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RATES OF CONVERGENCE

FOR THE MAXIMUM LIKELIHOOD ESTIMATOR

IN THE CONVOLUTION MODEL

Abstract. Rates of convergence for the maximum likelihood estimator in the convolution

model, obtained recently by S. van de Geer, are reconsidered and corrected.
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1. INTRODUCTION

Consider independent, identically distributed random variables X1, X2, . . . , Xn in

a measurable space (X ,A) with distribution P . Suppose that

f0 =
dP

dµ
∈ F ,

where µ is a dominating, σ-finite measure, and F is a given class of densities with
respect to µ. Throughout the whole paper, f̂n will denote the maximum likelihood

estimator (MLE) of f0 and the accuracy of the estimation will be measured in the

Hellinger distance defined as

h(f̂n, f0) =

(

1

2

∫
(
√

f̂n −
√

f0

)2

dµ

)
1
2

.

Our interest will be focused on upper bounds for the convergence rates, when F is
a class of convolution densities.
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The paper is organized as follows. In this section, basic notations are introduced

and some technical results are formulated. In Sections 2 and 3, the rates of conver-

gence, given in [3] and [2] for two special convolution models, are reconsidered and

corrected.

For a class K of functions on (X ,A), let conv(K) be the convex hull of K, and
conv(K) be its closure in the pointwise convergence topology.

For a measure Q on (X ,A) and δ > 0, we denote by N(δ,K, Q) the δ-covering

number and by H(δ,K, Q) the δ-entropy of K with respect to the L2(Q)-norm.

Formally, for K ⊂ L2(Q), the δ-covering number N(δ,K, Q) is defined as the number

of L2(Q)-balls with radius δ, necessary to cover K. The δ-entropy of K is H(δ,K, Q) =

log N(δ,K, Q).

The following theorem, proved in [3], is an example of a relatively simple tool

for obtaining the rate of convergence for the Hellinger distance between f0 and f̂n in

case f0 belongs to a convex class of densities. For a set of indices Y and some fixed
k0(·, ·), let K = {k0(·, y) : y ∈ Y} be a class of densities on (X ,A) with the envelope

function K := supk∈K k, and let f0 ∈ F = conv(K). For σn ↓ 0, let us define the

class of functions

K̃n =

{(

k0(·, y)

f0

)

1{f0 > σn} : y ∈ Y
}

,

and moreover, let us denote by Pn, the empirical measure based on observations

X1, . . . , Xn (i.e., Pn = 1
n

∑n
i=1 δXi

.)

Theorem 1. Assume that for some non-decreasing sequence ρn ≥ 1

∫

f0>σn

K2

f0
dµ ≤ ρ2

n, n = 1, 2, . . . ,

and

lim
C→∞

lim sup
n→∞

P

(

sup
0<δ<δ0

(

δ

ρn

)w

N(δ, K̃n, Pn) > C

)

= 0,

for some 0 < w < ∞ and δ0 > 0. Then, for

τ2
n ≥

∫

f0≤σn

f0dµ, n = 1, 2, . . . ,

τn ≥ n−(2+w)/(4+4w)ρw/(2+2w)
n , n = 1, 2, . . . ,

there is

h(f̂n, f0) = OP (τn).

The following lemma will be used in entropy calculations. Although it is prooved

in [1], we present another proof, along the lines suggested in [3], because the technique

applied will be useful in the next section.
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Lemma 1. Let

G = {g : [0,∞) → [0, 1], g non-increasing}.

Then there exists a constant C such that for each probabilistic measure Q on [0,∞),

H(δ,G, Q) ≤ Cδ−1, for all δ > 0.

Proof. It is easy to see that

G ⊂ conv(K), (1)

where K = {1[0,y) : y ∈ [0,∞)}. It is a consequence of the fact that conv(K) consists

of functions
∑n

i=1 wi1[yi−1,yi), where 0 = y0 < . . . < yn < ∞, 1 ≥ w1 > . . . > wn > 0

and n ∈ N, and that any function g ∈ G can be approximated by a sequence of
functions from conv(K).

Inclusion (1) implies that H(δ,G, Q) ≤ H(δ, conv(K), Q). Therefore, by the Ball

and Pajor Theorem (see, e.g., [4]), it suffices to show that there exists a constant C1

such that for each probabilistic measure Q

N(δ,K, Q) ≤ C1δ
−2.

Note that G is a subset of the ball of radius 1 centered at zero. Hence, for δ ≥ 1 the

entropy equals 0 and the statement of the lemma holds. Therefore, it is enough to

consider δ ∈ (0, 1).

If Q has no atoms, i.e., Q[0, x) is a continuous function of x, the δ-covering may

be constructed as follows. Take 0 < δ < 1 and divide the interval (0, 1) as in the

following figure,

-

0 δ2 2δ2 . . . kδ2 1 (k + 1)δ2

where kδ2 is the maximal multiplicity of δ2, which is less than 1.

