Beata Orchel

BIPARTITE EMBEDDING OF (p, q)-TREES

Abstract. A bipartite graph G = (L, R; E) where $V(G) = L \cup R$, |L| = p, |R| = q is called a (p,q)-tree if |E(G)| = p + q - 1 and G has no cycles. A bipartite graph G = (L, R; E) is a subgraph of a bipartite graph H = (L', R'; E') if $L \subseteq L', R \subseteq R'$ and $E \subseteq E'$.

In this paper we present sufficient degree conditions for a bipartite graph to contain a (p,q)-tree.

Keywords: bipartite graph, tree, embedding graph.

Mathematics Subject Classification: 05C35.

1. TERMINOLOGY

We shall use standard graph theory notation. We consider only finite, undirected graphs. All graphs will be assumed to have neither loops nor multiple edges.

Let G = (L, R; E) be a bipartite graph with a partition L, R and an edge set E. That means, L and R are two disjoint sets of independent vertices of the graph G such that $L \cup R = V(G)$. We call L = L(G) and R = R(G) the left and right set of bipartition. Note that the graphs G = (L, R; E) and G' = (R, L; E) are different.

For a vertex $x \in V(G)$, N(x, G) denotes the set of its neighbors in G. The degree d(x, G) of the vertex x in G is the cardinality of the set N(x, G).

 $\Delta_L(G)$ $(\delta_L(G))$ and $\Delta_R(G)$ $(\delta_R(G))$ are maximum (minimum) vertex degree in the set L(G) and R(G), respectively. A vertex x of G is said to be pendant if d(x,G) = 1. For subsets A and B of V(G), let N(A,B;G) denote the set of edges $xy \in E(G)$ such that $x \in A$ and $y \in B$. $K_{p,q}$ is the complete (p,q)-bipartite graph. \overline{G} is the complement of G into $K_{p,q}$.

A bipartite graph G = (L, R; E) is a *subgraph* of a bipartite graph H = (L', R'; E') if $L \subseteq L', R \subseteq R'$ and $E \subseteq E'$. If G is a subgraph of H, then we write $G \leq H$. Observe that the meaning of the word *subgraph* is different from the usual

one (see [3] and [1] page 1282). For instance, the graph $K_{1,2} = (\{a\}, \{b, c\}; \{ab, ac\})$ is not a subgraph of $K_{2,1} = (\{d, e\}, \{f\}; \{df, ef\})$. We say that a bipartite graph G = (L, R; E) is bipartite embeddable or simply embeddable into bipartite graph H = (L', R'; E') if there is an injection f such that $f : L \cup R \to L' \cup R', f(L) = L'$ and for every edge $xy \in E$, f(x)f(y) is an edge of H. The function f is called the bipartite embedding (or embedding) of G into H. In other words, a bipartite graph G = (L, R; E) is said to be embedded into bipartite graph H = (L', R' : E') when there exists a pair (f_1, f_2) of injective mappings $f_1 : L \to L'$ and $f_2 : R \to R'$ such that if $x \in L$ and $y \in R$ are adjacent in G, then $f_1(x)$ and $f_2(y)$ are adjacent in H(see [3]). It follows easily that G is embeddable into $K_{2,1}$.

A (p,q)-bipartite graph G is called a (p,q)-tree if G is connected and |E(G)| = p+q-1. Thus each (p,q)-tree is a tree and for each tree T there exist integers p and q such that T is a (p,q)-tree. If G is a (p,q)-bipartite and |E(G)| = p+q-k and G has no cycles then G is called a (p,q,k)-forest. So, a (p,q,1)-forest is a (p,q)-tree. Let T be a (p,q)-tree and $y \in V(T)$. Let us denote by U_y the set of all $z \in N(y,T)$ such that d(z,T) = 1. We shall call U_y the bough with the center y. The vertex $x \in V(T)$ is called penultimate vertex if $U_x \neq \emptyset$ and $d(x,T) = |U_x| + 1$ and there is the longest path P in T such that $x \in V(P)$.

2. RESULTS

First we shall give some results concerning the subgraphs of general graphs.

In 1963, Erdös and Sós (see [5]) stated the following conjecture, which was proved by Brandt in [2].

Theorem 1. Let G be a graph with n vertices and more than

$$f(k,n) = \max\left\{ \binom{2k-1}{2}, \binom{k-1}{2} + (k-1)(n-k+1) \right\}$$

edges. Then G contains every forest with k edges and without isolated vertices as a subgraph.

