear two-point boundary value problems (. . . ) 275



This error estimate has proved to be unsatisfactory because it estimates the error in

a fourth order, rather than a sixth order, solution. Mainly for this reason it is still

not clear whether it is more efficient to use a standard deferred correction formula

such as (1.23) or a superconvergent scheme of the form (1.24), (1.25) and this is an

area for future research.

We mentioned earlier that a particularly attractive class of formulae to use in

our deferred correction schemes are MIRK formulae since the deferred corrections

are explicit and therefore cheap to compute. However practical experience has shown

that iterated deferred correction based on MIRK formulae does not perform very

well on very stiff problems. This is of course to be expected since the MIRK deferred

corrections are explicit and so there is a loss of stability when they are applied. The

way to deal with this, if we are to handle stiff equations in an efficient and reliable

manner, is to use a completely different class of Runge–Kutta methods for the φi and

to choose these methods so that they have the excellent stability required to deal with

stiff equations. In what follows we will discuss the stability of various Runge–Kutta

formulae used in a deferred correction framework. A stability analysis for MIRK

formulae has been carried out by Bashir-Ali ([26]). Applying the deferred correction

scheme (1.11)(1.12) with i = 4, j = 6, and where the φi are MIRK methods, to the

scalar test equation

y′ = λy (1.28)

we find that we have the asymptotic relationship

yn+1

yn

∼ C(hλ)4 as hλ→ ∞,

and so it does not have the stability necessary to deal efficiently with stiff problems.

We note in particular that this stability function is unbounded as hλ→ ∞ and this is

entirely due to the explicitness of the deferred corrections. In order to maintain highly

stable deferred correction schemes it is necessary to make the deferred corrections

implicit and to achieve this we must define the φi appearing in (1.13), (1.14) to be a

different class of implicit Runge–Kutta formulae. Various classes of implicit Runge–

Kutta formulae have been investigated in Bashir-Ali ([26]) and one of the most

efficient classes of formulae, based on accuracy, stability and ease of implementation,

are the Lobatto formulae. The stability of Lobatto formulae in a deferred correction

framework was investigated in some detail by Cash and Silva ([17]). One of their

main findings was that when we use the deferred correction scheme (1.11), (1.12)

with i = 4, j = 6, and where the φi are now Lobatto Runge–Kutta formulae of order

i, and we apply this to the scaler test equation (1.28), we find

yn+1

yn

∼ 1 as hλ→ ∞. (1.29)

In view of this our expectation is that the code TWPBVPL.f, based on Lobatto

formulae, will be much better than TWPBVP.f, which is based on MIRK formulae

for dealing with stiff problems and this expectation has been borne out in practice.

276 Jeff R. Cash



In view of these findings, for non-stiff and mildly stiff problems we use the code

TWPBVP.f while for stiff problems we use TWPBVPL.f. Both of these codes are

available from the authors’ web page ([28]).

2. MESH CHOOSING ALGORITHMS

Having chosen the classes of formulae that we will use in our deferred correction codes,

the next important problem we need to consider is that of local error estimation and

mesh refinement. One of the main reasons why deferred correction schemes can be

implemented so efficiently is that they have a local error estimate already available.

If, for example, we consider the deferred correction scheme (1.23) then the error

estimate

‖η̄ − ¯̄η‖ (2.1)

is an asymptotically (as h → 0) correct error estimate of the local error in η̄. Since

we know that η̄ is a O(h6) approximation to the true solution we can use this

error estimate to refine the grid in the usual way. However practical experience on

very stiff problems has shown that the approach does not always provide a good

mesh refinement algorithm. In particular it has often been observed that a mesh

selection algorithm subtracts out points in one mesh refinement only to bring these

points back into the mesh during the next refinement. Subsequent analysis has shown

that a robust mesh refinement algorithm must take account of the conditioning of

the discrete problem as well as on the magnitude of the local error estimate. In

particular it is important to choose the mesh so that the problem remains well

conditioned throughout the computation. Some interesting numerical results which

demonstrate this fact very clearly have been given by Mazzia and Trigiante [20]. In

