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Abstract. A parabolic initial boundary value problem and an associated elliptic Dirichlet

problem for an infinite weakly coupled system of semilinear differential-functional equations

are considered. It is shown that the solutions of the parabolic problem is asymptotically
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the associated elliptic problem. The result is based on the monotone methods.
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Let S be an infinite set. Let G ⊂ R
m be an open bounded domain with C2+α

boundary (α ∈ (0, 1)) and D := (0, T ) × G, where T ≤ ∞. Let D̄ := [0, T ) × Ḡ.

We consider a boundary initial value problem for an infinite weakly coupled

system of semilinear autonomous differential-functional parabolic equations of the

form:

∂ui(t, x)

∂t
− Li[ui](t, x) = f i(x, u(t, x), u(t, ·)) for t > 0, x ∈ G, i ∈ S, (1)

ui(t, x) = hi(x) for t > 0, x ∈ ∂G, i ∈ S, (2)

ui(0, x) = hi(x) for x ∈ Ḡ, i ∈ S (3)

and the associated Dirichlet problem for an infinite weakly coupled system of semi-

linear differential-functional elliptic equations of the form:

−Li[ui](x) = f i(x, u(x), u(·)) for x ∈ G, i ∈ S, (4)
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ui(x) = hi(x) for x ∈ ∂G, i ∈ S, (5)

where

Li[ui](t, x) :=
m

∑

j,k=1

ai
jk(x)ui

xjxk
(t, x) +

m
∑

j=1

bi
j(x)ui

xj
(t, x)

are strongly uniformly elliptic in Ḡ,

f i : Ḡ × B(S) × CS(Ḡ) ∋ (x, y, z) 7→ f i(x, y, z) ∈ R

for every i ∈ S. The notation f(x, u(x), u(·)) means that the dependence of f on

the second variable is a function-type dependence and on the third variable is a

functional-type dependence. In (1), f(x, u(t, x), u(t, ·)) means that the dependence

on the third variable is a functional-type dependence with respect to x, but a function-

type dependence with respect to t.

The following results extend and generalize the results of D.H. Sattinger [7],

H. Amann [3] and S. Brzychczy [4].

We use the following notation. Let B(S) be the Banach space of all bounded

functions w : S → R, w(i) = wi (i ∈ S) with the norm ‖w‖B(S) := supi∈S |wi|. B(S)

is endowed with a partial order w ≤ w̃ defined as wi ≤ w̃i for every i ∈ S. Elements

of B(S) will be denoted by (wi)i∈S , too. Let C(Ḡ) be the space of all continuous

functions v : Ḡ → R with the norm ‖v‖C(Ḡ) := maxx∈Ḡ |v(x)|. In this space, v ≤ ṽ

means that v(x) ≤ ṽ(x) for every x ∈ Ḡ. By Cl+α(Ḡ), where l = 0, 1, 2, . . . and α ∈

(0, 1), we denote the space of all functions continuous in Ḡ with derivatives of order

less or equal l being Hölder continuous with exponent α in G (see [6, pp. 52–53]) and

by Cl+α(D̄), where l = 0, 1, 2, . . . and α ∈ (0, 1), we denote the space of all functions

continuous in D̄ with all derivatives ∂r+s

∂tr∂xs being Hölder continuous with exponent

α in D if 0 ≤ 2r + s ≤ l (see [5, pp. 37-38]). By H l,p(G) we denote the Sobolev space

of all functions whose weak derivatives of order l are in Lp(G) (see [1, pp. 44-46]). A

notation g ∈ Cl+α(∂G) (resp. g ∈ H l,p(∂G)) means that there exists a function g ∈

Cl+α(Ḡ) (resp. g ∈ H l,p(G)∩C(Ḡ)) such that g(x) = g(x) for every x ∈ ∂G. In these

spaces, norms are defined as ‖g‖Cl+α(∂G) := inf
g∈Cl+α(Ḡ):∀x∈∂G:g(x)=g(x) ‖g‖Cl+α(Ḡ)

and ‖g‖H2,p(∂G) := inf
g∈H2,p(G)∩C(Ḡ):∀x∈∂G:g(x)=g(x) ‖g‖H2,p(G), respectively.

