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A REMARK ON GENERALIZED COMMUTATION

RELATION AND SUBNORMALITY

Abstract. Tillmann [11] proved that every operator A which fulfils the canonical com-

mutation relation A∗A − AA∗

= Id is an orthogonal sum of canonical creation operators.

We extend this result for operators which fulfil generalized commutation relation

A
∗

A − AA
∗

= E
2
, where EA = AE.

In addition, some inequalities which are helpful in describing analytic vectors of operators

A∗A, where A fulfils the generalized commutation relation, are estabished.
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1. INTRODUCTION

It is well known [1] that every subnormal operator S in a Hilbert space fulfils the

Halmos–Bram condition on a suitable dense subset of its domain M , i.e.

n
∑

i,j=1

〈Sifj , S
jfi〉 ≥ 0 for all natural n and f1, . . . , fn ∈ M. (1.1)

The canonical creation operator can be represented (in a traditional manner) as

the operator S+, defined on

D(S+) :=







∑

i∈Z+

fiei :
∑

i∈Z+

i |fi|2 < ∞







(1.2)
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by the formula

S+ei :=
√

i + 1ei+1 for i ∈ Z+,

where {ei : i ∈ Z+} denotes the orthonormal basis indexed by the set Z+ of all

nonnegative integers. The canonical creation operator is in a natural way subnormal.

Tillman in [11] proved the following theorem:

Theorem 1.1. Let S be a linear and closed densely defined operator in a Hilbert

space K and suppose that D := D(S∗S) = D(SS∗), and that the relation

S∗S − SS∗ = Id (1.3)

holds on the set D.

Then the operator S∗S is self-adjoint and has a purely discrete spectrum with

eigenenvalues {0, 1, 2, . . .}, each of the same multiplicity. In addition, the Hilbert space
K can be written as a direct sum K = ⊕Kα, where for each α Kα is an irreducible

reducing subspace of S and the restriction of S to the Hilbert space Kα is isomorphic

to the canonical creation operator.

A consequence of the above theorem, is that each operator with canonical com-

mutation relation property (1.3) is subnormal. The crucial point in the proof of this

result is to show that the symmetric operator S∗S is self-adjoint.

Besides the Halmos–Bram condition (see (1.1)), subnormality of unbounded

operators requires some additional assumptions about analyticity of vectors in the

domains of their operators [5,6,7]. Actually, Szafraniec and J. Stochel [5] proved the

following theorem:

Theorem 1.2. Let a dense linear subset M be invariant for a closed operator S. The

operator S is subnormal if the Halmos–Bram condition is fulfilled on M and the set

M is linearly spanned by the set {Sif : i ∈ Z+, f ∈ A(S)}, where A(S) denotes the

set of all analytic vectors for S and f is analytic for S if and only if f ∈ D(Sm) for

all natural m and

lim
m→∞

[‖Smf‖
m!

]
1
m

< ∞.

In [8] it has been proved that the generalized commutation relation implies the

Halmos–Bram condition, i.e.,

Theorem 1.3. Let S be a linear operator in Hilbert space H and let M be a dense

linear manifold of H, and suppose thatM is invariant for S. If there exists an operator
E such that M ⊂ D(E) ∪ D(E∗), EM ⊂ M , (S∗S − SS∗)f = E2f , SEf = ESf

for each f ∈ M and 〈f,Eg〉 = 〈Ef, g〉 for each f, g ∈ M , then the Halmos–Bram

condition holds on M .

Theorems 1.2 and 1.3 show us, how important for a subnormality is the infor-

mation about analyticity of vectors from the domain of a suitable operator.

152 Jerzy Bartłomiej Stochel



In this paper, we try to use Tillman’s method to obtain more information about

operators which fulfil generalized commutation relation. First, we slightly generalize

Theorem 1.1, and next, we prove some estimates for the norm ‖S∗Sf‖ (Proposition
3.3, 3.5 and Corollary 3.6), which could be helpful in the proving of the self-adjointnes

of the operator S∗S.

2. AN IMPROVED VERSION OF TILLMAN’S THEOREM

Denote by N and R the set of all natural numbers and real numbers, respectively,

and by H a complex Hilbert space. Given a dense linear subspace D of H, by L#(D)

we denote the set of all linear operators A from D in D such that the domain D(A∗)

of the adjoint A∗ of A contains D and A∗(D) ⊆ D. Then L#(D) becomes *-algebra

with the involution A# := A∗|D.

