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CLASSICAL SOLUTIONS OF INITIAL PROBLEMS

FOR QUASILINEAR PARTIAL FUNCTIONAL

DIFFERENTIAL EQUATIONS OF THE FIRST ORDER

Abstract. We consider the initial problem for a quasilinear partial functional differential

equation of the first order

∂tz(t, x) +

n
X

i=1

fi(t, x, z(t,x))∂xi
z(t, x) = G(t, x, z(t,x)),

z(t, x) = ϕ(t, x) ((t, x) ∈ [−h0, 0] × R
n)

where z(t,x) : [−h0, 0]× [−h, h] → R is a function defined by z(t,x)(τ, ξ) = z(t + τ, x + ξ) for

(τ, ξ) ∈ [−h0, 0]× [−h, h]. Using the method of bicharacteristics and the fixed-point theorem

we prove, under suitable assumptions, a theorem on the local existence and uniqueness of

classical solutions of the problem and its continuous dependence on the initial condition.

Keywords: partial functional differential equations, classical solutions, local existence,

bicharacteristics.
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1. INTRODUCTION

In addition to classical solutions, the following classes of generalized solutions to hy-

perbolic functional differential problems are considered in literature. Initial boundary

value problems for almost linear systems for unknown functions of two independent

variables were considered in [8]. A continuous function is a solution of a mixed pro-

blem if it satisfies an integral functional system by integrating along bicharacteristics.

Existence theorems and differential inequalities related to almost linear functional

problems can be found in [4]. Distributional solutions of almost linear problems were
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investigated in [9]. The method used in this paper is constructive; the existence result

is based on a difference scheme.

The class of Carathéodory solutions consists of all functions which are continuous

and have their partial derivatives almost everywhere in a domain. The set of all points

where the differential functional equation is not fulfilled is of Lebesgue measure zero.

The existence and uniqueness results for quasilinear systems with initial or initial-

boundary conditions in the class of Carathéodory solutions can be found in [5, 10].

Existence results are based on the following method. Functional differential

problems are equivalent, under natural assumptions on given functions, to integral

equations which are obtained from original problems by integrating along bicharac-

teristics.

Carathéodory solutions to initial problems for nonlinear equations were con-

sidered in [6]. An essential extension of some ideas concerning classical solutions

of hyperbolic functional differential problems is given in [2, 3], where the Cinquini

Cibrario solutions are considered. This class of solutions is placed between classical

solutions and solutions in the Carathéodory sense.

The monograph [7] contains an exposition of existence an uniqueness of genera-

lized and classical solutions to hyperbolic functional differential problems.

We formulate the functional differential problem. Let a > 0, h0 ∈ R+, R+ =

= [0,+∞), and h = (h1, . . . , hn) ∈ Rn
+ be given. We define the sets

E = [0, a] × Rn, D = [−h0, 0] × [−h, h]

and E0 = [−h0, 0] × Rn. Suppose that z : E0 ∪ E → R and (t, x) ∈ E are fixed. We

define the function z(t,x) : D → R as follows

z(t,x)(τ, ξ) = z(t + τ, x + ξ), (τ, ξ) ∈ D.

The function z(t,x) is the restriction of z to the set [t− h0, t]× [x− h, x + h] and this

restriction is shifted to the set D. Elements of the space C(D,R) will be denoted by

w, w̄ and so on. Put Ω = E × C(D,R) and let

f = (f1, . . . , fn) : Ω → Rn, G : Ω → R, ϕ : E0 → R

be given functions. We will deal with the following initial problem

∂tz(t, x) +
n∑

i=1

fi(t, x, z(t,x))∂xi
z(t, x) = G(t, x, z(t,x)), (1)

z(t, x) = ϕ(t, x) on E0, (2)

where ∂xz = (∂x1
z, . . . , ∂xn

z).

A function z̃ ∈ C1([−h0, ξ] × Rn, R), where 0 < ξ ≤ a, is a classical solution of

(1), (2) if it satisfies equation (1) and condition (2) holds on E0.

The aim of this paper is to prove a theorem on the existence and continuous

dependence of classical solutions for (1), (2).
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2. BICHARACTERISTICS

The following function spaces will be needed in our considerations. Write E∗
t =

[−h0, t] × Rn and Et = [0, t] × Rn where 0 ≤ t ≤ a. We will denote by ‖·‖t the

supremum norm in the spaces C(E∗
t , R) and C(E∗

t , Rn). We will denote by Mn×n

the class of all n × n matrices with real elements. For x ∈ Rn, X ∈ Mn×n, where

x = (x1, . . . , xn) and

X = [xij ]i,j=1,...,n

we put

‖x‖ =
n∑

i=1

|xi| and ‖X‖ = max
1≤j≤n

n∑

i=1

|xij |

The product of two matrices is denoted by ‘∗’. If X ∈ Mn×n then XT is the transpose

matrix. We use the symbol ‘◦’ to denote the scalar product in Rn.

