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A NOTE ON ARBITRARILY VERTEX DECOMPOSABLE

GRAPHS

Abstract. A graph G of order n is said to be arbitrarily vertex decomposable if for

each sequence (n1, . . . , nk) of positive integers such that n1 + . . . + nk = n there exists a

partition (V1, . . . , Vk) of the vertex set of G such that for each i ∈ {1, . . . , k}, Vi induces

a connected subgraph of G on ni vertices.

In this paper we show that if G is a two-connected graph on n vertices with the

independence number at most ⌈n/2⌉ and such that the degree sum of any pair of non-

-adjacent vertices is at least n − 3, then G is arbitrarily vertex decomposable. We present

another result for connected graphs satisfying a similar condition, where the bound n − 3

is replaced by n − 2.
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1. INTRODUCTION

Let G = (V,E) be a simple undirected graph of order n. Let τ = (n1, . . . , nk) denote

a sequence of positive integers such that n1 + . . . + nk = n. Such a sequence will be

called admissible for G. If τ = (n1, . . . , nk) is an admissible sequence for G and there

exists a partition (V1, . . . , Vk) of the vertex set V such that for each i ∈ {1, . . . , k},
|Vi| = ni and the subgraph induced by Vi is connected, then τ is called realizable in

G and the sequence (V1, . . . , Vk) is said to be a G-realization of τ or a realization

of τ in G. A graph G is arbitrarily vertex decomposable (avd for short) if for each

admissible sequence τ for G there exists a G-realization of τ .

It is clear that each avd graph admits a perfect matching or a matching that

omits exactly one vertex. Note also that if G1 is a spanning subgraph of a graph G2

and G2 is not avd, then neither is G1.
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Let r, 1 ≤ r ≤ n be a fixed integer. G is r-vertex decomposable if each admissible

sequence (n1, . . . , nr) of r components is realizable in G.

There are several papers concerning avd trees. In [2] Barth and Fournier proved

a conjecture of Horňák and Woźniak [8] stating that any tree T with maximum

degree ∆(T ) at least five is not avd. The first result characterizing avd caterpillars

with three leaves was found by Barth et al. [1] and, independently, by Horňák and

Woźniak [7] (see Section 3). In [1] and [2] Barth et al. and Barth and Fournier

investigated trees homeomorphic to K1,3 or K1,4 and showed that determining if

such a tree is avd can be done using a polynomial algorithm. Cichacz et al. [4] gave

a complete characterization of arbitrarily vertex decomposable caterpillars with four

leaves. They also described two infinite families of arbitrarily vertex decomposable

trees with maximum degree three or four. The complete characterization of on-line

avd trees has been recently found by Horňák et al. [6].

In [9] Kalinowski et al. studied a family of unicyclic avd graphs. It is worth

recalling an old result of Győri [5] and Lovász [11] stating that every k-connected

graph is k-vertex decomposable.

However, it is evident that each traceable graph is avd. Therefore, each sufficient

condition for a graph to have a hamiltonian path also implies that the graph is avd.

We can try to replace some known conditions for traceability by weaker ones implying

that the graphs satisfying these conditions are avd.

Observe that any necessary condition for a graph to contain a perfect matching

(or a matching that omits exactly one vertex) is a necessary condition for a graph

to be arbitrarily vertex decomposable. Thus we will assume that the independence

number of an n-vertex graph is at most ⌈n/2⌉.

It follows from Ore’s theorem [12] that every graph G of order n such that

the degree sum of any two nonadjacent vertices is at least n − 1 (i.e. G satisfies an

Ore-type condition with the bound n − 1), is traceable. The aim of this paper is to

show that every 2-connected graph satisfying a similar condition, where the bound

n−1 is replaced by n−3, is avd, provided its independence number is at most ⌈n/2⌉.
We also prove a similar theorem for connected graphs verifying the above condition

with the bound n−2. These two results (Theorems 5 and 4) are presented in Section

4. In Section 5 we examine the structure of graphs that satisfy Ore-type conditions

and are not avd; we also present the admissible sequences which are not realizable

in graphs under consideration.

Notice that the problem of deciding whether a given graph is arbitrarily vertex

decomposable is NP-complete [1] but we do not know if this problem is NP-complete

when restricted to trees.