We denote z = (zi)i∈S ∈ CS(Ḡ) if z : Ḡ → B(S) and zi : Ḡ → R

(i ∈ S) is a continuous function with supi∈S ‖zi(x)‖C(Ḡ) < ∞. The space CS(Ḡ)

is a Banach space with the norm ‖z‖CS(Ḡ) := supi∈S ‖zi(x)‖C(Ḡ) and the par-

tial order z ≤ z̃ defined as zi(x) ≤ z̃i(x) for every x ∈ Ḡ, i ∈ S. The spa-

ce Cl+α
S (Ḡ) is the space of all functions (zi)i∈S such that zi ∈ Cl+α(Ḡ) for

every i ∈ S and supi∈S ‖zi(x)‖Cl+α(Ḡ) < ∞. In this space, the norm is defi-

ned as ‖z(x)‖
C

l+α
S

(Ḡ) = supi∈S ‖zi(x)‖Cl+α(Ḡ). In similar way, Cl+α
S (D̄) is the

space of all functions (zi)i∈S such that zi ∈ Cl+α(D̄) for every i ∈ S and

supi∈S ‖zi(x)‖Cl+α(D̄) < ∞ with the norm ‖z(x)‖
C

l+α
S

(D̄) = supi∈S ‖zi(x)‖Cl+α(D̄).

We will write that z = (zi)i∈S ∈ L
p
S(G) if zi ∈ Lp(G) for every i ∈ S and
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supi∈S ‖zi(x)‖Lp(G) < ∞. A notation z = (zi)i∈S ∈ H
l,p
S (G) means that zi ∈ H l,p(G)

for every i ∈ S and supi∈S ‖zi(x)‖Hl,p(G) < ∞. In these spaces, norms are defi-

ned as ‖z(x)‖L
p

S
(G) = supi∈S ‖zi(x)‖Lp(G) and ‖z(x)‖

H
l,p

S
(G) = supi∈S ‖zi(x)‖Hl,p(G),

respectively.

A function ũ is said to be regular in D̄ if ũ ∈ CS(D̄) and ũ has continuous

derivatives ∂ũ
∂t
, ∂ũ

∂xj
, ∂2ũ

∂xj∂xk
in D for j, k = 1..m. A function ũ is said to be a classical

(regular) solution of problem (1), (2), (3) in D̄ if ũ is regular in D̄ and fulfils the

system of equations (1) in D with conditions (2) and (3). A function ũ is said to

be a weak solution of problem (1), (2), (3) in D̄ if ũ(t, ·) ∈ L2
S(G), ∂ũi(t,·)

∂t
∈ L2(G),

Li[ũi](t, ·) ∈ L2(G) and

〈

∂ũi(t, x)

∂t
, ξ(x)

〉

−
〈

Li[ũi](t, x), ξ(x)
〉

=
〈

f i(x, ũ(t, x), ũ(t, ·)), ξ(x)
〉

for every t > 0, i ∈ S and for any test function ξ ∈ C∞
0 (Ḡ), where 〈·,·〉 is the inner

product in L2(G), i.e., 〈f, g〉 =
∫

G
fg dx and ũ fulfils conditions (2), (3) in trace

sense.

A function û is said to be regular in Ḡ if û ∈ CS(Ḡ) ∩ C2
S(G). A function û is

said to be a classical (regular) solution of problem (4), (5) in Ḡ if û is regular in Ḡ

and fulfils the system of equations (4) in G with condition (5). A function û is said

to be a weak solution of problem (4), (5) in Ḡ if û ∈ L2
S(G), Li[ûi] ∈ L2(G) and

−
〈

Li[ûi](x), ξ(x)
〉

=
〈

f i(x, û(x), û(·)), ξ(x)
〉

for every i ∈ S and for any test function ξ ∈ C∞
0 (Ḡ) and û fulfils condition (5) in

trace sense.

A solution û(x) of elliptic problem (4), (5) is said to be a stable solution of

parabolic problem (1), (2), (3) if for any ǫ > 0 there exists a δ > 0 such that

‖û(·)−h(·)‖CS(Ḡ) < δ implies ‖û(·)− ũ(t, ·)‖CS(Ḡ) < ǫ for each t > 0, where ũ(t, x) is

a solution of parabolic problem (1), (2), (3). A solution û(x) is called an asymptotically

stable solution of parabolic problem (1), (2), (3) if it is a stable solution of parabolic

problem (1), (2), (3) and limt→∞ ‖û(·) − ũ(t, ·)‖CS(Ḡ) = 0.

