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BIPARTITE EMBEDDING OF (p, q)-TREES

Abstract. A bipartite graph G = (L, R; E) where V (G) = L∪R, |L| = p, |R| = q is called

a (p, q)-tree if |E(G)| = p + q − 1 and G has no cycles. A bipartite graph G = (L, R; E) is

a subgraph of a bipartite graph H = (L′, R′; E′) if L ⊆ L′, R ⊆ R′ and E ⊆ E′.

In this paper we present sufficient degree conditions for a bipartite graph to contain

a (p, q)-tree.
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1. TERMINOLOGY

We shall use standard graph theory notation. We consider only finite, undirected

graphs. All graphs will be assumed to have neither loops nor multiple edges.

Let G = (L,R;E) be a bipartite graph with a partition L, R and an edge set

E. That means, L and R are two disjoint sets of independent vertices of the graph

G such that L ∪ R = V (G). We call L = L(G) and R = R(G) the left and right set

of bipartition. Note that the graphs G = (L, R;E) and G′ = (R,L;E) are different.

For a vertex x ∈ V (G), N(x, G) denotes the set of its neighbors in G. The degree

d(x,G) of the vertex x in G is the cardinality of the set N(x, G).

∆L(G) (δL(G)) and ∆R(G) (δR(G)) are maximum (minimum) vertex degree

in the set L(G) and R(G), respectively. A vertex x of G is said to be pendant if

d(x,G) = 1. For subsets A and B of V (G), let N(A,B;G) denote the set of edges

xy ∈ E(G) such that x ∈ A and y ∈ B. Kp,q is the complete (p, q)-bipartite graph.

Ḡ is the complement of G into Kp,q.

A bipartite graph G = (L,R;E) is a subgraph of a bipartite graph H =

(L′, R′;E′) if L ⊆ L′, R ⊆ R′ and E ⊆ E′. If G is a subgraph of H, then we write

G ≤ H. Observe that the meaning of the word subgraph is different from the usual
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one (see [3] and [1] page 1282). For instance, the graph K1,2 = ({a}, {b, c}; {ab, ac})
is not a subgraph of K2,1 = ({d, e}, {f}; {df, ef}). We say that a bipartite graph
G = (L,R;E) is bipartite embeddable or simply embeddable into bipartite graph

H = (L′, R′;E′) if there is an injection f such that f : L ∪ R → L′ ∪ R′, f(L) = L′

and for every edge xy ∈ E, f(x)f(y) is an edge of H. The function f is called the

bipartite embedding (or embedding) of G into H. In other words, a bipartite graph

G = (L, R;E) is said to be embedded into bipartite graph H = (L′, R′ : E′) when

there exists a pair (f1, f2) of injective mappings f1 : L → L′ and f2 : R → R′ such

that if x ∈ L and y ∈ R are adjacent in G, then f1(x) and f2(y) are adjacent in H

(see [3]). It follows easily that G is embeddable into H if and only if G is a subgraph

of H. Note that K1,2 is not embeddable into K2,1.

A (p, q)-bipartite graph G is called a (p, q)-tree if G is connected and |E(G)| =

p+ q−1. Thus each (p, q)-tree is a tree and for each tree T there exist integers p and

q such that T is a (p, q)-tree. If G is a (p, q)-bipartite and |E(G)| = p + q − k and G

has no cycles then G is called a (p, q, k)-forest. So, a (p, q, 1)-forest is a (p, q)-tree.

Let T be a (p, q)-tree and y ∈ V (T ). Let us denote by Uy the set of all z ∈ N(y, T )

such that d(z, T ) = 1. We shall call Uy the bough with the center y. The vertex

x ∈ V (T ) is called penultimate vertex if Ux 6= ∅ and d(x, T ) = |Ux|+ 1 and there is

the longest path P in T such that x ∈ V (P ).

2. RESULTS

First we shall give some results concerning the subgraphs of general graphs.

In 1963, Erdös and Sós (see [5]) stated the following conjecture, which was

proved by Brandt in [2].

Theorem 1. Let G be a graph with n vertices and more than

f(k, n) = max

{(

2k − 1

2

)

,

(

k − 1

2

)

+ (k − 1)(n − k + 1)

}

edges. Then G contains every forest with k edges and without isolated vertices as a

subgraph.

The following well-known result was atributed by Chvátal to graph-theoretical

folklore [4]:

Theorem 2. Suppose G is a graph with the minimum degree not less than k. Then

G contains every tree with k edges.

S. Brandt in [2] proved:

Theorem 3. Suppose F is a forest with k edges and order n and G is a graph with

at least n vertices. If δ(G) ≥ k, then F is a subgraph of G.
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We shall consider bipartite embedding problem, analogous to the classical em-

bedding problem, the first genaral condition for a bipartite graph to be a subgraph

of another bipartite graph was given by Rado in [6] (See also [3]).

In this paper we present sufficient degree conditions for a bipartite graph to

contain every (p, q)-tree.

The following lemma, proved in Section 3, is an easy bipartite equivalent of

Theorem 2.

