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ON ARC-COLORING OF DIGRAPHS

Abstract. In the paper we deal with the problem of the arc-colouring of some classes of

digraphs (tournaments, complete digraphs and products of digraphs).
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Let us consider a digraph D = (V (D), A(D)) without loops and multiple arcs.

One may study two kinds of arc-colorings of digraphs. Let us recall them. The

coloring of a digraph D is of the first type if no two arcs (uv), (vw) are colored with

the same color (see [1]). In other words, it is a function:

c : A(D) −→ {c1, . . . , cn},

such that for any (uv), (wz) ∈ A(D)

if c(uv) = c(wz), then v 6= w.

It is also natural to consider the following coloring of arcs of a digraph (called a

coloring of the second type – see [7]) such that no pair of arcs (uv), (wv) and no pair

of arcs (vu), (vw) is colored with the same color. In other words, it is a function

c : A(D) −→ {c1, . . . , cn},

such that for any (u1v), (u2z) ∈ A(D), u1 6= u2

if c(u1v) = c(u2z) then v 6= z
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and for any (vu1), (zu2) ∈ A(D), u1 6= u2

if c(vu1) = c(zu2) then v 6= z.

Similarly as in the definition of the chromatic index of graphs we define the chromatic

index of a digraph D of the first type (respectively, of the second type ) to be the

minimal number of colors necessary for a coloring D of the first (respectively, second)

type. We denote it by −→χ1
′(D) (respectively, −→χ2

′(D)). The problems of calculating the

chromatic indices of the first (respectively, second) type were considered in [4] and

[6] (respectively, [7]).

We may also consider a pseudototal coloring of a digraph D of the first type

(respectively, second type) (cf. [8]) to be a function c : A(D) ∪ V (D) 7→ {c1, . . . , cn}
such that c|A(D) is an arc-coloring of D of the first type (respectively, of the second

type) and c(v) 6= c(vw), c(w) 6= c(vw) for any v, w ∈ V (D) such that (vw) ∈ A(D).

The minimal number of colors necessary for a pseudototal coloring of a digraph D

is called the pseudototal chromatic index of a digraph D of the first type (respectively,

of the second type) and is denoted by −→χ1
p(D) (respectively, −→χ2

p(D)).

Actually, while studying the problem of the pseudototal coloring of the digraph,

we examine the arc-coloring of the digraph – we verify whether for any vertex all

colors used for the minimal arc-coloring of the digraph are used for the coloring of

arcs adjacent to the vertex. It turns out that the pseudototal coloring of digraphs of

the second type delivers us no new phenomena: we always need an additional color

for the pseudototal coloring of the digraph. In the other case the situation is different

(see [8]).

Below we shall deal with special types of digraphs such as complete symmetric

digraphs K∗
n and tournaments.

The complete symmetric digraph K∗
n is a digraph spanned on n vertices and

defined as follows:

V (K∗
n) := {v1, . . . , vn}, A(K∗

n) := {(vivj) : i 6= j, 1 ≤ i, j ≤ n}.

A digraph T is called a tournament if the following holds:

for any u, v ∈ V (T ), u 6= v
(

(uv) ∈ A(T ) iff (vu) 6∈ A(T )
)

.

A digraph TTn is called a transitive tournament if

V (TTn) = {v1, . . . , vn}, A(TTn) = {(vivj) : 1 ≤ i < j ≤ n}.

For a digraph D we also denote the following underlying graph G̃(D):

V (G̃(D)) := V (D),

{u, v} ∈ E(G̃(D)) if and only if (uv) ∈ A(D) or (vu) ∈ A(D).
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For a digraph D, v ∈ V (D), we define the sets of adjacent vertices as follows:

N+(v) := {w : (vw) ∈ A(D)},

N−(v) := {w : (wv) ∈ A(D)},

N(v) := N+(v) ∪ N−(v).

With the sets defined as above we associate also some numbers:

d+
D(v) := |N+(v)|, d−D(v) := |N−(v)|, d′D(v) := |N(v)|.

We put
△+(D) := max{d+

D(v), v ∈ D},

△−(D) := max{d−D(v), v ∈ D},

△′(D) := max{d′D(v), v ∈ D}.

Let us recall the following results on arc-colorings of digraphs.

Theorem 1 (see [7]). For any digraph D the following formula holds:

−→χ2
′(D) = △(G(D)) = max{△+(D),△−(D)}.