particular they show that a hybrid mesh selection algorithm, which depends in some

sense on a combination of local error estimation and conditioning, can be much more

effective than one which relies solely on local error estimation. The reason for this is

clear as we now explain. Numerical algorithms compute an estimate of the local error

on the assumption that the problem being solved is well conditioned. In particular if,

for a well conditioned problem, the local error is in some sense small then the global

error will also be correspondingly small. Conversely if the problem being solved is

not well conditioned then a uniformly small local error can lead to a large global

error. In view of this it can be argued that when solving a two-point boundary value

problem it is vital to be able to obtain an estimate of the condition number of the

discrete problem if we are to have any confidence in the accuracy of the solution that

is obtained. An extreme example of the dangers of dealing with a badly conditioned

problem has been given by Shampine and Muir [23]. They give an example where

the MATLAB code bvp4c is used to solve Bratu’s problem (see later in this section

for a definition of this problem) for a value of the parameter, λ = 3.55, for which

there is no solution. Rather unexpectedly the MATLAB code produces a perfectly

reasonable looking solution which is of course totally spurious. Shampine and Muir

argue, however, that this could have been anticipated by looking at the behaviour

The numerical solution of nonlinear two-point boundary value problems (. . . ) 277



of the conditioning of the problem. Their proposal is to compute the condition

number so as to obtain an estimate of the global error after a discrete solution has

been computed. If this condition number is large then they issue a warning to the

user. However in the present paper we have a rather more ambitious goal in that

we incorporate our conditioning estimate into the mesh refinement algorithm and

choose the mesh using an error estimate which is a combination of accuracy and

conditioning.

In what follows we will describe our mesh selection strategy in some detail. This

will depend on a combination of the local error estimate (2.1) and on an estimate

of three parameters which characterise the conditioning of the continuous problem.

The approach which we will adopt follows very closely that given by Mazzia and

Trigiante for the TOM code [20]. To explain this approach we consider the linear

system of two-point boundary value problems

y′ = A(x)y + q(x), y ∈ Rm,

Bay(a) +Bby(b) = η,
(2.2)

where A(x), Ba, Bb ∈ Rm×m. We assume that the BVP (2.2) has a unique solution

y(x). Following [21] this solution can be expressed as

y(x) = Y (x)Q−1η +

b
∫

a

G(x, s)q(s)ds,

where Y (x) is a fundamental solution, G(x, s) is the Green’s function and Q =

BaY (a) +BbY (b) is assumed to be nonsingular.

We now consider a perturbation of this problem which will in turn produce a

perturbed solution ŷ which satisfies

ŷ′ = A(x)ŷ + q(x) + δq(x) ŷ ∈ Rm,

Baŷ(a) +Bbŷ(b) = η + δη,
(2.3)

where small changes have been made to the boundary conditions as well as to the

differential equation to produce a perturbed solution ŷ(x). It can be shown [20] that

we can bound the perturbation ‖δy(x)‖∞ = ‖ŷ(x) − y(x)‖∞ in the solution in the

following way

max
a≤x≤b

‖ŷ(x) − y(x)‖∞ ≤ κ1 ‖δη‖∞ + κ2 max
a≤x≤b

‖δq(x)‖∞ .

We can now define the conditioning constants κ1 and κ2 appearing in the above

expression as

κ1 = max
a≤x≤b

∥

∥Y (x)Q−1
∥

∥

∞
, (2.4)

278 Jeff R. Cash



κ2 = sup
x

b
∫

a

‖G(x, s)‖∞ ds.

The two constants κ1 and κ2 are related to the perturbation in the boundary con-

ditions and in the differential equation respectively. A single conditioning constant

can be defined by:

κ = max
a≤x≤b

(
∥

∥Y (x)Q−1
∥

∥

∞
+

b
∫

a

‖G(x, s)‖∞ ds), (2.5)

since

max
a≤x≤b

‖ŷ(x) − y(x)‖∞ ≤ κmax(‖δη‖∞, max
a≤x≤b

‖δq(x)‖∞).