Lemma A. Let G = (L′, R′;E′) be a (p′, q′)-bipartite graph such that δL(G) ≥ q and

δR(G) ≥ p. Then every (p, q)–tree T = (L,R;E) is a subgraph of G.

Observe that if ∆L(T ) = q (or ∆R(T ) = p), then Lemma A is best possible

in the sense that it cannot be improved by decreasing the minimum degree of the

graph G.

Hence, now we shall consider a (p, q) – tree T such that K1,q is not a subgraph

of T .

The main results are the following theorem and its obvious corollaries:

Theorem B. Let T = (L,R;E) be a (p, q)-tree,∆L(T ) ≤ q−1 and let G = (L′, R′;E′)

be a connected (p′, q′)-bipartite graph such that q′ ≥ q, δL(G) ≥ q − 1 and δR(G) ≥ p.

Then T is a subgraph of G.

Note that if ∆L(T ) = q − 1 (or ∆R(T ) = p), then Theorem B is best possible.

Let Pk be a path with k edges and let k be even, k ≥ 4. By Theorem 3, Pk

is a subgraph of a graph G if δ(G) ≥ k, but by Theorem B, Pk is a subgraph of a

bipartite graph G′, if δ(G′) ≥ k/2.

Corollary C. Let T = (L,R;E) be a (p, q)-tree, ∆L(T ) ≤ q − 1 and let G =

(L′, R′;E′) be a (p′, q′)-bipartite graph such that δL(G) ≥ q − 1, δR(G) ≥ p and

every connected component G1 has at least p and q vertices in L(G1) and R(G1),

respectively. Then T is a subgraph of each component of G.

Corollary D. Let F = (L,R;E) be a (p, q, k)-forest, k ≥ 2 and let G = (L′, R′;E′)

be a (p′, q′)-bipartite graph such that q′ ≥ q, δL(G) ≥ q − 1, δR(G) ≥ p. Then F is a

subgraph of G.

3. PROOFS

To prove Lemma A and Theorem B, we shall need two lemmas.

Lemma 3.1 Let T = (L,R;E) be a (p, q)-tree, let Uy 6= ∅ be a bough in T and let G

be a (p′, q′)-bipartite graph, δL(G) ≥ q and δR(G) ≥ p. If T \ Uy ≤ G then T ≤ G.
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Proof. Let T = (L,R;E) be a (p, q)-tree, y ∈ V (T ), Uy 6= ∅ and let G = (L′, R′;E′)

be a (p′, q′)-bipartite graph verifying the assumptions of the lemma. Without loss

of generality we may assume that y ∈ L. Let us denote by T1 the tree T \ Uy. Let

|Uy| = k. If k = q then T = K1,q and T ≤ G. We now assume that k ≤ q − 1. Note

that T1 = (L1, R1;E1) is a (p, q − k)-tree and 1 ≤ d(y, T1) ≤ q − k. By assumptions

of the lemma, there exists an embedding f of T1 into G. Let f(y) = z. We will

denote by N∗(z) the set {w ∈ N(z,G) such that w ∈ f [R1]}. Hence |N
∗(z)| ≤ q − k.

Since δL(G) ≥ q, there are k vertices w′

i such that w′

i ∈ (N(z,G) \ N∗(z)). If

W ∗ = {w′

i, i = 1, . . . , k} then the function f∗ such that f∗(v) = f(v) for v ∈ V (T1)

and f∗[Uy] = W ∗ is an embedding of T into G.

The Proof of Lemma A. The proof is by induction on p + q. If T is a (p, q)-tree such

that p + q ≤ 4 and G is a (p′, q′)-bipartite graph verifying the assumptions of the

lemma, then the lemma is easy to check.

So, let us suppose p + q ≥ 5 and the lemma is true for all integers p1, q1 with

p1 +q1 < p+q. Let T be a (p, q)-tree and let G be a (p′, q′)-bipartite graph such that

δL(G) ≥ q and δR(G) ≥ p. There exists a vertex y in V (T ) such that |Uy| = k > 0.

Without loss of generality we may assume that y ∈ L. If k = q, then the lemma is

obvious. If k ≤ q−1, then let us denote by T1 the tree T \Uy. Since T1 is (p, q−k)-tree

it follows, by the induction hypothesis, that T1 ≤ G. We obtain an embedding of T

into G by Lemma 3.1.

Lemma 3.2 Let T be a (p, q)-tree such that T 6= K1,q and T 6= Kp,1. Then there

exist at least two penultimate vertices in V (T ).

The proof of Lemma 3.2 is trivial.

The Proof of Lemma B. Let T = (L,R;E) be a (p, q)-tree such that ∆L(T ) ≤ q − 1

and let G = (L′, R′;E′) be a (p′, q′)-bipartite graph verifying assumptions of Theorem

B. The proof will be divided into two steps.

Case 1. Let us first assume that there exists a penultimate vertex, say y, in L.