Let us denote by ‖·‖0 the supremum norm in the space C(D,R). Let C1(D,R) be

the set of all functions w : D → R such that the derivatives ∂tw, (∂x1
w, . . . , ∂xn

w) =

∂xw exist and ∂tw ∈ C(D,R), ∂xw ∈ C(D,Rn). For w ∈ C1(D,R) we put

‖w‖I = ‖w‖0 + max{|∂tw(t, x)| + ‖∂xw(t, x)‖ : (t, x) ∈ D}.

We denote by C1.L(D,R) the class of all w ∈ C1(D,R) such that ‖w‖I.L < +∞

where

‖w‖I.L = ‖w‖I

+sup

{
|∂tw(t, x) − ∂tw(t̄, x̄)| + ‖∂xw(t, x) − ∂xw(t̄, x̄)‖

|t − t̄| + ‖x − x̄‖
:

(t, x), (t̄, x̄) ∈ D, (t, x) 6= (t̄, x̄)

}
.

We will consider the spaces Ω(1) = E × C1(D,R) and Ω(1.L) = E × C1.L(D,R). Let

Θ be the class of all functions γ ∈ C(R+, R+) which are nondecreasing on R+.

Now we define some further function spaces. Given s = (s0, s1, s2) ∈ R3
+, we

denote by C1.L[s] the set of all functions ϕ ∈ C(E0, R) such that:

(i) there exists (∂x1
ϕ, . . . , ∂xn

ϕ) = ∂xϕ, ∂tϕ and ∂xϕ ∈ C(E0, R
n), ∂tϕ ∈ C(E0, R),

(ii) the estimates |ϕ(t, x)| ≤ s0, and

|∂tϕ(t, x)| + ‖∂xϕ(t, x)‖ ≤ s1,

|∂tϕ(t, x) − ∂tϕ(t̄, x̄)| + ‖∂xϕ(t, x) − ∂xϕ(t̄, x̄)‖ ≤ s2[|t − t̄| + ‖x − x̄‖]

are satisfied on E0.

Let ϕ ∈ C1.L[s] be given and let 0 < c ≤ a, d = (d0, d1, d2) ∈ R3
+, di ≥ si for

i = 0, 1, 2.
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We consider the space C1.L
ϕ.c [d] of all functions z : E∗

c → R such that:

(i) z ∈ C(E∗
c , R) and z(t, x) = ϕ(t, x) on E0,

(ii) there exist ∂tz and ∂xz = (∂x1
z, . . . , ∂xn

z) on E∗
c and the estimates

|z(t, x)| ≤ d0, |∂tz(t, x)| + ‖∂xz(t, x)‖ ≤ d1,

|∂tz(t, x) − ∂tz(t̄, x̄)| + ‖∂xz(t, x) − ∂xz(t̄, x̄)‖ ≤ d2[|t − t̄| + ‖x − x̄‖],

are satisfied on E∗
c .

We denote by CL(D,R) the set of all linear continuous functions defined on

C(D,R) and having its values in Rn and by ‖·‖∗ the norm in CL(D,R).

We will prove that under suitable assumptions on f , G and ϕ, and for sufficiently

small c with 0 < c ≤ a, there exists a solution z̄ of problem (1), (2) such that

z̄ ∈ C1.L
ϕ.c [d].

We begin with assumptions on f .

Assumptions H[f ]. Suppose that the function f = (f1, . . . , fn)T : Ω → Rn in the

variables (t, x, w), is such that:

1) f ∈ C(Ω, Rn) and the derivatives

∂tf(t, x, w) = (∂tf1(t, x, w), . . . , ∂tfn(t, x, w))T ,

∂xf(t, x, w) = [∂xj
fi(t, x, w)]i,j=1,...,n,

and the Fréchet derivative

∂wf(t, x, w) = (∂wf1(t, x, w), . . . , ∂wfn(t, x, w))T ,

exist for (t, x, w) ∈ Ω(1),

2) there are α, β ∈ Θ such that

‖f(t, x, w)‖ ≤ α(‖w‖0) on Ω,

‖∂tf(t, x, w)‖ , ‖∂xf(t, x, w)‖ , ‖∂wf(t, x, w)‖∗ ≤ β(‖w‖I) on Ω(1),

and there is a γ ∈ Θ such that for (t, x, w) ∈ Ω(1.L), (x̄, w̄) ∈ Rn × C(D,R) we have

‖∂xf(t, x, w) − ∂xf(t, x̄, w̄)‖ ≤ γ(‖w‖I.L)[‖x − x̄‖ + ‖w − w̄‖I],

‖∂wf(t, x, w) − ∂wf(t, x̄, w̄)‖∗ ≤ γ(‖w‖I.L)[‖x − x̄‖ + ‖w − w̄‖I].

Suppose that ϕ ∈ C1.L[s] and z ∈ C1.L
ϕ.c [d]. We consider the Cauchy problem

η′(τ) = f
(
τ, η(τ), z(τ,η(τ))

)
, η(t) = x, (3)

and denote by g[z](·, t, x) = (g1[z](·, t, x), . . . , gn[z](·, t, x)) its classical solution.

The function g[z](·, t, x) is the bicharacteristic of equation (1) corresponding

to z. Write

P [z](τ, t, x) =
(
τ, g[z](τ, t, x), z(τ,g[z](τ,t,x))

)
.