2. TERMINOLOGY AND NOTATION

Let T = (V,E) be a tree. A vertex x ∈ V is called primary if d(x) ≥ 3. A leaf

(or a hanging vertex) is a vertex of degree one. A path P of T is an arm if one

of its endvertices is a leaf in T , the other one is primary and all internal vertices of
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P have degree two in T . A graph T is a star-like tree if it is a tree homeomorphic

to a star K1,q for some q ≥ 3. Such a tree has one primary vertex and q arms

A1, . . . , Aq. For each Ai, let ai ≥ 2 be the order of Ai. We will denote the above

defined star-like tree by S(a1, . . . , aq). Notice that the order of this star-like tree is

equal to 1 +
∑q

i=1(ai − 1).

Let G be a graph and let C be a cycle of G with a given orientation. Suppose

a is a vertex of C. We shall denote by a+ the successor of a on C and by a−

its predecessor. We write a+2 for (a+)+, a−2 for (a−)−, a+k for (a+(k−1))+ and

a−k for (a−(k−1))−. If A is a subset of V (C), then A+ = {v ∈ V (C)| v− ∈ A}
and A− = {v ∈ V (C)| v+ ∈ A}. Let a and b be two vertices of C. By a C b we

denote the set of consecutive vertices of C from a to b (a and b included) in the

direction specified by the orientation of C. It will be called a segment of C from a

to b. Throughout the paper the indices of a cycle C = x1, x2, . . . , xp are to be taken

modulo p. If x /∈ V (C) we write NC(x) for the set of neighbors of x on C and we

denote by dC(x) the number | NC(x) |.

A sun with r rays is a graph of order n ≥ 2r with r hanging vertices u1, . . . , ur

whose deletion yields a cycle Cn−r, and each vertex vi on Cn−r adjacent to ui is of

degree three. If the sequence of vertices vi is situated on the cycle Cn−r in such a

way that there are exactly bi ≥ 0 vertices, each of degree two, between vi and vi+1,

i = 1, . . . , r, (the indices taken modulo r), then this sun is denoted by Sun(b1, . . . , br),

and it is unique up to an isomorphism. Clearly, every sun with one ray is avd since

it is traceable.

Let G be a graph of order n. Define

σ2(G) := min{d(x) + d(y)| x, y are nonadjacent vertices in G}

if G is not a complete graph, and σ2(G) = ∞ otherwise. Ore’s well known theorem
[12] states that every graph G with σ2(G) ≥ n ≥ 3 is hamiltonian. This immediately

implies that if σ2(G) ≥ n − 1 then G is traceable, so also avd.

3. PREPARATORY RESULTS

The first result characterizing avd star-like trees (i.e. caterpillars with one single leg)

was established by Barth, Baudon and Puech [1] and, independently, by Horňák and

Woźniak [7].

Proposition 1. A star-like tree S(2, a, b) is avd if and only if the integers a and

n = a + b are coprime. Moreover, each admissible and non-realizable sequence in

S(2, a, b) is of the form (d, d, . . . , d), where a ≡ n ≡ 0 (mod d) and d > 1.

Proposition 2. Let G be the graph of order n ≥ 4 obtained by taking a path P =

x1, . . . , xn−1, a single vertex x and by adding the edges xxi1 , xxi2 , . . . , xxip
, where

1 < i1 < . . . < ip < n − 1 and p ≥ 1. Then G is not avd if and only if there are

integers d > 1, λ, λ1, λ2, . . . , λp such that n = λd and ij = λjd for j = 1, . . . , p.
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Proof. Suppose that the integers d > 1, λ, λ1, λ2, . . . , λp satisfy the condition of the

theorem and consider the admissible sequence τ = (d, . . . , d
︸ ︷︷ ︸

λ

) for G. Observe that

if G′ is a connected subgraph of G of order d which contains the vertex x, then

the connected component of G − V (G′) containing the vertex x1 is a path P ′ such

that d does not divide the order of P ′. Thus, τ is not realizable in G. Conversely, if

τ = (n1, n2, . . . , nλ) is an admissible sequence for G that is not realizable in G, then

τ is also not realizable in the caterpillar S(2, i1, n − i1). By Proposition 1, there are

two integers d > 1 and λ1 such that n1 = n2 = . . . = nλ = d and i1 = λ1d. The

sequence τ cannot be realizable in the caterpillar S(2, i2, n − i2) therefore, again by

Proposition 1, i2 = λ2d for some integer λ2. Repeating the same argument we prove

that the condition of the proposition holds.