Let |Uy| = k > 0, {x} = N(y, T ) \Uy and let us denote by T1 the tree T \Uy =

(L1, R1;E1). T1 is a (p, q − k)-tree. By Lemma A, there exists an embedding f

of T1 into G. Let f(y) = w, f(x) = z, f [L1] = L′

1
and f [R1] = R′

1
. If d(w,G) ≥ q

or R′

1
6⊂ N(w,G), then there are k vertices, v1, . . . , vk ∈ (N(w,G) \ R′

1
). The

function f∗ such that

f∗(v) = f(v), for v ∈ V (T1)

f∗(xi) = vi, for xi ∈ Uy, i = 1, . . . , k

is an embedding of T into G. So, we may assume that d(w,G) = q − 1 and

R′

1
⊂ N(w,G). Write R′

2
= N(w,G) \ R′

1
.
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Subcase 1.1 There exists a vertex w1 ∈ N(z,G) such that d(w1, G) ≥ q or

|N(w1, G) ∩ R′

1
| < q − k.

Then, the vertex w1 has k neighbors, say z′
1
, . . . , z′k, which are not elements of

R′

1
. Thus we conclude that the function f∗

1
given by

f∗

1
(v) = f(v), for v ∈ V (T1) \ {y},

f∗

1
(y) = w1,

f∗

1
(xi) = z′i, for xi ∈ Uy, i = 1, . . . , k,

and, if w1 ∈ f [L1] and w1 = f(v∗) then f∗

1
(v∗) = w, is the embedding of T

into G.

Subcase 1.2 Now we assume that for each vertex w′ ∈ N(z,G) there is |N(w′, G)∩
R′

1
| = q − k and d(w′, G) = q − 1.

Observe that in this case G has a subgraph H such that H is a (p′
1
, q − k)-

complete bipartite graph, L(H) = N(z,G), R(H) = R′

1
and p′

1
= d(z,G) ≥ p.

Subcase 1.2.1 There is a vertex w′

1
∈ N(z,G) such that N(w′

1
, G) 6= N(w,G).

Thus there exist vertices z1 ∈ R′ \ N(w,G), z2 ∈ R′

2
such that z1w

′

1
∈ E′ and

z2w
′

1
/∈ E′. By Lemma 3.2, there is a penultimate vertex y′ 6= y in V (T ). First

we assume that y′ ∈ L. We will denote by F2 the forest T \Uy \{y, y′, x′

1
}, where

x′

1
∈ Uy′ . By Lemma A, F2 ≤ H1 = H \ {z3, w, w′

1
}, where z3 ∈ R(H). If f2 is

an embedding of F2 into H1 then the embedding f∗

2
of T into G is defined as

follows:

f∗

2
(v) = f2(v), for v ∈ V (F2),

f∗

2
[Uy] = R′

2
∪ {z3},

f∗

2
(y′) = w′

1
,

f∗

2
(x′

1
) = z1,

f∗

2
(y) = w.

Let now y′ ∈ R and |Uy′ | = k′ and let x′ ∈ (N(y′, T ) \ Uy′). Let us denote

by T3 the tree T \ Uy′ \ Uy \ {y, x′, y′}, and by H2 a bipartite graph such

that L(H2) = L(H) \ {w,w′

1
} \ L′

3
, where L′

3
⊂ N(z1, G) \ {w,w′

1
}, |L′

3
| = k′,

R(H2) = R(H) \ {z3}, and z3 ∈ R(H). By Lemma A, there is an embedding f3

of T3 into H2. Let f∗

3
be given as follows:

f∗

3
(v) = f3(v), v ∈ V (T3),

f∗

3
(y) = w,

f∗

3
(x′) = w′

1
,

f∗

3
[Uy] = R′

2
∪ {z3},

f∗

3
(y′) = z1,
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f∗

3
[Uy′ ] = L′

3
.

Therefore, T ≤ G.

Subcase 1.2.2 Each vertex w′ ∈ N(z,G) has the degree q − 1 and N(w,G) =

N(w′, G). It follows that G has a subgraph H3 = Kp′

1
,q−1, where L(H3) =

N(z,G), R(H3) = N(w,G). Observe that R \ R(H3) 6= ∅ and N(L(H3), R \
R(H3);G) = ∅. Let z4 be a vertex in R \R(H3). By assumption of the theorem,

there are vertices z5 ∈ R(H3) and w2 ∈ L(G) \ L(H3) such that z4w2 ∈ E(G)

and w2z5 ∈ E(G). It is easily seen that T4 = (T \Uy \ {x, y}) ≤ (H3 \ {z5} \R′

4
),

where R′

4
⊂ (N(w2, G) \ {z5}) and |R′

4
| = k and z4 ∈ R′

4
. Obviously, T ≤ G,

again.

Case 2 Let us assume there is no penultimate vertex in L.

Thus, by Lemma 3.2, there exist at least two penultimate vertices in R. Let y1

be a penultimate vertex in R and let {x′′} = N(y1, T ) \ Uy1
.

Consider a tree T5 obtained from the tree T by deleting pendant vertices x1,

x2, . . . , xk, so that the vertex x′′ may be penultimate vertex in L.

By Case 1, T5 ≤ G and by assumption δR(G) ≥ p we deduce that T ≤ G and

the theorem is proved.
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