Functions ũ0 = ũ0(t, x) and ṽ0 = ṽ0(t, x) regular in D̄, satisfying the infinite

systems of inequalities











∂ũi
0(t,x)
∂t

− Li[ũi
0](t, x) ≤ f i(x, ũ0(t, x), ũ0(t, ·)) for t > 0, x ∈ G, i ∈ S,

ũi
0(t, x) ≤ hi(x) for t > 0, x ∈ ∂G, i ∈ S,

ũi
0(0, x) ≤ hi(x) for x ∈ Ḡ, i ∈ S

(6)











∂ṽi
0(t,x)
∂t

− Li[ṽi
0](t, x) ≥ f i(x, ṽ0(t, x), ṽ0(t, ·)) for t > 0, x ∈ G, i ∈ S,

ṽi
0(t, x) ≥ hi(x) for t > 0, x ∈ ∂G, i ∈ S,

ṽi
0(0, x) ≥ hi(x) for x ∈ Ḡ, i ∈ S

(7)
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are called a lower and an upper function, respectively, for parabolic problem (1),

(2), (3) in D̄. In a similar way, functions û0 = û0(x) and v̂0 = v̂0(x) regular in Ḡ,

satisfying the infinite systems of inequalities

{

−Li[ûi
0](x) ≤ f i(x, û0(x), û0(·)) for x ∈ G, i ∈ S,

ûi
0(x) ≤ hi(x) for x ∈ ∂G, i ∈ S,

(8)

{

−Li[v̂i
0](x) ≥ f i(x, v̂0(x), v̂0(·)) for x ∈ G, i ∈ S,

v̂i
0(x) ≥ hi(x) for x ∈ ∂G, i ∈ S

(9)

are called a lower and an upper function, respectively, for elliptic problem (4), (5) in Ḡ.

We define

K := {(x, y, z) : x ∈ Ḡ, y ∈ [m0,M0], z ∈ 〈u0, v0〉},

where m0 := (mi
0)i∈S , M0 := (M i

0)i∈S , mi
0 := minx∈Ḡ ui

0(x), M i
0 := maxx∈Ḡ vi

0(x)

and 〈u0, v0〉 := {ζ ∈ L
p
S(G) : u0(x) ≤ ζ(x) ≤ v0(x) for x ∈ G}, if u0 ≤ v0.

Assumptions. We make the following assumptions:

(a) L is uniformly elliptic operator in Ḡ, i.e., there exists a constant µ > 0 such

that
m

∑

j,k=1

ai
jk(x)ξjξk ≥ µ

m
∑

j=1

ξ2
j , i ∈ S,

for all ξ = (ξ1, . . . , ξm) ∈ R
m, x ∈ G and the adjoint operator L⋆ to L exists.

(b) The functions ajk = (ai
jk)i∈S , bj = (bi

j)i∈S for j, k = 1, . . . ,m are of class

C0+α
S (Ḡ) and fulfil the Lipschitz condition on ∂G; also ai

jk(x) = ai
kj(x) for every

i ∈ S, j, k = 1, . . . ,m and x ∈ Ḡ.

(c) h ∈ C2+α
S (Ḡ).

(d) There exists at least one ordered pair u0, v0 ∈ C2+α
S (Ḡ) of a lower and an upper

function for problem (4), (5) in Ḡ, i.e.,

u0(x) ≤ v0(x) for x ∈ Ḡ.

(e) f(·, y, z) ∈ C0+α
S (Ḡ) for y ∈ [m0,M0], z ∈ 〈u0, v0〉.

(f) For every i ∈ S, x ∈ Ḡ, y, ỹ ∈ B(S) and z, z̃ ∈ CS(Ḡ)

|f i(x, y, z) − f i(x, ỹ, z̃)| ≤ Lf (‖y − ỹ‖B(S) + ‖z − z̃‖CS(Ḡ)),

where Lf > 0 is a constant independent of i ∈ S.

