Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The analytical properties of dissolving operators related with the Cauchy problem for a class of nonautonomous partial differential equations in Hilbert spaces are studied using theory of bilinear forms in respectively rigged Hilbert spaces triples. Theorems specifying the existence of a dissolving operator for a class of adiabatically perturbed nonautonomous partial differential equations are stated. Some applications of the results obtained are discussed.
Czasopismo
Rocznik
Tom
Strony
131--136
Opis fizyczny
Bibliogr. 6 poz.
Twórcy
autor
autor
- AGH University of Science and Technology, Faculty of Applied Mathematics, al. Mickiewicza 30, 30-059 Kraków, Poland, kudela@agh.edu.pl
Bibliografia
- [1] Lions J.L., Magenes E., Non-homogeneous Boundary Value Problems and Applications. Vol 1., Springer-Verlag Berlin and Heidelberg, GmbH k Co, USA, 1972.
- [2] Berezansky Yu. M., Expansions in eigenfunctions of self-adjoint operators, Kiev, Nauk. Dumka, 1965.
- [3] Kato T., Perturbation theory for linear operators, Springer, 1966.
- [4] Chruściński D., Jamiołkowski A., Faza geometryczna: teoria i zastosowania, Toruń, 1996.
- [5] Bogoliubov N. N. (Jr.), Prykarpatsky A. K., Quantum method of generating Bogoljubov functionals in statistical physics: current Lie algebra, its representations and functional equations, Journal . Element. Particles and Atom Nucl. 17 (1986) (4), 789-827
- [6] Prykarpatsky A.K., Mykytiuk I.V.: Algebraic integrability of nonlinear dynamical systems on manifolds: classical and quantum aspects. Kluwer Academic Publishers, the Netherlands, 1998
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH4-0006-0009