We prove a lemma on bicharacteristics.
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Lemma 2.1. Suppose that Assumption H[f ] is satisfied and let

ϕ, ϕ̄ ∈ C1.L[s], z ∈ C1.L
ϕ.c [d], z̄ ∈ C1.L

ϕ̄.c [d],

be given. Then the solutions g[z](·, t, x) and g[z̄](·, t, x) exist on the interval [0, a] and

are unique. Moreover, the following estimates hold

‖∂tg[z](τ, t, x)‖ ≤ C, ‖∂xg[z](τ, t, x)‖ ≤ C, (4)

for τ ∈ [0, c], (t, x) ∈ Ec, and

‖∂tg[z](s, t, x) − ∂tg[z](s, t̄, x̄)‖ ≤ Q[|t − t̄| + ‖x − x̄‖],

‖∂xg[z](s, t, x) − ∂xg[z](s, t̄, x̄)‖ ≤ Q[|t − t̄| + ‖x − x̄‖]
(5)

for τ ∈ [0, c], (t, x), (t̄, x̄) ∈ Ec and

‖g[z](τ, t, x) − g[z̄](τ, t, x)‖ ≤ Ā

t∫

0

‖z − z̄‖(s) ds, (6)

for τ ∈ [0, c], τ ≤ t, (t, x) ∈ Ec, where

C = max{1, α(d0)} exp{cB}, Q =
{

(1 + C)B + cC̃
}

exp[cB], Ā = β(d̃) exp[cB]

and

B = β(d̃)(1 + d1), C̃ = C2
[
γ(|d|)(1 + d1 + d2)(1 + d1) + d2β(d̃)

]

and

d̃ = d0 + d1, |d| = d0 + d1 + d2.

Proof. Let z ∈ C1.L
ϕ.c [d]. The existence and uniqueness of solutions of (3) follow from

the theorem on classical solutions of initial problems. From another classical theorem

on differentiation of solutions with respect to the initial data it follows that the

derivatives ∂tg[z] = (∂tg1[z], . . . , ∂tgn[z])T and

∂xg[z] =
[
∂xj

gi[z]
]

i,j=1,...,n

exist and fulfil the integral equations

∂tg[z](τ, t, x) = −f
(
t, x, z(t,x)

)
+

+

τ∫

t

[
∂xf

(
P [z](s, t, x)

)
+ ∂wf

(
P [z](s, t, x)

)
∗ (∂xz)(s,g[z](s,t,x))

]
∗ ∂tg[z](s, t, x)ds

(7)
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and

∂xg[z](τ, t, x) = I +

+

τ∫

t

[
∂xf

(
P [z](s, t, x)

)
+ ∂wf

(
P [z](s, t, x)

)
∗ (∂xz)(s,g[z](s,t,x))

]
∗ ∂xg[z](s, t, x)ds

(8)

where I denotes the identity matrix. oreover, for P ∈ Ω and (τ, y) ∈ E, we denote

∂wf(P ) ∗ (∂xz)(τ,y) =
(
∂wf1(P ), . . . , ∂wfn(P )

)T
∗
(
(∂x1

z)(τ,y), . . . , (∂xn
z)(τ,y)

)
=

=
[
∂wfi(P ) (∂xj

z)(τ,y)

]
i,j=1,...,n

∈ Mn×n.

Note that ∥∥∂wf(P ) ∗ (∂xz)(τ,y)

∥∥ ≤
∥∥∂wf(P ) ‖·‖ (∂xz)(τ,y)

∥∥

for P ∈ Ω, (τ, y) ∈ E.

It follows from (7), (8), Assumption H[f ] and the definition of space C1.L
ϕ.c [d]

that the functions ∂tg[z](·, t, x), ∂xg[z](·, t, x) satisfy integral inequalities

‖∂tg[z](τ, t, x)‖ ≤ α(d0) + B

∣∣∣∣∣∣

τ∫

t

‖∂tg[z](s, t, x)‖ ds

∣∣∣∣∣∣
,

‖∂xg[z](τ, t, x)‖ ≤ 1 + B

∣∣∣∣∣∣

τ∫

t

‖∂xg[z](s, t, x)‖ ds

∣∣∣∣∣∣
,

and from the Gronwall theorem we get (4). Then using (4) we get

‖∂tg[z](τ, t, x) − ∂tg[z](τ, t̄, x̄)‖ ≤

≤
(
B + cC̃

)
[|t − t̄|+‖x − x̄‖]+CB |t − t̄|+B

∣∣∣∣∣∣

τ∫

t

‖∂tg[z](s, t, x) − ∂tg[z](s, t̄, x̄)‖ ds

∣∣∣∣∣∣

and

‖∂xg[z](τ, t, x) − ∂xg[z](τ, t̄, x̄)‖ ≤

≤ cC̃ [|t − t̄| + ‖x − x̄‖] + CB |t − t̄| + B

∣∣∣∣∣∣

τ∫

t

‖∂xg[z](s, t, x) − ∂xg[z](s, t̄, x̄)‖ ds

∣∣∣∣∣∣
.

and from the Gronwall theorem we get

‖∂tg[z](τ, t, x) − ∂tg[z](τ, t̄, x̄)‖ ≤ Q2[|t − t̄| + ‖x − x̄‖] + Q0 |t − t̄| ≤

≤ (Q0 + Q2)[|t − t̄| + ‖x − x̄‖],
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and

‖∂xg[z](τ, t, x) − ∂xg[z](τ, t̄, x̄)‖ ≤ Q1[|t − t̄| + ‖x − x̄‖] + Q0 |t − t̄| ≤

≤ (Q0 + Q1)[|t − t̄| + ‖x − x̄‖],

where

Q0 = CB exp[cB], Q1 = cC̃ exp[cB],

Q2 = Q1 + B exp[cB].