Theorem 2 (see [4]). The following equality holds:

−→χ1
′(TTn) = ⌈log n⌉, n ∈ N.

To be able to formulate more general results we need to define some sequence:

a−1 := −1, a0 := 0, ak :=

(

k

⌊k
2 ⌋

)

=

(

k

⌈k
2 ⌉

)

, k = 1, 2, . . . .

It is clear that the sequence (ak) is a strictly increasing sequence of integers. There-

fore, for any N ∈ N there is exactly one k ∈ N such that ak−1 < N ≤ ak. We define

the function g on N as follows g(N) := k, where k is the unique integer such that

ak−1 < N ≤ ak.

Now we can recall the next result

Theorem 3 (see [4, 6]). For any digraph D the following inequalities hold:

⌈log χ(G̃(D))⌉ ≤ −→χ1
′(D) ≤ g(χ(G̃(D))).

Moreover, if the digraph D is symmetric (i.e. (uv) ∈ A(D) iff (vu) ∈ A(D)) then the

following equality holds:
−→χ1

′(D) = g(χ(G̃(D))),

where χ(G) denotes the chromatic number of the graph G.

Theorem 3 delivers us the explicit formula for the chromatic index of the first

type for complete digraphs K∗
n.
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Corollary 4. For any n ≥ 2, the following equality holds:

−→χ1
′(K∗

n) = g(n).

Let us begin with the study of some problems related to the arc-coloring.

Complete digraphs and tournaments spanned on the same set of vertices are

some kind of extremal digraphs in the class of all digraphs for which the graph G̃(D)

is the same. Therefore, a natural question arises how much chromatic indices of two

different digraphs (two different tournaments) with the same digraph G̃(D) can differ

from each other.

In view of Theorems 2 and 3

min{−→χ1
′(T ) : T is a tournament, |T | = n} = ⌈log n⌉

and the minimum is attained for transitive tournaments.

Let us remark that taking k ≥ 2 such that g(k) = n+1 and applying elementary

transformations, we get:

2⌊
n

2
⌋ ≤

(

n

⌊n
2 ⌋

)

< k ≤

(

n + 1

⌈n+1
2 ⌉

)

≤ 2n, k ≥ 2. (1)

Then we get

⌈log k⌉ ≤ g(k) ≤ 2⌈log k⌉ + 1. (2)

Therefore, it is easy to see that for any tournament T such that V (T ) = k, (k ≥ 2)

the following inequalities hold (compare Theorem 3):

⌈log k⌉ ≤ −→χ1
′(T ) ≤ 2⌈log k⌉ + 1. (3)

A closer analysis of the mutual relation between g(k) and log k leads us to a better

asymptotic estimate than that in the second inequality in (2).

Let us consider namely the inequality a2n < k ≤ a2n+2. In this case g(k) = 2n+1

or 2n + 2. On the other hand, applying the Taylor expansion we get

log a2n = log
(2n)!

(n!)2
= n + log

1 · 3 · · · (2n − 1)

n!
= n +

n
∑

j=1

log(2 −
1

j
) =

n +
n

∑

j=1

(log 2 −
1

2j ln 2
+ O(

1

j2
)) = 2n −

1

2 ln 2

n
∑

j=1

1

j
+

n
∑

j=1

O(
1

j2
) ≥

≥ 2n −
1

2 ln 2

n
∑

j=1

1

j
− C

n
∑

j=1

1

j2
≥ 2n −

1

2 ln 2

n
∑

j=1

1

j
+ M1,

where C > 0 and M1 are some constants.
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Analoguously we get

log a2n+2 = 2(n + 1) −
1

2 ln 2

n+1
∑

j=1

1

j
+

n+1
∑

j=1

O(
1

j2
) ≤

≤ 2(n + 1) −
1

2 ln 2

n+1
∑

j=1

1

j
+ C

n+1
∑

j=1

1

j2
≤ 2(n + 1) −

1

2 ln 2

n+1
∑

j=1

1

j
+ M2,

where M2 is some constant.

Therefore, there is

1

2 ln 2

n+1
∑

j=1

1

j
− M2 − 1 ≤ g(k) − log k ≤

1

2 ln 2

n
∑

j=1

1

j
− M1 + 2.