The following result is due to Kalinowski et al. [9]. However, for the sake of

completeness we give a short proof of this theorem here.

Theorem 1. Sun(a, b) with two rays is arbitrarily vertex decomposable if and only if

either its order n is odd or both a and b are even. Moreover, each sequence which is

admissible and non realizable in Sun(a, b) is of the form (2, 2, . . . , 2).

Proof. If Sun(a, b) is avd and n is even, then the sequence (2, . . . , 2) is realizable. It

easily follows that both a and b have to be even.

Suppose now that there exists an admissible and non-realizable sequence

(n1, . . . , nk) for Sun(a, b). If we choose a vertex of degree three and delete a non-

hanging edge incident to it, then we obtain a star-like tree isomorphic either to

S(a + 1, b + 3) or to S(a + 3, b + 1). Clearly, the sequence (n1, . . . , nk) cannot be

realized in any of these two trees. Hence, by Proposition 1, this sequence is of the

form n1 = . . . = nk = d with d being a common divisor of four numbers a + 1, a + 3,

b + 1, b + 3. This implies that d = 2, and both a and b are odd, contrary to the

assumption.

In the proofs of the main results of this paper we will need two generalizations

of Ore’s theorem [12]. The first one is due to Pósa [13].

Theorem 2. Let G be a connected graph of order n ≥ 3 such that

σ2(G) ≥ d.

If d < n, then G contains a path of length d, and if d ≥ n, then G is hamiltonian.

The second one was found by Bermond [3] and, independently, by Linial [10].

Theorem 3. Let G be a 2-connected graph such that

σ2(G) ≥ d.

Then G contains either a cycle of length at least d or a hamiltonian cycle.
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4. MAIN RESULTS

Theorem 4. Let G be a connected graph of order n such that σ2(G) ≥ n − 2 and

α(G) is at most ⌈n/2⌉. Then G is avd.

Proof. Suppose G is not avd. Then G is not traceable, so n ≥ 4, and by Theorem 2,

there exists in G a path P = x1, x2, . . . , xn−1 of length n − 2. Let x be the unique

vertex outside P and let N(x) = {xi1 , xi2 , . . . , xip
}, 1 ≤ i1 < . . . ≤ ip ≤ n − 1, be

the set of neighbors of x. Since G is connected and non-traceable, we have p ≥ 1,

i1 > 1, ip < n− 1 and x1xn−1 /∈ E(G). By Proposition 2, there are integers d > 1, λ,

λ1, λ2, . . . , λp such that n = λd and ij = λjd for j = 1, . . . , p. Furthermore, because

G is not traceable, there is at least one vertex between any two consecutive neighbors

of x on P .

Since x1x /∈ E(G), it follows by assumption that d(x1) ≥ n − 2 −
p. Observe now that x1xij+1 /∈ E(G) for each j = 1, . . . , p, for otherwise

x, xij
, xij−1, x1, xij+1, . . . , xn−1 is a hamiltonian path in G, a contradiction. There-

fore, d(x1) ≤ n − 2 − p, hence d(x1) = n − 2 − p and x1 is adjacent to any xi with

i ∈ {2, . . . , n− 1} \ {i1 + 1, . . . , ip + 1}. Since x1xn−1 /∈ E(G), we have xn−1 = xip+1,

thus 2 = n − ip = (λ − λp)d, so d = 2 and n is even. Moreover, x1xij−1 /∈ E(G)

for each j = 2, . . . , p, p ≥ 2, for otherwise we could easily find a hamiltonian path

in G: xij−1+1, . . . , xij−1, x1, . . . , xij−1
, x, xij

, . . . , xn−1. Thus, every set xij
Pxij+1

with

j ∈ {1, . . . , p−1} contains exactly three vertices. Now, because xn−1 and x are not ad-

jacent, we can in a similar way deduce that x2 ∈ N(x), i.e., N(x) = {x2, x4, . . . , xn−2}
and d(x) = d(x1) = (n−2)/2. It is obvious that any edge of the form x2i−1x2j−1 would

create a hamiltonian path in G, so the set {x, x1, x3, . . . , xn−3, xn−1} of (n + 2)/2

vertices is independent and we obtain a contradiction.