Taking maximum on the right hand sides of the above inequalities we get (5).

Now we prove (6). The function g[z](τ, t, x) satisfies the following relation:

g[z](τ, t, x) = x +

τ∫

t

f
(
s, g[z](s, t, x), z(s,g[z](s,t,x))

)
ds.

Suppose that τ ≤ t. Then

‖g[z](τ, t, x) − g[z̄](τ, t, x)‖ ≤

≤ B

∣∣∣∣∣∣

τ∫

t

‖g[z](s, t, x) − g[z̄](s, t, x)‖ ds

∣∣∣∣∣∣
+ β(d̃)

t∫

0

‖z − z̄‖(s) ds.

Again from the Gronwall inequality we obtain

‖g[z](τ, t, x) − g[z̄](τ, t, x)‖ ≤ β(d̃) exp[cB]

t∫

0

‖z − z̄‖(s) ds.

This completes the proof.

Assumptions H[f,G]. Suppose that Assumption H[f ] is satisfied and function

G : Ω → R in the variables (t, x, w), is such that:

1) G ∈ C(Ω, R) and the derivative ∂xG(t, x, w) = (∂x1
G(t, x, w), . . . , ∂xn

G(t, x, w))

and the Fréchet derivative ∂wG(t, x, w) exist for (t, x, w) ∈ Ω(1),

2) for α, β, γ ∈ Θ as in Assumption H[f ] there is

‖G(t, x, w)‖ ≤ α(‖w‖0) on Ω,

‖∂xG(t, x, w)‖ , ‖∂wG(t, x, w)‖∗ ≤ β(‖w‖I) on Ω(1),

and for (t, x, w) ∈ Ω(1.L), (x̄, w̄) ∈ Rn × C(D,R) there is

‖∂xG(t, x, w) − ∂xG(t, x̄, w̄)‖ ≤ γ(‖w‖I.L)[‖x − x̄‖ + ‖w − w̄‖I],

‖∂wG(t, x, w) − ∂wG(t, x̄, w̄)‖∗ ≤ γ(‖w‖I.L)[‖x − x̄‖ + ‖w − w̄‖I].
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We define the operator W on C1.L
ϕ.c [d] by the formula

W [z](t, x) = ϕ(0, g[z](0, t, x)) +

t∫

0

G
(
P [z](s, t, x)

)
ds for (t, x) ∈ Ec,

W [z](t, x) = ϕ(t, x) for (t, x) ∈ E0.

(9)

Remark 2.2. The right-hand side of (9) is obtained in the following way. We consider

(1) along bicharacteristics:

∂tz(τ, g[z](τ, t, x)) + ∂xz(τ, g[z](τ, t, x)) ∗ f
(
τ, g[z](τ, t, x), z(τ,g[z](τ,t,x))

)
=

= G
(
τ, g[z](τ, t, x), z(τ,g[z](τ,t,x))

)

from which, using (3), we get

d

dt
z(τ, g[z](τ, t, x)) = G

(
τ, g[z](τ, t, x), z(τ,g[z](τ,t,x))

)
.

By integrating the above equation with respect to τ , we get the right-hand side of (9).

Assumptions H[ϕ, c, d]. Suppose that:

1) the constants c, d = (d0, d1, d2) satisfy the conditions

d0 ≥ s0 + c α(d0),

d1 ≥ 2s1C + α(d0) + 2cCB,

d2 ≥ B + 2
[
s1Q + s2C

2 + B(C + cQ) + cC̃
]

2) the following consistency condition holds true for x ∈ Rn:

∂tϕ(0, x) +
n∑

i=1

fi(0, x, ϕ(0,x))∂xi
ϕ(0, x) = G(0, x, ϕ(0,x)). (10)

Let us denote

(∂xz)(τ,y) ∗ ∂xg[z](τ, t, x) =
(
(∂x1

z)(τ,y), . . . , (∂xn
z)(τ,y)

)
∗ ∂xg[z](τ, t, x) =

=

(
n∑

i=1

∂x1
gi[z](τ, t, x) · (∂xi

z)(τ,y), . . . ,

n∑

i=1

∂xn
gi[z](τ, t, x) · (∂xi

z)(τ,y)

)

∈ C(D,Rn)

for (τ, y) ∈ E and (τ, t, x) ∈ [0, a] × E. Moreover, for P ∈ Ω and (τ, y) ∈ E, we

denote

∂wG(P ) (∂xz)(τ,y) =
(
∂wG(P ) (∂x1

z)(τ,y), . . . , ∂wG(P ) (∂xn
z)(τ,y)

)
∈ Rn.
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Lemma 2.3. Suppose that Assumptions H[f,G], H[ϕ, c, d] are satisfied. Then the

operator W maps C1.L
ϕ.c [d] into itself.