(g) f i is an increasing function with respect to the second and third variables for

every i ∈ S.

(h) u0(x) ≤ h(x) ≤ v0(x) for every x ∈ Ḡ.
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Remark. Let us see that if assumptions (d) and (h) are fulfiled, then the functions

u0(x) and v0(x) are a lower and an upper function for parabolic problem (1), (2), (3)

in D̄.

By applying the monotone iterative method, we may proove the following the-

orem.

Theorem 1. If assumption (a)–(h) hold then problem (1), (2), (3) has the unique

solution ũ ∈ C2+α
S (D̄) (0 < α < 1) within the sector 〈u0, v0〉.

We will outline a proof of the theorem (cf. [5, pp. 49–56, 61–62]). We start from

the lower function u0 and the upper function v0 and we define by induction two

monotone sequences {un} and {vn} as regular solutions of problem (1), (2), (3) with

un−1 and vn−1 substituted for u in the right-hand sides of the system.

The essential part of the proof is showing that if the functions f i fulfil assump-

tions (e) and (f) and the substituted function β ∈ C0+α
S (D̄) (where β = un−1 and

β = vn−1, respectively), then the function f i(x, β(t, x), β(t, ·)) ∈ C0+α
S (D̄).

The function β ∈ C0+α
S (D̄), so

‖β(t, x) − β(t′, x′)‖B(S) ≤ Hβ(|t − t′|
α
2 + |x − x′|α),

where Hβ > 0 is some constant. Therefore,

|f i(x, β(t, x), β(t, ·)) − f i(x′, β(t′, x′), β(t′, ·))| ≤

≤ |f i(x, β(t, x), β(t, ·)) − f i(x′, β(t, x), β(t, ·))| +

+ |f i(x′, β(t, x), β(t, ·)) − f i(x′, β(t′, x′), β(t′, ·))| ≤

≤ Hf |x − x′|α + Lf (‖β(t, x) − β|(t′, x′)‖B(S) + ‖β(t, ·) − β(t′, ·)‖CS(Ḡ)) ≤

≤ Hf |x − x′|α + LfHβ(|t − t′|
α
2 + |x − x′|α) + LfHβ |t − t′|

α
2 ≤

≤ H(|t − t′|
α
2 + |x − x′|α),

where H = Hf + 2LfHβ .

We obtain a solution of problem (1), (2), (3) as the limit of the sequences {un}

and {vn}.

For elliptic problem (4), (5), the following existence theorem is known (cf. [9]):

Theorem 2. If assumptions (a)–(g) hold, then problem (4), (5) has a solution

û ∈ CS(Ḡ) ∩ C2
S(G).

Let assumptions (a)–(h) hold. We study the behavior of solutions of the parabolic

problem with conditions independent of t.

Theorem 3. Let v0(x) be an upper function of elliptic problem (4), (5) in Ḡ and











∂ui(t,x)
∂t

− Li[ui](t, x) = f i(x, u(t, x), u(t, ·)) for t > 0, x ∈ G, i ∈ S,

ui(t, x) = vi
0(x) for t > 0, x ∈ ∂G, i ∈ S,

ui(0, x) = vi
0(x) for x ∈ G, i ∈ S.

(10)
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Then problem (10) has a solution ṽ(t, x) ∈ C2+α
S (D̄), which is nonincreasing with

respect to t and ṽ(t, x) ≤ v0(x) in D̄.

Proof. By virtue of Theorem 1, parabolic problem (10) has the unique solution

ṽ(t, x) ∈ C2+α
S (D̄).

The function v0(x) is an upper function for elliptic problem (4), (5) and is

independent of t, so v0(x) is a solution of the following problem:











∂vi
0(x)
∂t

− Li[vi
0](x) ≥ f i(x, v0(x), v0(·)) for t > 0, x ∈ G, i ∈ S,

vi
0(x) = vi

0(x) for t > 0, x ∈ ∂G, i ∈ S,

vi
0(x) = vi

0(x) for x ∈ G, i ∈ S.

(11)

Applying the Szarski theorem on weak partial differential-functional inequalities [8]

to problems (10) and (11) we obtain:

ṽ(t, x) ≤ v0(x) in D̄.