Definition 2.1. An operator S ∈ L#(D) is said to satisfy the generalized semicom-

mutation relation if it commutes with its selfcommutator [S#;S] := S#S − SS#.

Definition 2.2. We say that S ∈ L#(D) satisfies the generalized commutation

relation if there exists E ∈ L#(D) such that E# = E, ES = SE and [S#;S] = E2

(see Theorem 1.3).

Roughly speaking, the canonical commutation relation (see (1.3)) can be regar-

ded as a special case of the generalized one with E = Id, where Id stands for the

identity operator.

In [8] it was shown that the generalized commutation relation implies Halmos–

Bram condition, which is a necessary condition for an operator to be subnormal

[5–7]. Tillmann [11] proves that if a closed densly defined operator S in H satisfies

the commutation relation, i.e., S∗S − SS∗ ⊆ Id and D(S∗S) = D(SS∗), then S

is an orthogonal sum of creation operators. Consequently, S is subnormal [5]. It is

worthwhile to notice that in the case of S+ (see (1.2)), the space D[(S+)∗S+] is not

invariant under S+. Indeed, since

D[(S+)∗S+] =

{

∑

i∈N

fiei ∈ H :
∑

i∈N

i2 |fi|2 < ∞
}

then

g :=
∑

i∈N

1

i(i + 1)
ei ∈ D[(S+)∗S+] and S+g /∈ D[(S+)∗S+].

We can slightly generalize Tillmann’s theorem as follows. Below, σ(C) and σp(C)

stand for the spectrum and point spectrum, respectivaty, of a densly defined operator

C in H.

Theorem 2.1 ([10]). Let S be a closed, densly defined linear operator in H. Assu-

me that the domains of the operators S∗S and SS∗ coincide and that the operator

A remark on generalized commutation relation and subnormality 153



C := S∗S − SS∗ is bounded. Moreover, assume that σ(C) = σp(C) and CSf = SCf

for each f ∈ D[S] := D(S∗S). Then there are complex numbers λi,µj such that

S = [⊕λiS
+] ⊕ [⊕µj(S

+)∗] ⊕ N

where N is a normal operator with the domain D(N) = D[S]∩ker(C). If C ≥ 0, then

S = [⊕λiS
+] ⊕ N and the operator S is subnormal.

Proof. It follows from [12] that for f ∈ D(S) there exists a sequence {fn} ⊆ D(S)

such that

fn −→ f and Sfn −→ Sf.

Then Cfn −→ Cf and SCfn = CSfn −→ CSf . Since the operator S is closed, we

get Cf ∈ D(S) and SCf = CSf . Thus, CS ⊂ SC and, consequently, F (δ)S ⊂ SF (δ)

for every Borel subset δ of R, where F is the spectral measure of the selfadjoint

operator C. Since ker(λId−C) = F ({λ}) for λ ∈ R, we conclude that ker(λId−C)

reduces S for every λ ∈ R. Denote by Sλ the restriction of S to ker(λId−C), λ ∈ R.

Then, by the equality D(S∗S) = D(SS∗), we get

D(S∗

λSλ) = D
(

S∗S|ker(λId−C)

)

= D[S] ∩ ker(λId − C) = D(SλS∗

λ),

(S∗

λSλ − SλS∗

λ)f = λf, f ∈ D[Sλ], λ ∈ R.

This and Tillman’s Theorem imply that Sλ is unitarily equivalent to the orthogonal

sum of creation (resp. annihilation) operators, provided that λ ∈ σp(C) and λ > 0

(resp, λ < 0). Since S∗

0S0 = S0S
∗

0 , then operator S0 is normal in (D[S] ∩ ker(C))−

and D(S0) = D[S] ∩ ker(C). The conclusion follows from the fact that

H =
⊕

λ∈σ(C)

ker(λId − C).

Let M0 be a dense linear subspace of H, A ∈ L#(M0) such that A = A# and

M := {(f1, . . . , fm, 0, 0, . . .) ∈ K : fn ∈ M0 and m ∈ N}

where K =
⊕

n∈N

Kn and Kn := H for each n ∈ N. Then M is a dense linear subspuce

of K. We define the operator A ∈ L#(M) by

Af := (0, Af1,
√

2Af2,
√

3Af3, . . .), f := (f1, f2, . . .) ∈ M.