If κ is large the problem is usually considered ill conditioned, otherwise the

problem is considered well conditioned. It is the parameter κ that gives complete

information about the conditioning. However, when we deal with boundary value

problems where the boundary conditions are appropriate for handling the decreasing

and the increasing modes, that is there is a dichotomy present, the information

provided by κ1 is sufficient to classify the problem. In fact, in this case, it is easy

to bound the conditioning constant κ2, and therefore κ, in terms of κ1(see [21] sec.

3.4.2 and 3.4.3 for a definition of dichotomy and its relation to well conditioning and

also for its relation to the concept of absolute stability for initial value problems).

With this in mind, we focus our attention on the perturbation δy(x) in the solution

resulting from a perturbation δη of the boundary conditions. From our previous

analysis it follows immediately that if δq(x) = 0

‖δy(x)‖∞ ≤ ‖Y (x)Q−1‖∞‖δη‖∞.

We now define the 1-norm of a vector δy in C([a, b]) as

‖δy‖1 =
1

b− a

b
∫

a

‖δy(x)‖∞dx.

Using our definitions of the 1- and ∞-norms we obtain the two-upper bounds

‖δy‖∞ ≤ κ1‖δη‖∞, ‖δy‖1 ≤ γ1‖δη‖∞

where κ1 is defined in (2.4) and

γ1 =
1

b− a

b
∫

a

‖Y (x)Q−1‖∞dx. (2.6)

The numerical solution of nonlinear two-point boundary value problems (. . . ) 279



The difficulty which now faces us is how to compute an estimate of the condition

number of the discrete problem. When solving for the discrete solution it is necessary

to solve a linear system of algebraic equatons of the form

My = b. (2.7)

Intuitively we would expect that the conditioning of the discrete problem will depend

in some way on M−1 and indeed that is true. We can compute an estimate of the

norm of M−1 using an algorithm due to Higham and Tisseur [22]. An algorithm for

examining the conditioning of the discrete problem, which depends on three of the

conditioning constants described earlier, is given in [29]. Using this we are able to

define an explicit monitor function which fulfils our aim of depending both on local

error estimates and on the conditioning of the problem. This analysis is too lengthy to

give here and the interested reader is referred to [29]. Based on this analysis we have

developed an eighth order deferred correction scheme with an improved mesh choosing

algorithm based on accuracy and conditioning. This code is called TWPBVPC.f and

is available from the authors’ web page [28]. Numerical results given in [29] clearly

show the improved performance of the code when conditioning is included and we

end this section by giving a set of numerical results which demonstrates this.

An interesting nonlinear equation which we will discuss is Bratu’s problem

y′′ + λey = 0 y(0) = 0, y(1) = 0,

that arises in a model of spontaneous combustion. This problem was included in [23]

as an example for which the computation of the conditioning constant κ could give

information about the quality of a solution. In fact this problem has two solutions for

0 ≤ λ < λ∗ = 3.51383 . . . , one solution when λ = λ∗ and no solution when λ > λ∗.

In [23] it was found that the MATLAB solver bvp4c has no problem in solving the

BVP when λ = 3.45; TWPBVPC.f has a similar behaviour. If we solve this problem

using TWPBVPC.f with conditioning, and with a tolerance of 10−3 imposed on both

y and y′, with an initial mesh of 16 equally spaced mesh points and initial guesses

of zero, we obtain a solution without changing the mesh, the conditioning constants

are κ1(π) = 1.6e1, γ1(π) = 1.2e1, κ(π) = 2.4e1. These conditioning constants are

discrete approximations to the conditioning constants of the continuous problem

defined earlier. In particular an approximation of the conditioning parameter κ is

obtained by computing κ(π) = ‖M−1‖∞ which is estimated using the Higham and

Tisseur algorithm. For an explanation of the other condition numbers together with

an algortihm for computing them the reader is referred to [29]. In contrast to the

behaviour of bvp4c which gives a ‘solution’ for λ = 3.55 when none exists the code