Now let

ṽτ (t, x) := ṽ(t + τ, x) for τ > 0.

The function ṽτ (t, x) satisfies the following problem:











∂ṽi
τ (t,x)
∂t

− Li[ṽi
τ ](t, x) = f i(x, ṽτ (t, x), ṽτ (t, ·)) for t > 0, x ∈ G, i ∈ S,

ṽi
τ (t, x) = vi

0(x) for t > 0, x ∈ ∂G, i ∈ S,

ṽi
τ (0, x) = ṽi(τ, x) ≤ vi

0(x) for x ∈ G, i ∈ S.

(12)

Applying again the Szarski theorem on weak partial differential-functional inequalities

[8] to problems (10) and (12) we obtain:

ṽτ (t, x) ≤ ṽ(t, x) in D̄.

Let t1, t2 > 0 and t1 ≤ t2; for τ = t2 − t1 there is

ṽ(t1, x) ≥ ṽτ (t1, x) = ṽ(t1 + τ, x) = ṽ(t2, x) in D̄,

so ṽ(t, x) is nonincreasing with respect to t.

Theorem 4. Let u0(x) be a lower function for elliptic problem (4), (5) in Ḡ and











∂ui(t,x)
∂t

− Li[ui](t, x) = f i(x, u(t, x), u(t, ·)) for t > 0, x ∈ G, i ∈ S,

ui(t, x) = ui
0(x) for t > 0, x ∈ ∂G, i ∈ S,

ui(0, x) = ui
0(x) for x ∈ G, i ∈ S.

(13)

Then problem (13) has a solution ũ(t, x) ∈ C2+α
S (D̄), which is nondecreasing with

respect to t and ũ(t, x) ≥ u0(x) in D̄.

Now we show the main result of this paper. We prove that the uniform limit at

t → ∞ of a solution of the parabolic problem is a solution of the elliptic problem.
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Theorem 5. If u(t, x) is a regular uniformly bounded solution of the parabolic boun-

dary initial value problem










∂ui(t,x)
∂t

− Li[ui](t, x) = f i(x, u(t, x), u(t, ·)) for t > 0, x ∈ G, i ∈ S,

ui(t, x) = vi
0(x) for t > 0, x ∈ ∂G, i ∈ S,

ui(0, x) = vi
0(x) for x ∈ G, i ∈ S,

(14)

and there exists a û such that limt→∞ ‖u(t, ·) − û(·)‖CS(Ḡ) = 0, then the function û

is a regular solution of elliptic boundary value problem (4), (5).

Proof. First we will prove that û is a weak solution of elliptic problem (4), (5).

Parabolic problem (14) has the unique regular solution by Theorem 1. Multi-

plying the equations in (14) by a test function ξ ∈ C∞
0 (G) and integrating, we get

〈

∂ui(t, x)

∂t
, ξ(x)

〉

−
〈

Li[ui](t, x), ξ(x)
〉

=
〈

f i(x, u(t, x), u(t, ·)), ξ(x)
〉

for every ξ ∈ C∞
0 (G), t > 0, i ∈ S, and using the adjoint operator L⋆i to Li

L⋆i[gi](x) :=

m
∑

j,k=1

∂2

∂xj∂xk

(ai
jk(x)gi(x)) −

m
∑

j=1

∂

∂xj

(bi
j(x)gi(x))

we obtain
〈

∂ui(t, x)

∂t
, ξ(x)

〉

−
〈

ui(t, x),L⋆i[ξ](x)
〉

=
〈

f i(x, u(t, x), u(t, ·)), ξ(x)
〉

for every ξ ∈ C∞
0 (G), t > 0, i ∈ S. Next, we choose any T > 0, and integrating with

respect to t on the interval [0, T ] and multiplying by 1
T
we get

1

T

T
∫

0

〈

∂ui(t, x)

∂t
, ξ(x)

〉

dt −
1

T

T
∫

0

〈

ui(t, x),L⋆i[ξ](x)
〉

dt =

=
1

T

T
∫

0

〈

f i(x, u(t, x), u(t, ·)), ξ(x)
〉

dt (15)

for every ξ ∈ C∞
0 (G), i ∈ S. Now, we pass to the limits in (15) as T → ∞. For every

i ∈ S,

lim
T→∞

1

T

T
∫

0

〈
∂ui(t, x)