Then the adjoint A# of A acts accordingly to the following formula:

A#f = (A#f2,
√

2A#f3,
√

3A#f4, . . .), f := (f1, f2, . . .) ∈ M.

The selfcommutator of the operator A acts on M as follows:

(A#A−AA#)(0, . . . , 0, fn, 0, . . .) =

= (0, . . . , 0, n A#Afn − (n − 1)AA#fn, 0, . . .) = (0, . . . , 0, A2fn, 0, .) if n ≥ 2
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and

(A#A−AA#)(f1, 0, 0, . . .) = (A#Af1, 0, 0 . . .) = (A2f1, 0, 0, . . .).

As a consequence, we obtain

C := A#A−AA# = A2 ⊕ A2 ⊕ . . . = (A ⊕ A ⊕ . . .)2 ∈ L#(M)

and

σ(C) = σ(A2).

It is not difficult to see that the operator A fulfils the generalized semicommutation
relation on M. If we assume that continuous spectrum of A2 coincides with σ(A2),

then we obtain that C has a continuous spectrum. So, the assumption δ(C) = δp(C)

in Theorem 2.1 is essentailal.

3. ANALYCITY OF VECTORS FROM D(S#S)

In [9] it is shown that generalized creation operators acting on a Bergmann space of

an infinite order are subnormal. These operators fulfil the generalized commmutation

relation on some invariant space M, in which all vectors are analytic. If we look at

the proof of Tillmann’s Theorem [11], we note that the crucial point in this proof

is to show that the symmetric operator S∗S is selfadjoint (in the notation used

in Theorem 1.1). On the other hand, we know that a symmetric operator with

the set of analytic (resp. quasi-analytic, C∞) vectors in its domain rich enough is

essentially selfadjoint [2,3,4]. These two above approaches to commutation relations

have common parts. They require some kind of regularity of vectors from the domains

of adequate operators. In the sequel, we will try to show how useful can the generalized

commutation property be in describing analytic (resp. quasi-analytic ) properties of

vectors from the domain of operators S#S. First we recall the definition of analytic

and quasi-analytic vectors of some symmetric operator A ∈ L#(D). We say that

f ∈ D is an analytic (resp., quasi-analytic) vector of A if

∞
∑

n=0

‖Anf‖
n!

tn < ∞ for some t > 0

(

resp.,
∞
∑

n=1

‖Anf‖−1/n
= +∞

)

.

From these definitions it follows that if we want to know something about the

“analyticity” of a vector f, we must first know how the norms ‖Anf‖ behave. Next,
we will consider the operator A := S#S, where S is an operator which fulfils the

generalized commutation relation.
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The following property is shown to hold [8]:

Proposition 3.1. The following formula is true:

(S#)iSjf =
∞
∑

m=0

m!

(

j

m

)(

i

m

)

Sj−m(S#)i−mE2mf, f ∈ D

where S−l := (S#)−l := 0 if l > 0,
(

i
j

)

:= 0 for j > i and S0 := (S#)0 := Id.

Using the above property we obtain:

Proposition 3.2. There exist integers α(n, k), n, k = 0, 1, 2, . . . , n ≥ k, such that:

(a) (S#S)nf =
n
∑

k=0

α(n, k)(S#)kSkE2(n−k)f , f ∈ D,

(b) α(n, 0) = 0, n = 1, 2, . . .

α(n, n) = 1, n = 0, 1, 2, . . .

α(n + 1, k) = α(n, k − 1) − kα(n, k), n = 2, 3, 4 and 1 ≤ k ≤ n,

(c) α(n + 1, 1) = (−1)n, n = 1, 2, . . .

α(n + 1, 2) = (−1)n(1 − 2n), n = 1, 2, . . .

α(n, n − 1) = −n(n−1)
2 , n = 1, 2, . . .

α(n, n − k) = (−1)k
n−k
∑

ik=1

· · · · ·
i3
∑

i2=1

i2
∑

i1=1

i1 . . . ik, 1 ≤ k < n,

(d) α(n, n − k) > 0 for even integers k, 1 ≤ k < n,

α(n, n − k) < 0 for odd integers k, 1 ≤ k < n.