The following well-known result was attributed by Chvátal to graph-theoretical folklore [4]:

Theorem 2. Suppose G is a graph with the minimum degree not less than k. Then G contains every tree with k edges.

S. Brandt in [2] proved:

Theorem 3. Suppose F is a forest with k edges and order n and G is a graph with at least n vertices. If $\delta(G) \ge k$, then F is a subgraph of G.

We shall consider bipartite embedding problem, analogous to the classical embedding problem, the first genaral condition for a bipartite graph to be a subgraph of another bipartite graph was given by Rado in [6] (See also [3]).

In this paper we present sufficient degree conditions for a bipartite graph to contain every (p, q)-tree.

The following lemma, proved in Section 3, is an easy bipartite equivalent of Theorem 2.

Lemma A. Let G = (L', R'; E') be a (p', q')-bipartite graph such that $\delta_L(G) \ge q$ and $\delta_R(G) \ge p$. Then every (p, q)-tree T = (L, R; E) is a subgraph of G.

Observe that if $\Delta_L(T) = q$ (or $\Delta_R(T) = p$), then Lemma A is best possible in the sense that it cannot be improved by decreasing the minimum degree of the graph G.

Hence, now we shall consider a (p,q) – tree T such that $K_{1,q}$ is not a subgraph of T.

The main results are the following theorem and its obvious corollaries:

Theorem B. Let T = (L, R; E) be a (p, q)-tree, $\Delta_L(T) \leq q-1$ and let G = (L', R'; E') be a connected (p', q')-bipartite graph such that $q' \geq q$, $\delta_L(G) \geq q-1$ and $\delta_R(G) \geq p$. Then T is a subgraph of G.

Note that if $\Delta_L(T) = q - 1$ (or $\Delta_R(T) = p$), then Theorem B is best possible.

Let P_k be a path with k edges and let k be even, $k \ge 4$. By Theorem 3, P_k is a subgraph of a graph G if $\delta(G) \ge k$, but by Theorem B, P_k is a subgraph of a bipartite graph G', if $\delta(G') \ge k/2$.

Corollary C. Let T = (L, R; E) be a (p,q)-tree, $\Delta_L(T) \leq q-1$ and let G = (L', R'; E') be a (p',q')-bipartite graph such that $\delta_L(G) \geq q-1$, $\delta_R(G) \geq p$ and every connected component G_1 has at least p and q vertices in $L(G_1)$ and $R(G_1)$, respectively. Then T is a subgraph of each component of G.

Corollary D. Let F = (L, R; E) be a (p, q, k)-forest, $k \ge 2$ and let G = (L', R'; E') be a (p', q')-bipartite graph such that $q' \ge q$, $\delta_L(G) \ge q - 1$, $\delta_R(G) \ge p$. Then F is a subgraph of G.

3. PROOFS

To prove Lemma A and Theorem B, we shall need two lemmas.

Lemma 3.1 Let T = (L, R; E) be a (p, q)-tree, let $U_y \neq \emptyset$ be a bough in T and let G be a (p', q')-bipartite graph, $\delta_L(G) \ge q$ and $\delta_R(G) \ge p$. If $T \setminus U_y \le G$ then $T \le G$.

Proof. Let T = (L, R; E) be a (p, q)-tree, $y \in V(T)$, $U_y \neq \emptyset$ and let G = (L', R'; E')be a (p', q')-bipartite graph verifying the assumptions of the lemma. Without loss of generality we may assume that $y \in L$. Let us denote by T_1 the tree $T \setminus U_y$. Let $|U_y| = k$. If k = q then $T = K_{1,q}$ and $T \leq G$. We now assume that $k \leq q - 1$. Note that $T_1 = (L_1, R_1; E_1)$ is a (p, q - k)-tree and $1 \leq d(y, T_1) \leq q - k$. By assumptions of the lemma, there exists an embedding f of T_1 into G. Let f(y) = z. We will denote by $N^*(z)$ the set $\{w \in N(z, G) \text{ such that } w \in f[R_1]\}$. Hence $|N^*(z)| \leq q - k$. Since $\delta_L(G) \geq q$, there are k vertices w'_i such that $w'_i \in (N(z, G) \setminus N^*(z))$. If $W^* = \{w'_i, i = 1, \ldots, k\}$ then the function f^* such that $f^*(v) = f(v)$ for $v \in V(T_1)$ and $f^*[U_y] = W^*$ is an embedding of T into G.