Proof. Let z ∈ C1.L
ϕ.c [d]. Write V0 = ∂tW [z] and V [z] = ∂xW [z]. From (9) it follows

that

V0(t, x) = ∂xϕ(0, g[z](0, t, x)) ∗ ∂tg[z](0, t, x) + G
(
t, x, z(t,x)

)
+

+

t∫

0

∂xG(P [z](s, t, x)) ∗ ∂tg[z](s, t, x) ds +

+

t∫

0

∂wG(P [z](s, t, x)) (∂xz)(s,g[z](s,t,x)) ∗ ∂tg[z](s, t, x) ds

(11)

and

V [z](t, x) = ∂xϕ(0, g[z](0, t, x)) ∗ ∂xg[z](0, t, x) +

+

t∫

0

∂xG(P [z](s, t, x)) ∗ ∂xg[z](s, t, x) ds +

+

t∫

0

∂wG(P [z](s, t, x)) (∂xz)(s,g[z](s,t,x)) ∗ ∂xg[z](s, t, x) ds.

(12)

It follows from the above integral equations that

|W [z](t, x)| ≤ s0 + cα(d0), (13)

|∂tW [z](t, x)| ≤ s1C + α(d0) + cCB (14)

and

‖∂xW [z](t, x)‖ ≤ s1C + cCB. (15)

From (13) and adding inequalities (14), (15) we get

|W [z](t, x)| ≤ d0, |V0(t, x)| + ‖V [z](t, x)‖ ≤ d1 (16)

for (t, x) ∈ Ec. It follows from (11) that for (t, x), (t̄, x̄) ∈ Ec there is

|V0(t, x) − V0(t̄, x̄)| ≤

≤ |∂xϕ(0, g[z](0, t, x)) ∗ ∂tg[z](0, t, x) − ∂xϕ(0, g[z](0, t̄, x̄)) ∗ ∂tg[z](0, t̄, x̄)| +

+
∣∣G
(
t, x, z(t,x)

)
− G

(
t̄, x̄, z(t̄,x̄)

)∣∣+

+

t∫

0

|∂xG(P [z](s, t, x)) ∗ ∂tg[z](s, t, x) − ∂xG(P [z](s, t̄, x̄)) ∗ ∂tg[z](s, t̄, x̄)| ds +
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+

t∫

0

∣∣∣∣∂wG(P [z](s, t, x))

[
(∂xz)(s,g[z](s,t,x)) ∗ ∂tg[z](s, t, x)

]
+

−∂wG(P [z](s, t̄, x̄))

[
(∂xz)(s,g[z](s,t̄,x̄)) ∗ ∂tg[z](s, t̄, x̄)

]∣∣∣∣ ds +

+

∣∣∣∣∣∣

t̄∫

t

[
‖∂xG(P [z](s, t̄, x̄)) ∗ ∂tg[z](s, t̄, x̄)‖ +

+
∥∥∂wG(P [z](s, t̄, x̄)) ∗ (∂xz)(s,g[z](s,t̄,x̄)) ∗ ∂tg[z](s, t̄, x̄)

∥∥
]
ds

∣∣∣∣∣∣
.

From the above inequality, Assumption H[f,G] and Lemma 2.1 it follows that

|V0(t, x) − V0(t̄, x̄)| ≤

≤
[
s1Q + s2C

2 + B(1 + cQ) + cC̃
]
· [|t − t̄| + ‖x − x̄‖] + BC |t − t̄| ,

for (t, x), (t̄, x̄) ∈ Ec and, consequently,

|V0(t, x) − V0(t̄, x̄)| ≤

≤
[
s1Q + s2C

2 + B(1 + C + cQ) + cC̃
]
· [|t − t̄| + ‖x − x̄‖] (17)

for (t, x), (t̄, x̄) ∈ Ec. Now we write the Lipschitz condition for the function V [z].

From (12) it follows that

|V [z](t, x) − V [z](t̄, x̄)| ≤

≤

∣∣∣∣∂xϕ(0, g[z](0, t, x)) ∗ ∂xg[z](0, t, x) − ∂xϕ(0, g[z](0, t̄, x̄)) ∗ ∂xg[z](0, t̄, x̄)

∣∣∣∣+

+

t∫

0

∣∣∣∣∂xG(P [z](s, t, x)) ∗ ∂xg[z](s, t, x) − ∂xG(P [z](s, t̄, x̄)) ∗ ∂xg[z](s, t̄, x̄)

∣∣∣∣ds +

+

t∫

0

∣∣∣∣∂wG(P [z](s, t, x))
[
(∂xz)(s,g[z](s,t,x)) ∗ ∂xg[z](s, t, x)

]
+

− ∂wG(P [z](s, t̄, x̄))
[
(∂xz)(s,g[z](s,t̄,x̄)) ∗ ∂xg[z](s, t̄, x̄)

]∣∣∣∣ds +

+

∣∣∣∣∣

t̄∫

t

[
‖∂xG(P [z](s, t̄, x̄)) ∗ ∂xg[z](s, t̄, x̄)‖ +

+
∥∥∂wG(P [z](s, t̄, x̄)) ∗ (∂xz)(s,g[z](s,t̄,x̄)) ∗ ∂xg[z](s, t̄, x̄)

∥∥
]
ds

∣∣∣∣∣

for (t, x), (t̄, x̄) ∈ Ec.