Proof. We prove properties (a) and (b) by induction with respect “n”. For n = 0, 1,

a proof is obvious. Let n ≥ 1. Then from the inductive step there follows:

(S#S)n+1f = S#S(S#S)nf =

= S#S

n
∑

k=0

α(n, k)(S#)kSkE2(n−k)f =

n
∑

k=0

α(n, k)S#[S(S#)k]SkE2(n−k)f
(∗)
=

(∗)
=

n
∑

k=0

α(n, k)(S#)[(S#)kS − k · (S#)k−1E2]SkE2(n−k)f =

=
n
∑

k=0

α(n, k)(S#)k+1Sk+1E2(n−k)f −
n
∑

k=0

α(n, k) · k · (S#)kSkE2(n+1−k)f =

=

n+1
∑

l=1

α(n, l − 1)(S#)lSlE2(n+1−l)f −
n
∑

k=1

k · α(n, k)(S#)kSkE2(n+1−k)f =

=
n+1
∑

k=0

α(n + 1, k)(S#)kSkE2(n+1−k)f,
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where

α(n + 1, 0) := 0,

α(n + 1, n + 1) := α(n, n),

α(n + 1, k) := α(n, k − 1) − k · α(n, k) for 1 ≤ k ≤ n

and equality (*) is a consequence of Proposition 3.1 for i = k, j = 1.

In case (c), we also proceed by induction:

α(2, 1) = α(1, 0) − 1α(1, 1) = −1

and for n ≥ 1, from the inductive step, we obtain:

α(n + 2, 1) = α(n + 1, 0) − 1 · α(n + 1, 1) = 0 − 1 · (−1)n = (−1)n+1.

Similarly, α(2, 2) = 1 = (−1)1(1 − 21) and

α(n + 2, 2) = α(n + 1, 1) − 2 · α(n + 1, 2) =

= (−1)n − 2 · (−1)n(1 − 2n) = (−1)n[1 − 2 + 2n+1] = (−1)n+1(1 − 2n+1)

for n ≥ 1. By the last equality, we will proceed analogously but by induction with

respect to “k”.

α(n, n − 1) = α(n − 1, n − 2) − (n − 1)α(n − 1, n − 1) =

= α(n − 1, n − 2) − (n − 1) = . . . = α(2, 1) −
n−1
∑

i=2

i = −
n−1
∑

i=1

i = − (n − 1) · n
2

and

α(n, n − (k + 1)) =

= α(n − 1, n − 1 − (k + 1)) − [n − (k + 1)]α(n − 1, n − (k + 1)) =

= . . . = α(k + 2, 1) −
n−(k+1)
∑

s=2

s · α(s + k, s) =

= (−1)k+1 −
n−(k+1)
∑

s=2

s · (−1)k
s
∑

ik=1

. . .

i3
∑

i2=1

i2
∑

i1=1

i1 · . . . · ik =

= (−1)k+1 + (−1)k+1

n−(k+1)
∑

ik+1=s=2

ik+1
∑

ik=1

. . .

i2
∑

i1=1

i1 · . . . · ik · ik+1 =

= (−1)k+1

n−(k+1)
∑

ik+1=1

. . .

i2
∑

i1=1

i1 · . . . · ik+1.

Property (d) follows immediately from property (c).
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The above proposition reveals some possible methods for calculating the numbers

α(n, k). We are now in a position to compute the numbers ‖(S#S)f‖.

Proposition 3.3. The following formula is true:

‖(S#S)nf‖2 =
2n
∑

k=1

α(2n, k)
∥

∥SkE2n−kf
∥

∥

2
for f ∈ D.

Proof. From Proposition 3.2, we conclude that

‖(S#S)nf‖2 =
〈

(S#S)nf, (S#S)nf
〉

=
〈

(S#S)2nf, f
〉

=

=

〈

2n
∑

k=0

α(2n, k) (S#)k(S)kE2(2n−k)f, f

〉

=

=
2n
∑

k=0

α(2n, k)
〈

SkE2n−kf, SkE2n−kf
〉

=

=
2n
∑

k=0

α(2n, k)
∥

∥SkE2n−kf
∥

∥

2
.

It would be convenient to have some estimates of the norms
∥

∥SkE2n−kf
∥

∥.