∂t
, ξ(x)〉dt =

= lim
T→∞

1

T

T
∫

0

∂

∂t

〈

ui(t, x), ξ(x)
〉

dt = lim
T→∞

1

T

〈

ui(T, x), ξ(x)
〉

−
〈

ui(0, x), ξ(x)
〉

=

= lim
T→∞

〈

ui(T, x) − ui(0, x)

T
, ξ(x)

〉

= 0,
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because
∣

∣

∣

ui(T,x)−ui(0,x)
T

ξ(x)
∣

∣

∣
≤ 1

T
2C maxx∈Ḡ |ξ| → 0 as T → ∞ and G is a bounded

domain.

Next, for every i ∈ S

lim
T→∞

1

T

T
∫

0

〈

ui(t, x),L⋆i[ξ](x)
〉

dt = lim
T→∞

〈

∫ T

0
ui(t, x)dt

T
,L⋆i[ξ](x)

〉

=

=

〈

lim
T→∞

∫ T

0
ui(t, x)dt

T
,L⋆i[ξ](x)

〉

=

〈

lim
T→∞

∂
∂t

∫ T

0
ui(t, x)dt

1
,L⋆i[ξ](x)

〉

=

=
〈

lim
T→∞

ui(T, x),L⋆i[ξ](x)
〉

=
〈

ûi(x),L⋆i[ξ](x)
〉

.

And for every i ∈ S

lim
T→∞

∣

∣

∣

∣

∣

∣

1

T

T
∫

0

〈f i(x, u(t, x), u(t, ·)), ξ(x)〉dt −
〈

f i(x, û(x), û(·)), ξ(x)
〉

∣

∣

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∣

〈

lim
T→∞

∫ T

0
f i(x, u(t, x), u(t, ·)) − f i(x, û(x), û(·))dt

T
, ξ(x)

〉
∣

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∣

〈

lim
T→∞

∂
∂t

∫ T

0
f i(x, u(t, x), u(t, ·)) − f i(x, û(x), û(·))dt

1
, ξ(x)

〉∣

∣

∣

∣

∣

=

=
∣

∣

∣

〈

lim
T→∞

(f i(x, u(T, x), u(T, ·)) − f i(x, û(x), û(·))), ξ(x)
〉∣

∣

∣
≤

≤
〈

lim
T→∞

|f i(x, u(T, x), u(T, ·)) − f i(x, û(x), û(·))|, |ξ(x)|
〉

≤

≤
〈

lim
T→∞

(L1‖u(T, x) − û(x)‖B(S) + L2‖u(T, ·) − û(·)‖CS(G)), |ξ(x)|
〉

=

= 〈0, |ξ(x)|〉 = 0,

so

lim
T→∞

1

T

T
∫

0

〈

f i(x, u(t, x), u(t, ·)), ξ(x)
〉

dt =
〈

f i(x, û(x), û(·)), ξ(x)
〉

.

Therefore,

−
〈

ûi(x),L⋆i[ξ](x)
〉

=
〈

f i(x, û(x), û(·)), ξ(x)
〉

and

−
〈

Li[ûi](x), ξ(x)
〉

=
〈

f i(x, û(x), û(·)), ξ(x)
〉

,

so û is a weak solution of elliptic problem (4), (5).

Since û is bounded in G, û ∈ L
p
S(G) for any p ∈ [1,∞]. Let p > m. Thus

f(x, û(x), û(·)) ∈ L
p
S(G).
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Now we consider problem

{

−Li[wi](x) = f i(x, û(x), û(·)) for x ∈ G, i ∈ S,

wi(x) = hi(x) for x ∈ ∂G, i ∈ S,
(16)

System (16) is a system of Dirichlet problems with a single equation each. We

apply the Agmon–Douglis–Nirenberg theorem to every problem separately and get

w = (wi)∞i=1 ∈ H
2,p
S (G). By the Agmon–Douglis–Nirenberg theorem, each of the

problems included in (16) has the unique solution, so û = w ∈ H
2,p
S (G).

