PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Classical solutions of initial problems for quasilinear partial functional differential equations of the first order

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider the initial problem for a quasilinear partial functional differential equation of the first order [formula], z(t, x) = varphi(t, x) ((t, x) ∈ [-h0, 0] x Rn) where z(t, x) : [-h0, 0] x [-h, h] → R is a function defined by z(t, x) (τ, ξ) = z(t + τ, + ξ) for (τ, ξ) ∈ [-h0, 0] x [-h, h]. Using the method of bicharacteristics and the fixed-point theorem we prove, under suitable assumptions, a theorem on the local existence and uniqueness of classical solutions of the problem and its continuous dependence on the initial condition.
Rocznik
Strony
13--29
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
autor
Bibliografia
  • [1] Brandi P., Ceppitelli R., On the existence of solutions of nonlinear functional partial differential equations of the first order, Atti Sem. Mat. Fis. Univ. Modena 29 (1980), 166-186.
  • [2] Brandi P., Ceppitelli R., Existence, uniqueness and continuous dependence for a hereditary nonlinear functional partial differential equations, Ann. Polon. Math. 47 (1986), 121-136.
  • [3] Brandi P., Kamont Z., Salvadori A., Existence of generalized solutions of hyperbolic functional differential equations, Nonl. Anal, T.M.A. 50 (2002), 919-940.
  • [4] Ceppitelli R., Kamont Z., Extremal solutions for semilinear differential functional systems in two independent variables, Atti Sem. Mat. Fis. Univ. Modena 42 (1994), 329-341.
  • [5] Człapiński T., On the Cauchy problem for quasilinear hyperbolic systems of partial differential functional equations of the first order, Zeit. Anal. Anwend. 10 (1991), 169-182.
  • [6] Człapiński T., On the existence of generalized solutions of nonlinear first order-partial differential functional equations in two independent variables, Czechosl. Math. Journ. 41 (1992), 490-506.
  • [7] Kamont Z., Hyperbolic Functional Differential Inequalities and Applications, Dordrecht, Kluwer Acad. Publ., 1999.
  • [8] Myshkis A.D., Slopak A. S., A mixed problem for systems of differential functional equations with partial derivatives and with operators of the Volterra type (in Russian), Mat. Sb. (N.S.) 41 (1957), 239-256.
  • [9] Topolski K., Generalized solutions of first order partial differential functional equations in two independent variables, Atti Sem. Mat. Fis. Univ. Modena 39 (1991), 669-684.
  • [10] Turo J., Global solvability of the mixed problem for first order functional partial differential equations, Ann. Polon. Math. 52 (1991), 231-238.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH4-0006-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.