We know that the operator S fulfils the Halmos–Bram condition. It helps us to prove

the following inequality:

Proposition 3.4. The following inequality is true:

∥

∥SkE2n−kf
∥

∥

1
k ≤

∥

∥E2n−kf
∥

∥

2n−k

2n·k
∥

∥E2n−kS2nf
∥

∥

1
2n for f ∈ D.

Proof. In [6] it is shown that there exists a finite non-negative measure µ such that

‖Sng‖2
=

+∞
∫

0

tnµ(dt) for g ∈ D, n = 0, 1, 2, . . . .

Using Hölder Inequality with p = n + 1 and q = n+1
n , we obtain:

‖Sng‖2
=

∞
∫

0

tnµ(dt) ≤





∞
∫

0

µ(dt)





1
n+1

·





∞
∫

0

tn+1µ(dt)





n

n+1

=

= ‖g‖
2

n+1 ·
∥

∥Sn+1g
∥

∥

2n

n+1 .

Therefore,

‖Sng‖
1
n ≤ ‖g‖

1
n(n+2) ·

∥

∥Sn+1g
∥

∥

1
n+1 .
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In the sequel, let an := ‖Sng‖
1
n . Then an ≤ ‖g‖

1
n(n+1) · an+1 and, as a consequence,

an ≤ ‖g‖
1

k(k+1) ak+1 ≤ ‖g‖
1

k(k+1)
+ 1

(k+1)(k+2) · ak+2 ≤ . . .

. . . ≤ ‖g‖
1

k(k+1)
+...+ 1

(m−1)·m · am = ‖g‖
1
k
−

1
m · am for k < m.

If we now substitute g = E2n−kf and m = 2n, then we obtain

∥

∥SkE2n−kf
∥

∥

1
k ≤

∥

∥E2n−kf
∥

∥

1
k
−

1
2n ·

∥

∥S2nE2n−kf
∥

∥

1
2n =

=
∥

∥E2n−kf
∥

∥

2n−k

2n·k ·
∥

∥E2n−kS2nf
∥

∥

1
2n .

Suppose that E is a bounded operator and e := ‖E‖. Then the inequality in
Proposition 3.4 yields the following one:

∥

∥SkE2n−kf
∥

∥

1
k ≤ e

2n−k

2n·k · ‖f‖
2n−k

2n·k · e 2n−k

2n ·
∥

∥S2nf
∥

∥

1
2n =

= e
(2n−k)(k+1)

2n·k · ‖f‖
1
k
−

1
2n ·

∥

∥S2nf
∥

∥

1
2n = e

(2n−k)(k+1)
2n·k ‖f‖

1
k

∥

∥

∥

∥

S2n

(

f

‖f‖

)
∥

∥

∥

∥

1
2n

.

Thus we obtain the following:

Proposition 3.5. If the operator E is bounded, then

∥

∥(S#S)nf
∥

∥

2 ≤ ‖f‖2 ·
2n
∑

k=1

· |α(2n, k)| · s(n, f)k · ‖E‖
(2n−k)(k+1)

n

where s(n, f) :=

∥

∥

∥

∥

S2n

(

f

‖f‖

)
∥

∥

∥

∥

1
n

and f ∈ D.

Let now E = λ · Id, where λ is a complex number. Then Proposition 3.3 and

Proposition 3.5 yield the following properties:

Corollary 3.1.

∥

∥(S#S)nf
∥

∥

2
=

2n
∑

k=1

α(2n, k) · λ2n−k ·
∥

∥Skf
∥

∥

2
, for f ∈ D

and
∥

∥(S#S)nf
∥

∥

2 ≤ ‖f‖ ·
2n
∑

k=1

|α(2n, k)| · s(n, f)k · λ
(2n−k)(k+1)

n

where s(n, f) :=

∥

∥

∥

∥

S2n

(

f

‖f‖

)∥

∥

∥

∥

1
n

and f ∈ D.

The last proposition and corollary give us hope that if we know more about the

numbers α(m, k), then we will be able the say something about the “analyticity” of

vectors f ∈ D for the operator S#S. So if we want to use the same methods as in

Tillman’s paper [11] to describe operators which fulfil the generalized commutation

relation, we must first describe the numbers α(m, k) more precisely.
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