22 Wojciech Czernous



In a way similar to that used to prove (17) we get

|V [z](t, x) − V [z](t̄, x̄)| ≤

≤
[
s1Q + s2C

2 + B(C + cQ) + cC̃
]
· [|t − t̄| + ‖x − x̄‖] (18)

for (t, x), (t̄, x̄) ∈ Ec. Adding inequalities (17) and (18) we get

|V0(t, x) − V0(t̄, x̄)| + ‖V [z](t, x) − V [z](t̄, x̄)‖ ≤

≤
{

B + 2
[
s1Q + s2C

2 + B(C + cQ) + cC̃
]}

· [|t − t̄| + ‖x − x̄‖] (19)

for (t, x), (t̄, x̄) ∈ Ec. From (19) and Assumption H[ϕ, c, d] we get

|V0(t, x) − V0(t̄, x̄)| + ‖V [z](t, x) − V [z](t̄, x̄)‖ ≤ d2[|t − t̄| + ‖x − x̄‖] (20)

for (t, x), (t̄, x̄) ∈ Ec. We can see from (16) and (20) that the function W [z] satisfies

condition (ii) from the definition of C1.L
ϕ.c [d]. Moreover, from (9) it follows that

W [z](t, x) = ϕ(t, x) on Ec.

Now we prove that W [z] ∈ C1(E∗
c , R). From (11) and (7) it follows that

V0(0, x) = ∂xϕ(0, x) ∗ ∂tg[z](0, 0, x) + G(0, x, z(0,x)) =

= −∂xϕ(0, x) ∗ f(0, x, z(0,x)) + G(0, x, z(0,x)) =

= −∂xϕ(0, x) ∗ f(0, x, ϕ(0,x)) + G(0, x, ϕ(0,x)).

Then from consistency condition (10) we get

V0(0, x) = ∂tϕ(0, x).

From (12) and (8) it follows that

V [z](0, x) = ∂xϕ(0, x) ∗ ∂xg[z](0, 0, x) = ∂xϕ(0, x) ∗ I = ∂xϕ(0, x).

Then the function W [z] satisfies condition (i) of the definition of the space C1.L
ϕ.c [d].

This completes the proof of Lemma 2.3.

Theorem 2.4. Suppose that ϕ ∈ C1.Ls and Assumptions H[f,G], H[ϕ, c, d] are

satisfied. Then there exists exactly one solution z̄ ∈ C1.L
ϕ.c [d] of problem (1), (2).

If ϕ̄ ∈ C1.Ls and v̄ ∈ C1.L
ϕ̄.c [d] is a solution of equation (1) with the initial boundary

condition z(t, x) = ϕ̄(t, x) on E0 then there is Λc ∈ R+ such that

‖v − v̄‖t ≤ Λc

[
‖ϕ − ϕ̄‖(0)

]
, 0 ≤ t ≤ c. (21)
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Proof. We prove that there exists exactly one z̄ ∈ C1.L
ϕ.c [d] satisfying the equation

z = W [z]. Lemma 2.3 shows that W : C1.L
ϕ.c [d] → C1.L

ϕ.c [d]. It follows that there is an

A > 0 such that for z, z̃ ∈ C1.L
ϕ.c [d] there holds

‖W [z](t, x) − W [z̄](t, x)‖ ≤ A

t∫

0

‖z − z̃‖(s) ds. (22)

Now we define the norm in the space C1.L
ϕ.c [d] as follows

‖z‖λ = max{‖z(t, x)‖ e−λt : (t, x) ∈ Ec},

where λ > A. It is easy to see that (C1.L
ϕ.c [d], ‖·‖λ) is a Banach space. Now we prove

that there exists q ∈ [0, 1) such that

‖W [z] − W [z̃]‖λ ≤ q ‖z − z̃‖λ for z, z̃ ∈ C1.L
ϕ.c [d]. (23)

According to (22), there is

‖W [z](t, x) − W [z̃](t, x)‖ ≤

≤ A

t∫

0

‖z − z̃‖(s) ds = A

t∫

0

‖z − z̃‖(s) e−λseλsds ≤

≤ A ‖z − z̃‖λ

t∫

0

eλsds =
A

λ
‖z − z̃‖λ (eλt − 1) ≤

A

λ
‖z − z̃‖λ eλt

for (t, x) ∈ Ec. Then

‖W [z](t, x) − W [z̃](t, x)‖ e−λt ≤
A

λ
‖z − z̃‖λ , (t, x) ∈ Ec.

It follows that estimate (23) holds with q = Aλ−1. By the Banach fixed point

theorem, there exists the unique fixpoint of W . Denoting this fixpoint by z̄ we prove

that it is a solution of equation (1). For (t, x) ∈ Ec, there is

z̄(t, x) = ϕ(0, g[z̄](0, t, x)) +

t∫

0

G(s, g[z̄](s, t, x), z̄(s,g[z̄](s,t,x)))ds.