Therefore,

k =















⌊

1

δ2

⌋

for

⌊

1

δ2

⌋

6= 1

δ2
,

⌊

1

δ2

⌋

− 1 for

⌊

1

δ2

⌋

=
1

δ2
,

where ⌊·⌋ is the floor function. Then we select a set of k + 2 points and a set of k

functions in the following way

x0 = 0,

x1 : Q[0, x1) = δ2, f1(x) := 1[0,x1)(x),
...

xk : Q[0, xk) = kδ2, fk(x) := 1[0,xk)(x),

xk+1 = ∞.
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Obviously, for n = 0, . . . , k, there is Q[xn, xn+1) ≤ δ2. Take any y ∈ [0,∞). Then,

for some n ∈ {0, . . . , k}, there is y ∈ [xn, xn+1), and

∥

∥1[0,y) − fn

∥

∥

2

L2(Q)
=

∫

12[xn,y)dQ = Q[xn, y) ≤ Q[xn, xn+1) ≤ δ2.

In other words, the L2(Q)-balls of radius δ, centered at f1, . . . , fk cover the class K,
therefore

N(δ,K, Q) ≤ k ≤ δ−2.

Now let us consider the general case, when Q is any probabilistic measure. For

an arbitrarily chosen δ, we construct, as previously, the sequence of centers, but if

for some n there exists no such x that Q[0, x) = nδ2, then instead of xn, we take x

such, that Q[0, x) < nδ2 < Q[0, x]. For the chosen points x1, . . . , xl, there is l ≤ k

and Q(xn, xn+1) ≤ δ2. Let us take y ∈ [0,∞). If for some n ∈ {1, . . . , l} y = xn, then
∥

∥1[0,y) − 1[0,xn)

∥

∥

2

L2(Q)
= 0. Otherwise, if y ∈ (xn, xn+1) for some n, then

∥

∥1[0,y) − 1[0,xn+1)

∥

∥

2

L2(Q)
=

∫

1[y,xn+1)dQ ≤ Q(xn, xn+1) ≤ δ2,

and, since l ≤ k, there is k ≤ δ2.

2. CONVOLUTION MODEL WITH A MONOTONIC KERNEL

Let Y and Z be independent random variables on [0, 1]. Suppose that Z has a given

density k0 with respect to the Lebesgue measure. The distribution θ of Y is unknown.

We observe independent copies X1, . . . , Xn of X = Z + Y . Therefore,

f0 ∈ F =







1
∫

0

k0(· − y)dθ(y) : θ ∈ Θ







,

where Θ is the class of all probabilistic measures on [0, 1]. If we put K = {k0(·−y) : y ∈
[0, 1]}, then F = conv(K) (see [3]). In this section, the special case of a monotonic

kernel k0(x) = 2x1{0 ≤ x ≤ 1} will be handled. As in [3], in order to simplify the
analysis of the shape of f0, we assume that θ is the uniform distribution (a more

general case, when θ has a density bounded away from zero and infinity gives similar

results).

We want to apply Theorem 1, so we need to calculate the covering number of

K̃n = {(k/f0)1{f0 > σn} : k ∈ K}. With θ being the uniform distribution, one obta-

ins

f0(x) =











x2 for 0 ≤ x ≤ 1;

x(2 − x) for 1 ≤ x ≤ 2;

0 otherwise

and it is convenient to obtain the covering numbers in two steps.
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Define

K̃(1)
n =

{

k̃1[0,1] : k̃ ∈ K̃n

}

, K̃(2)
n =

{

k̃1[1,2] : k̃ ∈ K̃n

}

.

Lemma 2 (see [3]). There exists a constant A1 such that

N(δ, K̃(1)
n , Pn) ≤ A1δ

−1, for all δ ∈ (0, 1) a.s.,

for each n sufficiently large.

In order to calculate the δ-covering number for the class K̃(2)
n , let us deal with

the class K first. It is asserted in [3] that there exists a constant C such that for

any probabilistic measure on [0, 2] there is N(δ,K, Q) ≤ Cδ−1. The suggested line of

the proof is, however, incorrect (it is asserted that such an inequality holds true for

the δ-covering number in the supremum norm. However, it cannot be true, because

for any k1 6= k2 ∈ K, there is ‖k1 − k2‖∞ = 2 and, hence, for δ < 1, there follows

N∞(δ,K) = ∞).

The following lemma gives a corrected upper bound for the covering number.