TWPBVPC.f fails to give a solution for this value of λ and this in agreement with the

theory. In fact TWPBVPC.f fails to give a solution for all λ > λ∗ and remarkably this

allows λ∗ to be found very quickly. To see how the conditioning parameters change

when λ approaches λ∗, we solve the problem with TWPBVPC.f using different values

of λ (see Tab. 1). All the three conditioning parameters grow as we get closer to λ∗

280 Jeff R. Cash



and this is a sign that something important is happening at this point. The approach

of Shampine and Muir is to issue a warning to the user that the condition number is

increasing. However in the approach of [29] this condition number is used in choosing

the mesh. Further numerical results presented in [29] show the excellent performance

of this new mesh selection strategy. As a final note we repeat our observation that

if we are solving a two-point boundary value problem then a small local error in the

solution does not necessarily lead to a small global error. To assess the quality of the

final solution we must have an estimate of the condition number and we feel that the

next generation of codes will follow our approach and routinely provide a condition

number estimate along with the final solution.

Table 1. Conditioning parameters and final mesh

for Bratu’s roblem, tol(ncomp1) = tol(ncomp2) = 10−3

TWPBVPC with cond

λ κ(π) κ1(π) γ1(π) N+1

3.5 5.4e1 3.7e1 2.8e1 16

3.51 1.0e2 7.1e1 5.4e1 16

3.513 2.2e2 1.5e2 1.2e2 16

3.5138 9.5e2 6.5e2 5.0e2 16

3.51383 4.9e3 3.3e3 2.5e3 31

3.513831 7.0e3 4.8e3 3.6e3 31

3.5138317 1.9e4 1.3e4 1.0e4 31

3.51383179 9.6e4 6.5e4 4.9e4 31

3. COMPUTATION OF CONTINUOUS SOLUTIONS

Finally in this section we consider the problem of deriving continuous solutions to

two-point boundary value problems. It has been pointed out by Pruess [8] that the

problem of defining an interpolant is much more difficult than at first seems to be

the case. In what follows we wish to define an interpolant which is continuous for

both y and y′ at all mesh points, one which has an accuracy comparable to that

of the discrete method, one that is efficient in the sense that it does not require

the computation of too many extra derivatives and one such that the coefficients

of the interpolant remain suitably bounded over the whole range of the integration.

As already explained, the two codes COLSYS and MIRKDC automatically provide

continuous solutions and the user has no choice as to whether he is given a continuous

or discrete solution. In the case of COLSYS a continuous solution is provided because

the solution is approximated by a piecewise continuous polynomial and in the case

of MIRKDC a continuous solution is required because the code seeks to control

the residual

r(x) = y′(x) − f(x, y(x)). (3.1)

The numerical solution of nonlinear two-point boundary value problems (. . . ) 281



However the extra cost of providing a continuous solution is relatively high and it

may be that the user does not require a continuous solution at all. It would be better

computationally to give the user the option of whether or not he wants a continuous

solution as is done in the case of initial value problems and to compute this solution

a posteriori after the discrete solution has been computed. One possibility is that

the user may wish to compute the solution only at isolated ’off step’ points. The

most efficient way of doing this is to choose meshes so that these isolated points are

contained in all meshes that are chosen. This is trivial to do since all codes provide

the option of inserting fixed points in all meshes Alternatively the user may require

a continuous solution over just a few mesh intervals. This is typically the case for

event location where, for example, the user may wish to determine where the function

y(x) or its derivative passes through zero. A big advantage of the deferred correction

codes (and also of the TOM code) is that they do compute the continuous solution

a posteriori i.e. after a discrete solution has been computed to the required degree

of precision, if indeed a continuous solution is wanted at all.

The question now is how to derive a visually pleasing, high quality interpolant

in an efficient way without the need to compute too many extra function evaluations.

