PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Equitable coloring of graph products

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A graph is equitably k-colorable if its vertices can be partitioned into k independent sets in such a way that the number of vertices in any two sets differ by at most one. The smallest k for which such a coloring exists is known as the "equitable chromatic number" of G and denoted by χ=(G). It is interesting to note that if a graph G is equitably k-colorable, it does not imply that it is equitably (k + 1)-colorable. The smallest integer k for which G is equitably k'-colorable for all k' ≥ k is called "the equitable chromatic threshold" of G and denoted by χ*=(G). In the paper we establish the equitable chromatic number and the equitable chromatic threshold for certain products of some highly-structured graphs. We extend the results from [2] for Cartesian, weak and strong tensor products.
Słowa kluczowe
Rocznik
Strony
31--44
Opis fizyczny
Bibliogr 15 poz., rys.
Twórcy
Bibliografia
  • [1] Chen B.-L., Lih K.-W., Equitable coloring of trees, J. Combin. Theory, Ser. B 61 (1994), 83-87
  • [2] Chen B.-L., Lih K.-W., Yan J.-H., Equitable coloring of graph products, manuscript, 1998.
  • [3] Feigenbaum J., Schaffer N. W., Finding the prime factors of strong direct product graphs in polynomial time, Discrete Math., 109 (1992), 77-102.
  • [4] Furmańczyk H., Equitable coloring of graphs, in: M. Kubale (ed.), Optymalizacja dyskretna. Modele i metody kolorowania grafów, WNT Warszawa 2002, 72-92 (in Polish).
  • [5] Hajnal A., Szemeredi E., Proof of a conjecture of Erdos, in: Combinatorial Theory and Its Applications, II 601-623, Colloq. Math. Soc. Jnos Bolyai, Vol. 4, North-Holland, Amsterdam, 1970.
  • [6] Hedetniemi S., Homomorphism of graphs and automata, Univ. Michigan, Technical Report 03105-44-T, 1966.
  • [7] Imrich W., Factoring cardinal product graphs in polynomial time, Discrete Math. 192 (1998), 119-144.
  • [8] Jha P. K., Hypercubes, Median graphs and products of graphs: Some algorithmic and combinatorial results, Ph.D. Thesis, Iowa State Univ., 1990.
  • [9] Lih K.-W., Wu P.-L., On equitable coloring of bipartite graphs, Discrete Math., 151 (1996), 155-160.
  • [10] Meyer W. Equitable coloring, Amer. Math. Monthly 80 (1973), 920-922.
  • [11] Sabidussi G., Graphs with given group and given graph-theoretical properties, Canad. J. Math. 9 (1957), 515-525.
  • [12] Vesztergombi K., Some remarks on the chromatic number of the strong product of graphs, Colloq. Math. Soc. Janos Bolyai 25 (1981), 819-825.
  • [13] Yap H. P., Zhang Y., The equitable Delta-coloring conjecture holds for outerplanar graphs, Bulletin of the Inst. of Math. Academia Sinica 25 (1997), 143-149.
  • [14] Yap H. P., Zhang Y., Equitable colorings of planar graphs, J. Combin. Math. Combin. Comput. 27 (1998), 97-105.
  • [15] Zhu X., A survey on Hedetniemi's conjecture, Taiwanese J. Math. 2 (1998), 1-24.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH4-0006-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.