In particular,

lim
k→∞

(g(k) − ⌈log k⌉) = +∞. (4)

On the other hand, the convergence of the sequence (
∑n

j=1
1
j
− lnn)∞n=1 and the

inequality n ≤ log k (use (1)) imply

0 ≤
g(k)

log k
− 1 ≤

1
2 ln 2

∑n

j=1
1
j
− M1 + 1

log k
≤

1
2 ln 2 ln(log k) + M3

log k
,

where M3 ∈ R is some constant. Since the last expression tends to 0 (as k → ∞),
we get (compare Corollary 7 in [4])

lim
k→∞

g(k)

⌈log k⌉
= 1. (5)

In particular, we get the following inequalities

⌈log k⌉ ≤ g(k) ≤ ck⌈log k⌉, (6)

where ck > 1, ck → 1.

Up to now we have only known examples of tournaments for which the equality
−→χ1

′(T ) = ⌈log V (T )⌉ holds. Below we show the existence of a tournament with ck

larger than one.

Proposition 5. Let us fix n = 2k, k ≥ 1. Let T be defined as follows:

V (T ) := Zn, A(T ) := {(ij) : i < j, (ij) 6= (0 (n − 1))} ∪ {((n − 1) 0)}.

Then −→χ1
′(T ) = k + 1 = ⌈log n⌉ + 1 for n ≥ 2.

Proof. Actually, one obtains the digraph T from TTn changing the direction of one

arc only. Since the digraph TTn is colorable with k colors, the digraph T is colorable

with k + 1 colors. To complete the proof it is sufficient to show that the digraph
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T is not colorable with k colors. Suppose the opposite. Then with any vertex v we

may associate C(v) – a set of colors used for coloring vertices (vw) ∈ A(T ). Since

each pair of different vertices is joined with some arc, the sets are pairwise different.

Therefore, the set {C(v) : v ∈ V (T )} consists of n = 2k different subsets of the sets

of colors (consisting of k elements). Therefore, for one of v ∈ V (T ) there is C(v) = ∅,
a contradiction.

Proposition 5 suggests the following problems.

Problem 6. For any k ≥ 3, find a tournament T (if it exists) such that V (T ) = k

and −→χ1
′(T ) = ⌈log k⌉ + 1.

Find bk := max{−→χ1
′(T ) : T is a tournament, V (T ) = k} (it belongs to the set

{⌈log k⌉, ⌈log k⌉ + 1, . . . g(k)}).

In connection with the last question, let us remark that the following property

holds:

Any number from {⌈log k⌉, . . . , bk} is a chromatic index of some tournament
with k vertices.

It follows from the following property of tournaments. Changing the direction

of exactly one arc in the tournament (so the procedure leaves the digraph to be still

a tournament) the chromatic index of a new digraph changes by at most one. Then

it is sufficient to notice that starting with the transitive tournament TTk, after a

finite number of such changes, we may easily arrive at any other tournament with

the same set of vertices.

Remark 7. For a digraph D (with χ(G̃(D)) ≥ 3) the following inequalities hold

(use Theorem 3, (2) and the inequality χ(G) ≤ △(G) + 1):

−→χ1
′(D) ≤ g(χ(G̃(D))) ≤ 2⌈log χ(G̃(D))⌉ + 1 ≤ 2⌈log(△(G̃(D)) + 1)⌉ + 1 =

= 2⌈log(△′(D) + 1)⌉ + 1.

Below we shall recall some characterization of digraphs with small chromatic

index. But before we formulate this result, we have to introduce some notation.

For a given digraph D, define some graph Ĝ(D). First we define V̂ (D) ⊂ V (D)

to be the set of vertices v ∈ V (D) such that

d+
D(v) · d−D(v) > 0.

Then we define Ĝ(D) as follows:

V (Ĝ(D)) := V̂ (D),

E(Ĝ(D)) := {{u, v} : (uv) ∈ A(D) or (vu) ∈ A(D) and u, v ∈ V̂ (D)}.

Theorem 8 (see [8]). For any digraph D the inequality −→χ1
′(D) ≤ 2 is equivalent to

the inequality χ(Ĝ(D)) ≤ 2.
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The condition from Theorem 8 is equivalent to the nonexistence of odd cycles

in Ĝ(D). It turns out that the result of Theorem 8 may be expressed with help of a

notion of generalized directed cycles.

A digraph D is called a generalized directed cycle if the graph Ĝ(D) is a cycle.

A generalized directed cycle is called odd if the cycle Ĝ(D) is odd.

The structure of generalized directed cycles is much more complicated than the

structure of oriented cycles. In particular, for a fixed natural number, there are non-

isomorphic generalized directed cycles with the same number of vertices (see Fig. 1).