Theorem 5. Let G be a 2-connected graph on n vertices such that α(G) ≤ ⌈n/2⌉
and σ2(G) ≥ n − 3. Then G is avd.

Proof. By Theorem 3, G contains a cycle of length at least n − 3. If G has a

hamiltonian cycle or a Cn−1, then G is traceable, so also avd. Moreover, as n ≤ 6, it

follows that σ2(G) ≥ 4 ≥ n − 2 and Theorem 4 can be applied. Therefore, we shall

assume that it contains neither Cn nor Cn−1 and n ≥ 7. Suppose, contrary to our

claim, that G is not avd.

Case 1. G has no cycle of length n−2, i.e., the circumference of G equals n−3. Denote

by C a cycle of length n − 3 with a given orientation and let X := V (G) \ V (C) =

{x, y, z}.

Case 1.1. X is an independent set. Assume without loss of generality that d(x) ≥
d(y) ≥ d(z) ≥ 2. Let A = N(x) = NC(x). Since x and y are not adjacent and

d(x) ≥ d(y), we have d(x) ≥ (n−3)/2. Note that no two neighbors of x are consecutive

on C, for otherwise G would contain a cycle of length n− 2. Hence d(x) = (n− 3)/2

and n is odd. Furthermore, since X is independent and σ2(G) ≥ n − 3, we have
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d(y) = d(z) = (n − 3)/2. If u and v belong to N(x), then u+v+ /∈ E(G), because

otherwise u+, v+, v++, . . . , u−, u, x, v, v−, . . . , u+ would be a cycle of length n − 2,

contradicting our assumption. In the same manner (replacing the path u, u+, . . . , v, v+

with the path u, x, v, v−, . . . , u+, y, v+), we show that u+y /∈ E(G) or v+y /∈ E(G).

Thus, the set A+∪{x} is independent and |N(y) ∩ A+| ≤ 1. Suppose |N(y) ∩ A+| = 1.

Then, because d(y) = (n − 3)/2 and there are no consecutive neighbors of y on C,

we have N(y) = A+, hence |N(y) ∩ A+| = |A+| = (n − 3)/2 ≥ 2, a contradiction.

Finally, we conclude that N(x) = N(y) = N(z) = A and A+ ∪ X is an independent

set of cardinality (n − 3)/2 + 3 > ⌈n/2⌉, a contradiction.

Case 1.2. The set X induces the disjoint union K2 ∪ K1. We may assume without

loss of generality that xy ∈ E(G), xz /∈ E(G) and yz /∈ E(G). Note that if d(z) = 2,

then n − 3 ≤ d(x) + d(z) = (dC(x) + 1) + 2, therefore, dC(x) ≥ n − 6 > n−3
2 for

n > 9, so G contains a Cn−2, a contradiction. For n = 9 we conclude as in Case 1.1

that dC(x) = dC(y) = 3, NC(x) = NC(y), so G has a Cn−2 containing x and y, a

contradiction. It is easy to see that for n = 7, 8 the circumference of G is at least

n − 2, again a contradiction. Thus, we shall assume d(z) ≥ 3.

Suppose first d(z) ≥ n−3
2 . We can show as in the previous case that d(z) = n−3

2 ≥
3 and n ≥ 9 is odd. Moreover, we may assume dC(x) = dC(y) = (n − 5)/2 ≥ 2, for

otherwise dC(x) = dC(y) = (n − 3)/2, NC(x) = NC(y) = N(z) and G would contain

a Cn−2 passing through x and y. If u belongs to NC(x), then {u+, u+2, u−, u−2} ∩
NC(y) = ∅, because the circumference of G equals n−3. Then the number of neighbors

of y belonging to the path u−2Cu+2 is at most one. Furthermore, u+3, u−3 ∈ NC(y)

(possibly u+3 = u−3), for otherwise

dC(y) ≤
n − 3 − 5

2
+ 1 <

n − 5

2
,

a contradiction. Thus, (u−2Cu+5 \ {u, u+3}) ∩ NC(x) = ∅, so

dC(x) ≤
n − 3 − 7

2
+ 2 <

n − 5

2
,

again a contradiction. If 3 ≤ d(z) < n−3
2 , then both d(x) and d(y) are at least

(n − 1)/2, hence dC(x) = dC(y) = n−3
2 and G contains a Cn−2, a contradiction.

