PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Stability of solutions of infinite systems of nonlinear differential-functional equations of parabolic type

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A parabolic initial boundary value problem and an associated elliptic Dirichlet problem for an infinite weakly coupled system of semilinear differential-functional equations are considered. It is shown that the solutions of the parabolic problem is asymptotically stable and the limit of the solution of the parabolic problem as t → ∞ is the solution of the associated elliptic problem. The result is based on the monotone methods.
Rocznik
Strony
173--183
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Applied Mathematics, al. Mickiewicza 30, 30-059 Kraków, Poland, zabawa@mat.agh.edu.pl
Bibliografia
  • [1] Adams R. A., Sobolev Spaces, Academic Press, New York, 1975.
  • [2] Agmon S., Doughs A., Nirenberg L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary condition. I, Comm. Pure Appl. Math. 12 (1959), 623-727.
  • [3] Amann H., Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review 18 (1976), 620-709.
  • [4] Brzychczy S., On the stability of solutions of nonlinear parabolic differential-functional equations, Ann. Polon. Math. 63 (1996), 155-165.
  • [5] Brzychczy S., Monotone iterative methods for infinite systems of reaction-difusion-convection equations with functional dependence, Opuscula Math. 25 (2005), 29-99
  • [6] Gilbarg D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983.
  • [7] Sattinger D.H., Monotone methods in nonlinear elliptic and parabolic bonduary value problems, Indiana Univ. Math. J. 21 (1972), 979-1000.
  • [8] Szarski J., Infinite systems of parabolic differential-functional inequalities, Bull. Pol. Acad. Scien. 28 (1980), 477-481.
  • [9] Zabawa T. S., Existence of solutions of the Dirichlet problem for an infinite system of nonlinear differential-functional equations of elliptic type, Opuscula Math. 25 (2005), 333-343.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH4-0006-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.