The Proof of Lemma A. The proof is by induction on p+q. If T is a (p,q)-tree such that $p+q \leq 4$ and G is a (p',q')-bipartite graph verifying the assumptions of the lemma, then the lemma is easy to check.

So, let us suppose $p + q \ge 5$ and the lemma is true for all integers p_1 , q_1 with $p_1 + q_1 . Let <math>T$ be a (p,q)-tree and let G be a (p',q')-bipartite graph such that $\delta_L(G) \ge q$ and $\delta_R(G) \ge p$. There exists a vertex y in V(T) such that $|U_y| = k > 0$. Without loss of generality we may assume that $y \in L$. If k = q, then the lemma is obvious. If $k \le q-1$, then let us denote by T_1 the tree $T \setminus U_y$. Since T_1 is (p,q-k)-tree it follows, by the induction hypothesis, that $T_1 \le G$. We obtain an embedding of T into G by Lemma 3.1.

Lemma 3.2 Let T be a (p,q)-tree such that $T \neq K_{1,q}$ and $T \neq K_{p,1}$. Then there exist at least two penultimate vertices in V(T).

The proof of Lemma 3.2 is trivial.

The Proof of Lemma B. Let T = (L, R; E) be a (p, q)-tree such that $\Delta_L(T) \leq q - 1$ and let G = (L', R'; E') be a (p', q')-bipartite graph verifying assumptions of Theorem B. The proof will be divided into two steps.

Case 1. Let us first assume that there exists a penultimate vertex, say y, in L.

Let $|U_y| = k > 0$, $\{x\} = N(y,T) \setminus U_y$ and let us denote by T_1 the tree $T \setminus U_y = (L_1, R_1; E_1)$. T_1 is a (p, q - k)-tree. By Lemma A, there exists an embedding f of T_1 into G. Let f(y) = w, f(x) = z, $f[L_1] = L'_1$ and $f[R_1] = R'_1$. If $d(w, G) \ge q$ or $R'_1 \not\subset N(w, G)$, then there are k vertices, $v_1, \ldots, v_k \in (N(w, G) \setminus R'_1)$. The function f^* such that

$$f^*(v) = f(v), \text{ for } v \in V(T_1)$$

 $f^*(x_i) = v_i, \text{ for } x_i \in U_y, \quad i = 1, \dots, k$

is an embedding of T into G. So, we may assume that d(w,G) = q-1 and $R'_1 \subset N(w,G)$. Write $R'_2 = N(w,G) \setminus R'_1$.

Subcase 1.1 There exists a vertex $w_1 \in N(z,G)$ such that $d(w_1,G) \geq q$ or $|N(w_1,G) \cap R'_1| < q-k$.

Then, the vertex w_1 has k neighbors, say z'_1, \ldots, z'_k , which are not elements of R'_1 . Thus we conclude that the function f'_1 given by

$$f_1^*(v) = f(v), \text{ for } v \in V(T_1) \setminus \{y\},\$$

$$f_1^*(y) = w_1,$$

$$f_1^*(x_i) = z'_i, \text{ for } x_i \in U_y, \quad i = 1, \dots, k.$$

and, if $w_1 \in f[L_1]$ and $w_1 = f(v^*)$ then $f_1^*(v^*) = w$, is the embedding of T into G.

Subcase 1.2 Now we assume that for each vertex $w' \in N(z,G)$ there is $|N(w',G) \cap R'_1| = q - k$ and d(w',G) = q - 1.

Observe that in this case G has a subgraph H such that H is a $(p'_1, q - k)$ complete bipartite graph, L(H) = N(z, G), $R(H) = R'_1$ and $p'_1 = d(z, G) \ge p$.

Subcase 1.2.1 There is a vertex $w'_1 \in N(z,G)$ such that $N(w'_1,G) \neq N(w,G)$.