For a given x ∈ Rn, let us put y = g[z̄](0, t, x). It follows from Lemma 2.1 that

g[z̄](s, t, x) = g[z̄](s, 0, y) for s, t ∈ [0, c] and x = g[z̄](t, 0, y). Then we get

z̄(t, g[z̄](t, 0, y)) = ϕ(0, y) +

t∫

0

G
(
s, g[z̄](s, 0, y), z̄(s,g[z̄](s,0,y))

)
ds. (24)
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The relations y = g[z̄](0, t, x) and x = g[z̄](t, 0, y) are equivalent for x, y ∈ Rn. By

differentiating (24) with respect to t and putting again x = g[z̄](t, 0, y) we conclude

that z̄ satisfies (1). Since z̄ satisfies initial condition (2), it is a solution of our

problem.

Now we prove relation (21). The function v̄ satisfies integral functional equation

z(t, x) = W [z](t, x)

and initial condition (2) with ϕ̄ instead of ϕ. It follows easily that there are Λ0,

Λ1 ∈ R+ such that the integral inequality

‖v − v̄‖t ≤ Λ0

[
‖ϕ − ϕ̄‖(0)

]
+ Λ1

t∫

0

[
‖v − v̄‖(τ)

]
dτ, 0 ≤ t ≤ c,

is satisfied. Using the Gronwall inequality, we obtain (21) with Λc = Λ0 exp
(
Λ1c
)
.

This proves the Theorem.

3. DIFFERENTIAL EQUATIONS WITH DEVIATED VARIABLES

Suppose that α0 : [0, a] → R, α′ : E → Rn are given functions and that conditions

−h0 ≤ α0(t) − t ≤ 0, −h ≤ α′(t, x) − x ≤ h, (t, x) ∈ E. (25)

are satisfied. We consider operators f,G defined by

f(t, x, w) = f̃(t, x, w(α0(t) − t, α′(t, x) − x)),

G(t, x, w) = G̃(t, x, w(α0(t) − t, α′(t, x) − x)),
(26)

where f̃ : E × R → Rn, G̃ : E × R → R, (t, x, w) ∈ Ω.

In this case, (1) is equivalent to the differential equation with deviated variables

∂tz(t, x) +
n∑

i=1

f̃i(t, x, z(α(t, x)))∂xi
z(t, x) = G̃(t, x, z(α(t, x))), (27)

where α(t, x) = (α0(t), α
′(t, x)). Now we formulate our existence result for problem

(27), (2).

Assumptions H[f̃ ]. Suppose that the function f̃ : E × R → Rn in the variables

(t, x, p) satisfies the conditions:

1) f̃ ∈ C(E × R,Rn) and there is B0 ∈ Θ such that

∥∥∥f̃(t, x, p)
∥∥∥ ≤ B0(|p|) on E × R
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2) the partial derivatives

∂tf̃(Q), (∂x1
f̃(Q), . . . , ∂xn

f̃(Q)) = ∂xf̃(Q), ∂pf̃(Q), Q = (t, x, p),

exist for (t, x, p) ∈ E × R and there is a B̄ ∈ R+ such that

∥∥∥∂tf̃(t, x, p)
∥∥∥ ,

∥∥∥∂xf̃(t, x, p)
∥∥∥ ,

∥∥∥∂pf̃(t, x, p)
∥∥∥ ≤ B̄

for (t, x, p) ∈ E × R,

3) there is C̄ ∈ R+ such that the functions ∂tf̃ , ∂xf̃ , ∂pf̃ satisfy the Lipschitz

condition with respect to (x, p) ∈ Rn × R.

Assumptions H[f̃ , G̃]. Suppose that Assumption H[f̃ ] is satisfied and the function

G̃ : E × R → R in the variables (t, x, p) satisfies the conditions:

1) G̃ ∈ C(E × R,R) and the partial derivatives

(∂x1
G̃(Q), . . . , ∂xn

G̃(Q)) = ∂xG̃(Q), ∂pG̃(Q), Q = (t, x, p),

exist for (t, x, p) ∈ E × R,

2) for B0 ∈ Θ, B̄ ∈ R+, as in Assumption H[f̃ ], there is

∣∣∣G̃(t, x, p)
∣∣∣ ≤ B0(|p|),

∥∥∥∂xG̃(t, x, p)
∥∥∥ ,

∥∥∥∂pG̃(t, x, p)
∥∥∥ ≤ B̄

for (t, x, p) ∈ E × R and the functions ∂xG̃, ∂pG̃ satisfy the Lipschitz condition

with respect to (x, p) ∈ Rn×R with Lipschitz constant C̄ ∈ R+ as in Assumption

H[f̃ ].