One approach would be to compute function evaluations over several adjacent grid

points. However numerical experience has shown that symmetry is a very important

property for interpolants to possess and they lose this near the end of the range

of integration and on highly non-uniform meshes. In view of this we seek to make

our interpolants symmetric, each interpolant is defined by data evaluated over just

one mesh interval and this is consistent with the idea of a boundary value problem

having no direction of integration.

The first problem we consider is that of deriving interpolants for use with MIRK

formulae and in particular for use with the code TWPBVP.f. There are two sets of

data available to define an interpolant. The first is data that has been used to compute

the discrete solution. However this data often has low stage order and so is difficult

to use in an interpolant. The other data available is the extra function evaluations

that are computed, after the discrete solution has been defined, for the purpose of

constructing the interpolant. It has proved to be difficult to define an interpolant for

the original eighth order MIRK formula developed by Cash and Singhal [6] because

many of the stages appearing in that formula have low stage order and so can not

be easily used in the interpolant. The problem of defining an efficient high quality

interpolant for MIRK formulae was solved by Cash and Moore [9]. By computing just

three extra derivatives per mesh interval they were able to obtain an eighth order

interpolant and extensive numerical testing has shown that this interpolant performs

very well on a wide class of non stiff problems. In fact we feel that these interpolants

perform so well that the problem of computing interpolants for non-stiff problems is

now just about solved. To illustrate this we consider the numerical solution of the

following singular perturbation problem, which we will refer to as Problem 2,

ǫy′′ − xy = 0, y(−1) = y(1) = 1 (3.2)

282 Jeff R. Cash



for a range of values of ǫ using the algorithm of ([9]). To obtain our numerical results

we put an error tolerance of 10−8 on y and we then computed a sixth order and an

eighth order interpolant as defined in ([9]). The results obtained are given in Table 2.

Table 2. The interpolation using MIRK8, TOL = 10−8

ǫ Err Sol Nint Err y66 Err y88

Problem 2

1 7.320d-14 17 5.104d-10 1.028d-13

10−1 1.392d-11 33 1.000d-08 1.433d-11

10−2 6.011d-11 101 2.721d-08 6.011d-11

10−3 1.260d-11 409 5.155d-09 1.260d-11

10−4 1.469d-11 697 2.784d-09 1.469d-11

For each value of ǫ the heading ErrSol gives the maximum error in the discrete

problem at any grid point while Nint gives the number of points in the final mesh.

To compute the error, Erry66, in the sixth order interpolant and Erry88 in the

eighth order interpolant we computed the error between the interpolants and the

true solution at the points xi, xi+ h

4

, xi+ h

2

, xi+ 3h

4

, xi+1 and computed the maximum

over all such points. Note that the sixth order interpolant gives satisfactory results

in that the maximum error is everywhere less than Tol as required. Furthermore

we see that the eighth order interpolant gives a very accurate solution. This set of

results is typical of those obtained for other problems as well. Finally we note that

the difference ‖Erry66−Erry88‖ gives a good estimate of the maximum error in the

sixth order interpolant and this can be used to gauge the quality of this interpolant.

Although the code TWPBVP.f is often very efficient on mildly stiff and non-

stiff problems it can perform very poorly when presented with stiff problems. This

is due to the inferior stability properties of MIRK formulae and this in turn is

directly related to the fact that the deferred corrections are explicit. To enable

deferred correction codes to handle stiff problems efficiently, a new deferred correction

code TWPBVPL.f based on Lobatto formulae was developed. This code computes

implicit deferred corrections and consequently the stability is much better than for

MIRK formulae. Extensive numerical testing with explicit interpolants has shown

that they are of little use for dealing with stiff problems. If a highly stable scheme

is used to compute the discrete solution then this stability is lost, and poor results

are obtained, if an explicit interpolant is used. The problem of deriving implicit

interpolants has been considered in [30] and the interested reader is referred to that

paper. Numerical testing has shown that the interpolants derived in [30] are very

accurate, in fact often much more accurate than is required, in the vast majority of

cases and these new interpolants are very satisfactory for stiff problems. If we wish

to find a sixth order interpolant we need to compute two extra function evaluations

per mesh interval while for order eight we need to compute 4 extra functions. There

are lots of savings of computational effort to be made because, since the interpolant