Because the Sobolev space H2,p(Ḡ) is continuously imbeddable in C0+α(Ḡ) for

p > m and then

‖ui‖C0+α(Ḡ) ≤ C‖ui‖H2,p(G), i ∈ S,

where C is independed of i [1, p. 144], we get

û ∈ C0+α
S (Ḡ).

Applying the Schauder theorem to (16) for û ∈ C0+α
S (Ḡ) separately for every

i ∈ S, we obtain

û ∈ C2+α
S (Ḡ).

Now using Theorem 5 we show the stability of solutions of the parabolic problem

with the conditions independent of time.

Theorem 6. Let assummptions (a)–(h) hold.

(i) If u is a maximal regular solution of problem (4), (5) such that h fulfils u(x) ≤

h(x) for x ∈ Ḡ, then the function u is an asymptotically stable solution from

above of parabolic problem (1), (2), (3).

(ii) If u is a minimal regular solution of problem (4), (5) such that h fulfils h(x) ≤ u(x)

for x ∈ Ḡ, then the function u is an asymptotically stable solution from below of

parabolic problem (1), (2), (3).

(iii) If u is the unique (i.e., u = u = u) regular solution of problem (4), (5), then the

function u is an asymptotically stable solution of parabolic problem (1), (2), (3).

Proof. (i) From the theorem on weak partial differential-functional inequalities [8],

Theorem 3 and Theorem 5, each solution u(t, x) of problem (1), (2), (3) such that

u0(x) ≤ h(x) ≤ v0(x) in Ḡ

satisfies

u0(x) ≤ ũ(t, x) ≤ u(t, x) ≤ ṽ(t, x) ≤ v0(x) in D̄,

where ũ, ṽ are solutions of problems (13) and (10), respectively.

The function u is a maximal regular solution of problem (4), (5); thus the

solution ṽ(t, x) satisfies

u(x) ≤ ṽ(t, x) ≤ v0(x).
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Hence ṽ(t, x) is bounded from below and, by Theorem 3, is a nondecreasing function

with respect to t, so limt→∞ ṽ(t, x) exists. From Theorem 1 we know that

‖ũ‖C
2+α
S

(D̄) ≤ B

for 0 < α < 1, where B > 0 is a constant indepedent of i, t, x, so {ũ(t, ·)}t∈[0,∞) are

equicontinuous functions. Ḡ is a compact set. Thus ṽ(t, x) converges uniformly as t →

∞. By Theorem 5, this limit is a solution of problem (4), (5). u(x) ≤ limt→∞ ṽ(t, x)

and u(x) is a maximal solution of problem (4), (5). Consequently,

lim
t→∞

ṽ(t, x) = u(x).

Hence u(t, x) such that u(x) ≤ u(t, x) ≤ ṽ(t, x) converges uniformly to u(x), so

u(x) is asymptotically stable solution from above of problem (1), (2), (3).

The proofs of (ii) and (iii) run similarly.

Corollary. If the function h = h(t, x) depends on t, but is bounded by functions

ȟ(x), ĥ(x) ∈ C2+α
S (Ḡ) independent of t such that u0(x) ≤ ȟ(x) ≤ h(t, x) ≤ ĥ(x) ≤

v0(x) for t > 0, x ∈ Ḡ and an asymptotically stable solution u of











∂ui(t,x)
∂t

− Li[ui](t, x) = f i(x, u(t, x), u(t, ·)) for t > 0, x ∈ G, i ∈ S,

ui(t, x) = hi(t, x) for t > 0, x ∈ ∂G, i ∈ S,

ui(0, x) = hi(0, x) for x ∈ G, i ∈ S

exists, then

ǔ(x) ≤ u(x) ≤ û(x) for x ∈ Ḡ,

where ǔ is the minimal solution of

{

−Li[ui](t, x) = f i(x, u(t, x), u(t, ·)) for x ∈ G, i ∈ S,

ui(t, x) = ȟi(x) for x ∈ ∂G, i ∈ S,

and û is the maximal solution of

{

−Li[ui](t, x) = f i(x, u(t, x), u(t, ·)) for x ∈ G, i ∈ S,

ui(t, x) = ĥi(x) for x ∈ ∂G, i ∈ S.
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