Assumptions H[α]. Suppose that the functions α0 : [0, a] → R, α′ : E → Rn are

such that:

1) 0 ≤ α0(t) ≤ t for t ∈ [0, a],

2) the derivatives d
dt

α0(t), ∂tα
′(t, x), ∂xα′(t, x) exist for (t, x) ∈ E and there is

r̄0 ∈ R+ such that

∣∣∣∣
d

dt
α0(t)

∣∣∣∣ ≤ r0, ‖∂tα
′(t, x)‖ ≤ r0,

∥∥∥
[
∂xα′(t, x)

]T∥∥∥ ≤ r0,

∥∥∥
[
∂xα′(t, x) − ∂xα′(t, x̄)

]T∥∥∥ ≤ r1 ‖x − x̄‖

for (t, x), (t, x̄) ∈ E.
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Theorem 3.1. Suppose that Assumptions H[f̃ , G̃], H[α] are satisfied and ϕ ∈ C1.Ls

and that

∂tϕ(0, x) =
n∑

i=1

f̃i(0, x, ϕ(α(0, x)))∂xi
ϕ(0, x) = G̃

(
0, x, ϕ(α(0, x))

)
(28)

for x ∈ Rn.

Then there are a c ∈ (0, a] and v : E∗
c → R such that v is a solution of (27), (2).

Proof. Write

α̃0(t) = α0(t) − t, α̃′(t, x) = α′(t, x) − x, (t, x) ∈ E

and α̃(t, x) = (α̃0(t), α̃
′(t, x)). Then the operators f,G are defined by

f(t, x, w) = f̃(t, x, w(α̃(t, x))), G(t, x, w) = G̃(t, x, w(α̃(t, x))), (t, x, w) ∈ Ω.

We see at once that

∂tf(t, x, w) = ∂tf̃(t, x, w(α̃(t, x))) +

+ ∂pG̃(t, x, w(α̃(t, x)))
[
∂tw(α̃(t, x))

d

dt
α̃0(t) + ∂xw(α̃(t, x)) ∗ ∂tα̃(t, x)

]

∂xf(t, x, w) = ∂xf̃(t, x, w(α̃(t, x))) + ∂pf̃(t, x, w(α̃(t, x))) ∂xw(α̃(t, x)) ∗ ∂xα̃′(t, x),

∂wf(t, x, w)w̄ = f̃(t, x, w(α̃(t, x)))w̄(α̃(t, x))

and

∂xG(t, x, w) = ∂xG̃(t, x, w(α̃(t, x))) + ∂pG̃(t, x, w(α̃(t, x))) ∂xw(α̃(t, x)) ∗ ∂xα̃′(t, x),

∂wG(t, x, w)w̄ = G̃(t, x, w(α̃(t, x)))w̄(α̃(t, x)),

where (t, x, w) ∈ Ω(1) and w̄ ∈ C(D,R).

It is clear that

‖∂tf(t, x, w)‖ ≤ B̄[1 + (1 + r0) ‖w‖I],

‖∂xf(t, x, w)‖ ≤ B̄[1 + (1 + r0) ‖w‖I]

and

‖∂wf(t, x, w)‖∗ ≤ B̄,

‖∂wG(t, x, w)‖∗ ≤ B̄,

‖∂xG(t, x, w)‖ ≤ B̄[1 + (1 + r0) ‖w‖I].
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We conclude from Assumptions H[f̃ , G̃] and H[α] that

‖∂xf(t, x, w) − ∂xf(t, x̄, w̄)‖ ≤

≤
[
C̄[1 + (1 + r0) ‖w‖I.L]2 + B̄[r1 + (1 + r0)

2] ‖w‖I.L

]
‖x − x̄‖ +

+ [C̄ + (1 + r0)(B̄ + C̄ ‖w‖I.L)] ‖w − w̄‖I ,

‖∂wf(t, x, w) − ∂wf(t, x̄, w̄)‖∗ ≤ C̄
[
(1 + (1 + r0) ‖w‖I.L) ‖x − x̄‖ + ‖w − w̄‖I

]
,

‖∂xG(t, x, w) − ∂xG(t, x̄, w̄)‖ ≤

≤
[
C̄[1 + (1 + r0) ‖w‖I.L]2 + B̄[r1 + (1 + r0)

2] ‖w‖I.L

]
‖x − x̄‖ +

+ [C̄ + (1 + r0)(B̄ + C̄ ‖w‖I.L)] ‖w − w̄‖I ,

‖∂wG(t, x, w) − ∂wG(t, x̄, w̄)‖∗ ≤ C̄
[
(1 + (1 + r0) ‖w‖I.L) ‖x − x̄‖ + ‖w − w̄‖I

]
.

It follows that all the assumptions of Theorem 2.4 are satisfied and the assertion

follows.

Remark 3.2. Suppose that the functions f̃ : E ×R → Rn, G̃ : E ×R → R are given

and the operators f,G are defined by

f(t, x, w) = f̃(t, x,

∫

D

w(τ, s)dsdτ),

G(t, x, w) = G̃(t, x,

∫

D

w(τ, s)dsdτ).

Then (1) reduces to the differential integral equation

∂tz(t, x) +
n∑

i=1

f̃i(t, x,

∫

D

z(t + τ, x + s)dsdτ) ∂xi
z(t, x) =

= G̃(t, x,

∫

D

z(t + τ, x + s) ds dτ). (29)

The existence result for problem (29), (2) can be easily deduced from Theorem 2.4.
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