Fig. 1

The result from Theorem 8 may now be expressed as follows:

Corollary 9. For a digraph D the inequality −→χ1
′(D) ≥ 3 is equivalent to the existence

in D of an odd generalized directed cycle.

Below we show some sharper version of Theorem 5 from [8], which gives us

the complete characterization of the arc-coloring of the first type with the minimal

number of colors of complete symmetric digraphs. Namely, we show the following

result.
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Theorem 10. For any n ∈ N, the following equality holds

−→χ1
p(K∗

n) = g(n) + 1.

The above result was proven in [8] in the special case of k = an for some n.

Before we start the proof we need one more notation. Let c denote an arc

coloring of D. Assume that the arcs of the digraph D are colored with n colors (say

c1, . . . , cn). For any vertex v ∈ V (D), let us define the following sets:

C+(v) := {cj : there is a (vw) ∈ A(D) such that c(vw) = cj},

C−(v) := {cj : there is a (wv) ∈ A(D) such hat c(wv) = cj},

C0(v) := {c1, . . . , cn} \ (C+(v) ∪ C−(v)).

It follows from the definition of the arc-coloring that

C+(v) ∩ C−(v) = ∅ for any v ∈ V (D).

Proof of Theorem 10. Let an−1 < k ≤ an. To prove the theorem, it is sufficient to

show that there is no arc coloring of K∗
k with n colors such that for any v ∈ V (K∗

k)

we have C0(v) 6= ∅, where C0(v) is defined as above.

Suppose that such a coloring exists. Then we define a family of sets {C+(v) : v ∈
V (K∗

k)} such that C+(v) ⊂ {c1, . . . , cn} for any v ∈ K∗
k (certainly 0 < |C+(v)| < n).

Additionally, with any v ∈ V (K∗
k) we associate a color c(v) 6∈ C+(v) satisfying the

following condition:

for any v, w ∈ V (K∗
k), if C+(v) ⊂ C+(w) ∪ {c(w)}, then v = w.

In fact, for a coloring with desired properties, let c(v) denote any element from C0(v)

(we make this choice for any v ∈ V (K∗
k)). Assume that C+(v) ⊂ C+(w)∪ {c(w)} for

some v 6= w, v, w ∈ V (K∗
k). We know that for any v, w ∈ V (K∗

k), v 6= w there is a

cj ∈ C+(v) ∩ C−(w) ⊂ (C+(w) ∪ {c(w)}) ∩ C−(w) = {c(w)}; so cj = c(w) ∈ C0(w),

and therefore cj 6∈ C−(w) – contradiction.

Consequently, to finish the proof it is sufficient to make use of the following

lemma, which will be proven later.

Lemma 11. Let X be a given set of n elements. Let us consider a family M ⊂
{(A, a) : ∅ 6= A ⊂ X, a ∈ X \ A} satisfying the following property:

If (A, a), (B, b) ∈ M and A ⊂ B ∪ {b}, then A = B and a = b. (7)

Then |M| ≤ an−1.

In fact, it is sufficient to put M := {C+(v), c+(v)) : v ∈ V (K∗
n)}.

To prove Lemma 11 we need the following result of B. Bollobás (see [2])
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Lemma 12 (see [2]). Let A1, . . . , Am and B1, . . . , Bm be subsets of a set consisting

of n elements such that for any i, j = 1, . . . ,m Ai ∩ Bj = ∅ iff i = j. Then

m
∑

i=1

1
(

|Ai|+|Bi|
|Ai|

)
≤ 1.

Proof of Lemma 11. Let us writeM = {(Aj , aj) : j = 1, . . . ,m}. Our aim is to show
that m ≤ an−1. For any i ∈ {1, . . . ,m} define Bi := X \ (Ai ∪ {ai}). Then the
assumptions of Lemma 12 for A1, . . . , Am, B1, . . . , Bm are satisfied, which implies,

in view of Lemma 12, that

m ≤ max

{(

n − 1

|Ai|

)

: i = 1, 2, . . . ,m

}

≤ an−1.

Now let us try to establish some results concerning the chromatic indices of

products of digraphs. At first let us recall the definition of the products of graphs

and digraphs.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. We define the graph G1×G2

as follows:

V (G1 × G2) := V (G1) × V (G2),

E(G1 × G2) := {{(u1, u2), (v1, v2)} : {u1, v1} ∈ E(G1), {u2, v2} ∈ E(G2)}.