Thus there exist vertices $z_1 \in R' \setminus N(w, G)$, $z_2 \in R'_2$ such that $z_1w'_1 \in E'$ and $z_2w'_1 \notin E'$. By Lemma 3.2, there is a penultimate vertex $y' \neq y$ in V(T). First we assume that $y' \in L$. We will denote by F_2 the forest $T \setminus U_y \setminus \{y, y', x'_1\}$, where $x'_1 \in U_{y'}$. By Lemma A, $F_2 \leq H_1 = H \setminus \{z_3, w, w'_1\}$, where $z_3 \in R(H)$. If f_2 is an embedding of F_2 into H_1 then the embedding f_2^* of T into G is defined as follows:

$$f_{2}^{*}(v) = f_{2}(v), \text{ for } v \in V(F_{2}),$$

$$f_{2}^{*}[U_{y}] = R'_{2} \cup \{z_{3}\},$$

$$f_{2}^{*}(y') = w'_{1},$$

$$f_{2}^{*}(x'_{1}) = z_{1},$$

$$f_{2}^{*}(y) = w.$$

Let now $y' \in R$ and $|U_{y'}| = k'$ and let $x' \in (N(y',T) \setminus U_{y'})$. Let us denote by T_3 the tree $T \setminus U_{y'} \setminus U_y \setminus \{y, x', y'\}$, and by H_2 a bipartite graph such that $L(H_2) = L(H) \setminus \{w, w'_1\} \setminus L'_3$, where $L'_3 \subset N(z_1, G) \setminus \{w, w'_1\}, |L'_3| = k'$, $R(H_2) = R(H) \setminus \{z_3\}$, and $z_3 \in R(H)$. By Lemma A, there is an embedding f_3 of T_3 into H_2 . Let f_3^* be given as follows:

$$f_3^*(v) = f_3(v), \quad v \in V(T_3),$$

$$f_3^*(y) = w,$$

$$f_3^*(x') = w'_1,$$

$$f_3^*[U_y] = R'_2 \cup \{z_3\},$$

$$f_3^*(y') = z_1,$$

$$f_3^*[U_{y'}] = L_3'.$$

Therefore, $T \leq G$.

Subcase 1.2.2 Each vertex $w' \in N(z,G)$ has the degree q-1 and N(w,G) = N(w',G). It follows that G has a subgraph $H_3 = K_{p'_1,q-1}$, where $L(H_3) = N(z,G)$, $R(H_3) = N(w,G)$. Observe that $R \setminus R(H_3) \neq \emptyset$ and $N(L(H_3), R \setminus R(H_3); G) = \emptyset$. Let z_4 be a vertex in $R \setminus R(H_3)$. By assumption of the theorem, there are vertices $z_5 \in R(H_3)$ and $w_2 \in L(G) \setminus L(H_3)$ such that $z_4w_2 \in E(G)$ and $w_2z_5 \in E(G)$. It is easily seen that $T_4 = (T \setminus U_y \setminus \{x, y\}) \leq (H_3 \setminus \{z_5\} \setminus R'_4)$, where $R'_4 \subset (N(w_2,G) \setminus \{z_5\})$ and $|R'_4| = k$ and $z_4 \in R'_4$. Obviously, $T \leq G$, again.

Case 2 Let us assume there is no penultimate vertex in L.

Thus, by Lemma 3.2, there exist at least two penultimate vertices in R. Let y_1 be a penultimate vertex in R and let $\{x''\} = N(y_1, T) \setminus U_{y_1}$.

Consider a tree T_5 obtained from the tree T by deleting pendant vertices x_1 , x_2, \ldots, x_k , so that the vertex x'' may be penultimate vertex in L.

By Case 1, $T_5 \leq G$ and by assumption $\delta_R(G) \geq p$ we deduce that $T \leq G$ and the theorem is proved.

Acknowledgements

The autor gratefully acknowledges the many helpful suggestions of Professor A. Pawel Wojda during the preparation of the paper.

REFERENCES

- Bollobás B., *Extremal Graph Theory*, in: Handbook of Combinatorics R. I. Graham, M. Gröschel, L. Lovász, (ed.), The MIT Press, Cambridge, Massachusetts, 1995.
- [2] Brandt S., Subtrees and subforests of graphs, J. Combin. Theory Ser. B. 61 (1994), 63-70.
- [3] Catlin Paul A., Subgraphs of graphs, 1, Discrete Mathematics 10 (1974), 225–233.
- [4] Chvátal V., Tree complete graph Ramsey numbers, J. Graph Theory 1 (1977), 93.
- [5] Erdös P., *Extremal problems in graph theory*, in: Theory of Graphs and its Applications M. Fiedler (ed.), Academic Press, 1964, 29–36.
- [6] Rado R., A theorem on general measure functions, Proc. London Math. Soc 44 (1938) (2).

Beata Orchel orchel@agh.edu.pl

AGH University of Science and Technology Faculty of Applied Mathematics al. Mickiewicza 30, 30-059 Kraków, Poland

Received: August 28, 2005.