Case 1.3. The set X induces a connected subgraph H of G. Then H contains a path

of length two, and, because at least two vertices of X are joined to G − X (G is

2-connected), G is traceable, a contradiction.

Case 2. G contains a cycle C of length n− 2 (i.e., the circumference of G is n− 2).

Let x and y be two vertices of G outside C. Since G is 2-connected, these two

vertices together with C and two independent edges connecting {x, y} with C form

a spanning subgraph H of G isomorphic to the sun Sun(a, b) with two rays. By our

assumption, G is not avd, so it follows from Theorem 1 that n is even and a is odd.

Suppose first that x and y are adjacent in G. By Theorem 1, the only admissible
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sequence of G which is not realizable in Sun(a, b) is of the form (2, . . . , 2); however,

we can easily find a perfect matching in G (we cover the set {x, y} with a path of
length one and the cycle C with (n − 2)/2 paths of length one), a contradiction.

Assume now xy /∈ E and d(x) ≥ d(y). Thus d(x) ≥ n−3
2 , hence, since n is even and

any two consecutive vertices of C do not belong both to N(x), we have d(x) = n−2
2 .

Set A = N(x). Clearly, the set A+ is independent. Moreover, N(y) ⊆ A, for otherwise

there is u ∈ V (C) such that ux ∈ E(G) and u+y ∈ E(G), therefore G is traceable,

a contradiction. Finally, the set A+ ∪ {x, y} is independent and has n−2
2 + 2 > ⌈n

2 ⌉
vertices, a contradiction. �

5. CONCLUSIONS

Corollary 1. If G is a graph of order n with σ2(G) ≥ n−2, then G is avd or the union

of two disjoint cliques, or n is even and G satisfies Kn+2

2
, n−2

2

⊆ G ⊆ K n+2

2

∨ Kn−2

2

.

Proof. If G is not connected and σ2(G) ≥ n − 2, then G is the union of two disjoint

cliques, so G is not avd. Suppose then that G is a connected graph, σ2(G) ≥ n − 2

and G is not avd. It follows from the proof of Theorem 4 that n is even and G

contains an independent set S on n
2 + 1 ≥ 3 vertices. We have d(x) ≤ n

2 − 1 for each

x ∈ S, and, since σ2(G) ≥ n − 2, d(x) = n
2 − 1 for every x ∈ S. Moreover, for every

y ∈ V (G) \ S we have d(y) ≥ n
2 + 1 (since y is joined to each vertex of S), therefore

G is the join K(n+2)/2 ∨H, where H is any graph on (n− 2)/2 vertices. Thus G has

the structure as claimed.

The proof of Theorem 4 also implies the following.

Corollary 2. If G is a connected graph of order n such that σ2(G) ≥ n−2, then G is

k-vertex decomposable for any k 6= n/2. Moreover, (2, . . . , 2) is the unique admissible

sequence for G which is not realizable in G.

Corollary 3. If G is a 2-connected graph of order n with σ2(G) ≥ n − 3, then G

is avd, or n ≥ 7 is odd and Kn+3

2
, n−3

2

⊆ G ⊆ K n+3

2

∨ Kn−3

2

, or n ≥ 6 is even,

Kn+2

2
, n−2

2

⊆ G ⊆ K n+2

2

∨ Kn−2

2

, or Kn+2

2
, n−2

2

− e ⊆ G ⊆ (K n+2

2

∨ Kn−2

2

) − e, where

e is an arbitrary edge of the last graph.

Proof. If the circumference of G is n − 3 and G is not avd we find the situation

described in Case 1.1 in the proof of Theorem 5, so n ≥ 7 is odd and G contains an

independent set S on n+3
2 ≥ 5 vertices. Because σ2(G) ≥ n − 3, every vertex of S is

adjacent to every vertex of G − S, thus G is the join K(n+3)/2 ∨ H, where H is any

graph on n−3
2 vertices and the first assertion of the corollary follows.

Suppose G is not avd with circumference n − 2 and consider the Case 2 of

Theorem 5. Now n is even and G contains an independent set of n+2
2 ≥ 4 vertices,

hence all of them except at most one are of degree n−2
2 and the only exceptional vertex

must have the degree at least (n− 4)/2, so G is contained in the join K(n+2)/2 ∨H,
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where H is an arbitrary graph on n−2
2 vertices and can miss only one edge between

K(n+2)/2 and H.