Lemma 3. There exists a constant A0 such that for any probabilistic measure Q on

[0, 2],

N(δ,K, Q) ≤ A0δ
−2, for all δ ∈ (0, 1). (2)

Proof. Take δ ∈ (0, 1) and define k̃0(x) := 2x1{0 ≤ x < 1}. Let yi, i = 1, . . . , N , be

points chosen in such a way that Q(1 + yi−1, 1 + yi) ≤ δ2, i = 2, . . . , N (the proof

of Lemma 1 implies that N < 1/δ2). Moreover, let yN+k := kδ, for k = 1, . . . , ⌊1/δ⌋,
y0 := 0, and yN+⌊1/δ⌋+1 := 1. For simplicity, we assume that the points yi are

arranged increasingly. Obviously, for i = 1, . . . , N + ⌊1/δ⌋ + 1,

yi − yi−1 ≤ δ and Q(1 + yi−1, 1 + yi) ≤ δ2. (3)

As the centers of the balls for the δ-covering of the class K, we take k̃0(· − yi) and

k0(· − yi), for i = 0, . . . , N + ⌊1/δ⌋ + 1. Since

2

(

N +

⌊

1

δ

⌋

+ 2

)

≤ 8

δ2
for δ ∈ (0, 1), (4)

it suffices to show that the balls cover K. Take y ∈ [0, 1] such that y 6= yi for all

i (otherwise, k0(· − y) is one of the chosen centers). Since y ∈ (yi−1, yi) for some

i ∈ {1, . . . , N + ⌊1/δ⌋ + 1}, there is
∫

[0,2]

[

k0(x − y) − k̃0(x − yi)
]2

dQ(x) ≤

≤
∫

[y,1+y]

4(yi − yi−1)
2dQ(x) +

∫

(1+y,1+yi)

4dQ(x) ≤

≤ 4(yi − yi−1)
2 + 4Q(1 + yi−1, 1 + yi) ≤ 8δ2,

for this i, because of (3). In view of inequality (4), it follows that N(
√

8δ,K, Q) ≤ 8δ−2

for δ ∈ (0, 1). Hence, N(δ,K, Q) ≤ 64δ−2 for δ ∈ (0, 1).
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Note that (2) holds true for all finite (not necessarily probabilistic) measures

and apply Lemma 3 with dQ = ((1/f2
0 )1{f0 > σn}1[1,2]dPn)/A2ρ2

n, to obtain

N(δ, K̃(2)
n , Pn) ≤ A2A0

(ρn

δ

)2

, for all δ ∈ (0, 1), (5)

on the set










∫

f0>σn

1

f2
0

1[1,2]dPn ≤ A2ρ2
n











.

So, for
∫

f0>σn

1

f0
1[1,2]dx ≤ ρ2

n, (6)

there is

lim sup
n→∞

P

(

sup
0<δ<1

(

δ

ρn

)2

N(δ, K̃(2)
n , Pn) > A0A

2

)

≤

≤ lim sup
n→∞

P

(
∫

1

f2
0 ρ2

n

1{f0 > σn}1[1,2]dPn > A2

)

−→ 0, as A → ∞.

Because of Lemma 2, if (6) holds, we can write

lim
A→∞

lim sup
n→∞

P

(

sup
0<δ<1

(

δ

ρn

)2

N(δ, K̃(i)
n , Pn) > A

)

= 0,

for i = 1, 2.

Some effort is needed to see that the above remains true for the whole class K.
To this end, it will be shown that

N(δ, K̃n, Q) ≤ N(δ, K̃(1)
n , Q) + N(δ, K̃(2)

n , Q), for all δ ∈ (0, 1). (7)

Notice that the functions from K̃n are continuous at x = 1 and can be obtained as

’junctions’ of the functions from K̃(1)
n and K̃(2)

n . It is not hard to verify that the balls

covering the classes K̃(1)
n and K̃(2)

n can be represented in R
2 as sets, bounded by two

functions from the corresponding class.

Therefore, if we construct the centers of the balls for the covering of K̃n as

’junctions’ of the centers of the balls from the coverings of K̃(1)
n and K̃(2)

n , it is

sufficient to choose those pairs of centers only for which the representations of the

corresponding balls do touch each other at x = 1. The number of such pairs is less

then the sum of the numbers of balls covering the sets K̃(1)
n and K̃(2)

n , so that (7)

holds true (see Fig. 1).