The numerical solution of nonlinear two-point boundary value problems (. . . ) 283



is computed a posteriori, we already have very good initial approximations to the

extra functions that need to be computed. The conclusion is that we have now

developed two codes which provide a continuous solution for two point boundary

value problems. The first is TWPBVP.f which is based on MIRK methods and is

suitable for non-stiff and mildly stiff problems. The other is TWPBVPL.f which is

based on Lobatto formulae and is suitable for stiff problems. Both of these codes are

available on the authors web page. Given in [30] are numerous examples showing the

excellent performance of these interpolants and the interested reader is referred to

this article.

Finally we mention that some problems are extremely difficult to solve without

using continuation. Typical problems would be of the form

ǫy′′ = f(x, y, y′) (3.3)

where ǫ is extremely small. For such problems it is necessary to use continuation

since the layer regions defined by (3.3) often tend to be extremely narrow and so

cannnot normally be detected by standard means. Using continuation codes we are

able to successfully solve extremely difficult problems which we are unable to solve in

any other way. The two codes ACDC.f and COLMOD.f, which are based on Lobatto

deferred correction and collocation respectively, are both continuation codes and are

available from the author’s web page [28].

At the start of this paper we said that we would be mainly interested in the

numerical solution of the general first order system of two-point boundary value

problems of the form (1.1). However many two-point boundary value problems occur

in a special form and there are considerable savings in computational effort to be

made if we take account of this. The most commonly occuring special form is

y′′ = f(x, y, y′), (3.4)

or

y′′ = f(x, y). (3.5)

In particular after we have computed the discrete solution we have (yn, y
′
n and y

′′
n)

available at each mesh point. This means that we can immediately define a sixth

order interpolant based on this data. If we require an eighth order interpolant then

we have to compute just two extra function evaluations per mesh interval and this

is less than half the work compared with interpolants defined for (1.1). We notice

that the special form of the equation not only offers cheap interpolants due to the

fact that y′′ is computed but we are also able to derive much cheaper formulae for

computing the discrete solution. For a summary of how to derive efficient MIRK

methods for the solution of (3.4) and (3.5) the interested reader is referred to [9, 27].

If attention is paid to the special structure of these problems we can often get much

more efficient methods, and certainly more efficient interpolants, than if the problem

is considered in standard form.

284 Jeff R. Cash



REFERENCES

[1] Ascher U.M., Christiansen J., Russell R.D., Collocation software for boundary

value ODEs, ACM Trans. Math. Softw. 7 (1981), 209–222.

[2] Enright W.H., Muir P.H., Runge–Kutta software with defect control for boundary

value ODEs, SIAM J. Sci. Comput., 17 (1996), 479–497.

[3] Cash J.R., On the derivation of high order symmetric MIRK formulae with

interpolants for solving two-point boundary value problems, New Zealand Journal

of Mathematics 29 (2000), 129–150.

[4] Cash J.R., Moore G., Wright R.W., An automatic continuation strategy for

the solution of singularly perturbed linear two-point boundary value problems,

J. Comput. Phys. 122 (1995), 266–279.

[5] Mazzia F., Sgura I., Numerical Approximation of Nonlinear BVPs by means of

BVMs, Appl. Numer. Math. 42 (2002), 337–352.

[6] Cash J.R., Singhal A., High order methods for the numerical solution of two-point

boundary value problems, BIT 22 (1982), 184–199.

[7] Muir P.H., Owren B., Order barriers and characterisations for continuous mono-

implicit Runge–Kutta schemes, M. Comp. 61 (1993), 675–691.

[8] Pruess S., Interpolation schemes for collocation solutions of two-point boundary

value problems, SIAM J. Sci. Comput. 7 (1986), 322–333.

[9] Cash J.R., Moore D.R., High-order interpolants for solutions of Two-Point

boundary value problems using MIRK methods, Computers and Mathematics

with Applications 48 (2004), 1749–1763.