Corollary 4. If G is a 2-connected graph of order n such that σ2(G) ≥ n−3, then for

every integer k /∈ {(n − 1)/2, n/2, (n + 1)/2} G is k-vertex decomposable. Moreover,

each admissible and non-avd sequence is of the form (2, 2, . . . , 2, 2, 3) or (2, 2, . . . , 2)

or else (1, 2, 2, . . . , 2).

Proof. Graphs that are not avd appear in Cases 1.1 and 2 of the proof of Theorem

5. In the latter situation, n is even and the graph contains a graph Sun(a, b) on

n vertices therefore, by Theorem 1, (2, 2, . . . , 2) is the only sequence which is not

realizable in G.

Suppose then n is odd, G is not avd and consider the admissible sequences

τ1 = (1, 2, . . . , 2) and τ2 = (2, 2, . . . , 2, 3) for G. Assume τ1 or τ2 are realizable in G.

Then, since the vertex set of a connected graph of order three can be partitioned

so that the parts induce K1 and K2, there exists a partition (V1, . . . , V(n+1)/2) of

V (G) into n+1
2 parts inducing complete subgraphs. Now, if S is an independent set

of G, then each set Vi contains at most one vertex of S. Therefore, by Corollary 3,
n+3

2 ≤ α(G) ≤ n+1
2 , so we get a contradiction. Thus τ1 and τ2 are not realizable in G.

Assume now τ = (n1, n2, . . . , nk) is another admissible sequence for G. If ni ≤ 2

for all i ∈ {1, . . . , k} and τ 6= τ1, then, by Corollary 3, τ is realizable in G. Consider

again the Case 1.1 of Theorem 5, where x, y and z are three vertices outside the cycle

C of length n − 3. Let C = x1, . . . , xn−3, x1 and suppose without loss of generality

that x1 ∈ N(x) = N(y) = N(z). Now the spanning subgraph of G consisting of the

path x1, . . . , xn−3 and three vertices x, y and z together with the edges xx1, yx1

and zx1 is isomorphic to the star-like tree S(2, 2, 2, b), where b = n − 3. Suppose for

some i, say i = 1, ni = n1 ≥ 4. Set V1 = {x, y, z, x1}. Clearly, V1 induces a connected

subgraph of G and the graph G − V1 contains a hamiltonian path, so it is easy to

find a realization of τ in G. Suppose then nj ≤ 3 for all j and there is i, say i = 1,

such that ni = n1 = 3. Now the set V1 = {x, y, x1} induces a connected subgraph of
G and, because z is adjacent to x3 in G, G − V1 has a spanning subgraph G′ which

is isomorphic to the star-like tree S(2, 2, n − 5). By Proposition 1, every admissible

sequence for G′ which is different from (2, 2, . . . , 2) is realizable in G′, thus τ is

realizable in G provided τ 6= τ2.

We can also formulate an immediate corollary of Theorem 5 involving a Dirac-

type condition.

Corollary 5. If G is a 2-connected graph on n vertices such that α(G) ≤ ⌈n/2⌉ and
minimum degree δ(G) ≥ n−3

2 , then G is avd.

Let G1 be the join K1 ∨ (K1 ∪ 2K2), where 2K2 denotes two disjoint copies of

K2. This graph is not avd, because the sequence (3, 3) is not realizable in G1. It is

easy to check that σ2(G1) = n − 3 = 3 and α(G1) = 3 = ⌈n/2⌉. Consider now the
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graph G2 = K1 ∨ 3K2. It can be easily seen that the sequences (3, 3, 1) and (4, 3) are

not realizable in G2, but σ2(G2) = n− 3 = 4 and α(G2) = 3 < ⌈n/2⌉. We conjecture
that every connected graph G of order n such that σ2(G) ≥ n − 3, α(G) is at most

⌈n/2⌉ and G is isomorphic neither to G1 nor to G2 is avd.

Consider now the join G3 = K2 ∨ 4K2. Clearly, G3 is a 2-connected graph such

that σ2(G3) = n − 4 = 6, α(G3) = 4 < ⌈n/2⌉, but the sequence (3, 3, 3, 1) is not

realizable in G3. This example shows that if we lower the bound n−3 in Theorem 5,

then the structure of non-avd graphs verifying the corresponding Ore-type condition

becomes more diversified.
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