From that, for the whole class K̃n, we obtain

lim
A→∞

lim sup
n→∞

P

(

sup
0<δ<1

(

δ

ρn

)2

N(δ, K̃n, Pn) > A

)

= 0.
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A

B

1i
1i

2i

2i
3i

3i4i

4i

5i
5i

6i

1 − 1

2 − 1

3 − 1

3 − 2

4 − 2

4 − 3

4 − 4

5 − 4

5 − 5

6 − 5

• S

Fig. 1. Schematic representation of the balls covering K̃
(1)
n (to the left of AB, which

corresponds to x = 1) and K̃
(2)
n (to the right of AB). In order to construct a center of the

ball for the covering of K̃n, two centers are joined to form a (not necessarily continuous)

function on [0, 2]: one from the covering of K̃
(1)
n and one from the covering of K̃

(2)
n . For

example, a (continuous) function from K̃n that crosses the x = 1 line at the point S would

belong to the ball centered at the junction 3−1. On the right, the list of junctions sufficent

to form a covering of K̃n in this particular configuration. Obviously, the covering number

of K̃n is not greater than N(δ, K̃
(1)
n , Q) + N(δ, K̃

(2)
n , Q) − 1

The envelope function of the class K takes the form

K(x) = 2x1[0,1)(x) + 21[1,2](x).

Hence, using the specific form of f0,

∫

f0>σn

K2

f0
dx = 4 − 4

√
σn + 2 log

∣

∣

∣

∣

√
1 − σn + 1√
1 − σn − 1

∣

∣

∣

∣

≍ log
1

σn

and
∫

f0≤σn

f0dx =
1

3
σ3/2

n +
2

3
−
√

1 − σn +
1

3
(1 − σn)3/2 =

1

3
σ3/2

n + o
(

σ3/2
n

)

.

Because
∫

f0>σn

1

f0
1[1,2]dx =

1

2
log

∣

∣

∣

∣

√
1 − σn + 1√
1 − σn − 1

∣

∣

∣

∣

≍ log
1

σn
,

in order to satisfy condition (6) and the assumptions of Theorem 1, we need to hold

ρ2
n ≥ A log

1

σn
, τ2

n ≥ Bσ3/2
n , and τn ≥ Cn−1/3ρ1/3

n ,

Rates of convergence for the maximum likelihood estimator (. . . ) 105



with suitably chosen constants. So, with the optimal σn ≍ n−4/9, we arrive at the

rate

h(f̂n, f0) = OP

(

n−1/3(log n)1/6
)

.

Note that the rate asserted in [3] was OP (n−3/8(log n)1/8), but that result does not

seem to be correct, because of the faulty proof of Lemma 3 in [3].

3. CONVOLUTION MODEL WITH A STRICTLY CONVEX KERNEL

Let us now consider the convolution model with a strictly convex kernel

k0(x) = [3 − 12x(1 − x)]1[0,1](x),

which was studied in [2]. Again, the rate OP (n−3/8(log n)1/8), asserted in [2], does

not seem to be correct, because the δ-covering number for the class K cannot be of
the order δ−1 (k0 is discontinuous at 0 and 1).

For y1 < y2, one has

∫

(k0(· − y2) − k0(· − y1))
2
dQ =

=

∫

[y2,1+y1]

(k0(· − y2) − k0(· − y1))
2
dQ +

∫

[y1,y2)

k2
0(· − y1)dQ +

∫

(1+y1,1+y2]

k2
0(· − y2)dQ ≤

≤ [36(y2 − y1)]
2

+ 9Q[y1, y2) + 9Q(1 + y1, 1 + y2].

Hence, reasoning as in the proof of Lemma 3, one can easily see that, for some

constant A and for any probabilistic measure Q on [0, 2],

N(δ,K, Q) ≤ Aδ−2 for all δ ∈ (0, 1). (8)

Let us assume that θ has a density g0 with respect to the Lebesgue measure,

and that, for some constant c1 > 0,

1

c1
≤ g0(y) ≤ c1, for all y ∈ [0, 1]. (9)

Then,
∫

f0>σn

K2(x)

f0(x)
dx = 9

∫

f0>σn

1

f0(x)
dx ≍ c2 log

(

1

σn

)

, (10)

and
∫

f0≤σn

f0(x)dx ≥ c3σ
2
n, (11)

for some suitable, strictly positive constants c2 and c3 depending on c1.
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Using (8) with dQ = dPn(1/f2
0 )1{f0 > σn}/(Cρ2

n), one obtains

N(δ, K̃n, Pn) ≤ AC
(ρn

δ

)2

for all δ ∈ (0, 1),

on the set










∫

f0>σn

1

f2
0

dPn ≤ Cρ2
n











.

So, for
∫

f0>σn

1

f0
dx ≤ ρ2

n, (12)

there is

lim
C→∞

lim sup
n→∞

P

(

sup
0<δ<1

(

δ

ρn

)2

N(δ, K̃n, Pn) > C

)

= 0.

In view of (10), (11) and (12), the following inequalities must hold, if we want to

apply Theorem 1

ρ2
n ≥ c4 log

1

σn
, τ2

n ≥ c3σ
2
n, and τn ≥ n−1/3ρ1/3

n .

Hence, again, we arrive at the rate

h(f̂n, f0) = OP

(

n−1/3(log n)1/6
)

,

this time with the optimal σn ≍ n−1/3.
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