It is easy to see that

χ(G1 × G2) ≤ min{χ(G1), χ(G2)}. (8)

For small chromatic numbers inequality (8) becomes the equality.

Theorem 13 (see [3]). If min{χ(G1), χ(G2)} ≤ 4 then

χ(G1 × G2) = min{χ(G1), χ(G2)}.

S.T. Hedetniemi conjectured in [5] that Theorem 13 remains true for all graphs.

Let D1 = (V1, A1) and D2 = (V2, A2) be two digraphs. Following [6] we define a

digraph D1 × D2 as follows

V (D1 × D2) := V (D1) × V (D2),

A(D1 × D2) = {((u1, u2)(v1, v2)) : (u1v1) ∈ A(D1), (u2v2) ∈ A(D2)}.

Similarly as in the case of products of graphs, we get the following estimate.

Theorem 14. For any digraphs D1 and D2 the following inequality holds:

−→χ1
′(D1 × D2) ≤ min {−→χ1

′(D1),
−→χ1

′(D2)} . (9)

Proof. Let k denote the right-hand side of inequality (9). Assume that the minimum

is attained for the digraph D1. Let c denote the arc-coloring of D1 with k colors. We
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define now the arc coloring of D1 × D2 with k colors as follows:

if ((u1, u2)(v1, v2)) ∈ A(D1 × D2), then c̃
(

((u1, u2)(v1, v2))
)

:= c(u1v1).

We now prove the following

Theorem 15. If min{−→χ1
′(D1),

−→χ1
′(D2)} ≤ 3 then

−→χ1
′(D1 × D2) = min{−→χ1

′(D1),
−→χ1

′(D2)}.

Proof. Let us denote the minimum by k. It follows from Remark 10 in [8] and

(9) that the theorem is valid if k = 1 or k = 2. It is sufficient to show that if
−→χ1

′(D1) = −→χ1
′(D2) = 3 then −→χ1

′(D1 × D2) = 3.

Let us remark that from the definition it follows that

V̂ (D1 × D2) = V̂ (D1) × V̂ (D2).

Moreover, the property

{(u1, u2), (v1, v2)} ∈ Ê(D1 × D2)

is equivalent to:

{u1, v1} ∈ Ê(D1) and {u2, v2} ∈ Ê(D2).

Actually, {(u1, u2), (v1, v2)} ∈ Ê(D1×D2) is equivalent to ((u1, u2)(v1, v2)) ∈ A(D1×
D2) or ((v1, v2)(u1, u2)) ∈ A(D1 ×D2), so consequently, also to ((u1v1) ∈ A(D1) and

(u2v2) ∈ A(D2)) or ((v1u1) ∈ A(D1) and (v2u2) ∈ A(D2)), which gives the desired

equivalence.

In other words,

Ĝ(D1 × D2) = Ĝ(D1) × Ĝ(D2)

(up to an isomorphism).

Now Theorem 13 and Theorem 8 complete the proof.

Problem 16. Do there exist digraphs D1, D2 such that
−→χ1

′(D1) = −→χ1
′(D2) = 4 and

−→χ1
′(D1 × D2) = 3? On the other hand, note that in case D1 = D2 it is evident that

the equality −→χ1
′(D1 × D2) = −→χ1

′(D1) holds.

For a better understanding of the chromatic index of the product of digraphs,

let us define

h(r) := min {−→χ1
′(D1 × D2) : −→χ1

′(D1) = −→χ1
′(D2) = r}

and

f(r) := min{χ(G1 × G2) : χ(G1) = χ(G2) = r}.

Then the following result holds

Theorem 17. Divergence f(r) → ∞ is equivalent to the divergence h(r) → ∞ (as
r → ∞).

Proof. Let us remark that G̃(D1 × D2) = G̃(D1) × G̃(D2) (up to an isomorphism).

It is sufficient to make use of Theorem 3 and formula (2) (because one can see
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that divergence of χ(G̃(D)) to infinity is equivalent to the divergence of −→χ1
′(D) to

infinity).

Remark 18. As far as the arc-coloring of the products of digraphs of the second

type is concerned the situation is clear. Namely, in view of Theorem 1 we have:

−→χ2
′(D1 × D2) = max{△+(D1 × D2),△

−(D1 × D2)} =

max{△+(D1)△
+(D2),△

−(D1)△
−(D2)} ≤

max{△+(D1),△
−(D1)}max{△+(D2),△

−(D2)} = −→χ2
′(D1)

−→χ2
′(D2).
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