[10] Cash J.R., Wright R.W., Continuous extensions of deferred correction schemes

for the numerical solution of nonlinear two point boundary value problems, Appl.

Numer. Math. 28 (1998), 227–244.

[11] Cash J.R., Silva H.H.M., Iterated deferred correction for linear two-point boun-

dary value problems, Comp. Appl. Math. 15 (1996), 55–75.

[12] Bader G., Ascher U., A new basis implementation for a mixed order boundary

value ODE solver, SIAM J. Scient Stat Comput 8 (1987), 483–580.

[13] Wright K., Some relationships between implicit Runge–Kutta, Collocation and

Lanczos Tau methods and their stability properties, BIT 20 (1970), 217–227.

[14] Fox L., The Numerical Solution of Two-Point Boundary Value Problems in

Ordinary Differential Equations, Oxford University Press, 1957.

[15] Skeel R.D., A theoretical framework for proving accuracy results for deferred

corrections, SIAM J. Numer. Anal. 19 (1982), 171–196.

[16] Lindberg B., Error estimation and iterative improvement for discretization algo-

rithms, BIT 20 (1980), 486–500.

The numerical solution of nonlinear two-point boundary value problems (. . . ) 285



[17] Cash J.R., Silva H.H.M., Iterated deferred correction for linear two-point boun-

dary value problems, Comp. and Appl. Math. 15 (1996), 55–75.

[18] Van Daele M., Cash J.R., Superconvergent deferred correction methods for first

order systems of nonlinear Two-Point boundary value problems, SIAM J. Sci

Comput. 22 (2001), 1697–1716.

[19] Butcher J. C., The Numerical Analysis of Ordinary Differential Equations, J. Wi-

ley, 1987.

[20] Mazzia F., Trigiante D., A hybrid mesh selection strategy based on conditioning

for boundary value ODEs, Numerical Algorithms 36, (2004), 169–187.

[21] Ascher U.M., Mattheij R.M.M., Russell R.D., Numerical Solution of Boundary

Value Problems for Ordinary Differential Equations, SIAM (Philadelphia), 1995.

[22] Higham N. J., Tisseur F., A block algorithm for matrix 1-norm estimation, with

an application to 1-norm pseudospectra, SIAM J. Matrix Anal. 21 (2000), 1185–

2001.

[23] Shampine L. F., Muir P.M., Estimating conditioning for BVPs of ODEs, Math.

Comput. Modelling 40 (2004), 1309–1321.

[24] Brugnano L., Trigiante D., Solving Differential Problems by Multistep Initial and

Boundary Value Methods, Gordon and Breach, Amsterdam, 1998.

[25] Capper S., An order 10 MIRK formula, to appear.

[26] Bashir-Ali Z., Numerical Solution of Parameter Dependent Twopoint Boundary

Value Problems using Iterated Deferred Correction, Ph.D. University of London,

(1998).

[27] Cash J.R., Garcia M.P., Moore D.R., Mono-implicit Runge–Kutta formulae

for the numerical solution of second order nonlinear two-point boundary value

problems, JACM, 143 (2002), 275–289.

[28] http://www.ma.ic.ac.uk/~jcash/BVP_software/readme.html

[29] Cash J.R., Mazzia F., A new mesh selection algorithm, based on conditioning,

for two-point boundary value codes, JCAM, to appear.

[30] Cash J.R., Surmati N., Abdulla T. J., Vieira I., The derivation of interpolants

for nonlinear two-point boundary value problems, to appear.

[31] Koch O., Weinmuller E., Iterated defect correction for the solution of singular

initial value problems SIAM J. Numer. Anal., 38 (2001), 1784–1799.

286 Jeff R. Cash



J. R. Cash

j.cash@imperial.ac.uk

Imperial College, South Kensington

Department of Mathematics

London SW7, England.

Received: October 21, 2005

The numerical solution of nonlinear two-point boundary value problems (. . . ) 287


