Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let G = (V, E) be a graph. A subset D ⊆ V is a total dominating set of G if for every vertex y ∈ V there is a vertex x ∈ D with xy ∈ E. A subset D ⊆ V is a strong dominating set of G if for every vertex y ∈ V - D there is a vertex x ∈ D with xy &isin E and degG(x) ≥ degG(y). The total domination number γt(G) (the strong domination number γS(G)) is defined as the minimum cardinality of a total dominating set (a strong dominating set) of G. The concept of total domination was first defined by Cockayne, Dawes and Hedetniemi in 1980 [1], while the strong domination was introduced by Sampathkumar and Pushpa Latha in 1996 [3]. By a subdivision of an edge uv ∈ E we mean removing edge uv, adding a new vertex x, and adding edges ux and vx. A graph obtained from G by subdivision an edge uv ∈ E is denoted by G ⊕ uxvx. The behaviour of the total domination number and the strong domination number of a graph G ⊕ uxvx is developed.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
231--234
Opis fizyczny
Bibliogr. 3 poz.
Twórcy
autor
- Technical University of Szczecin, Institute of Mathematics, al. Piastów 48/49, 70-310 Szczecin, Poland, mzwierz@ps.pl
Bibliografia
- [1] Cockayne E. J., Dawes R. M., Hedetniemi S.T.: Total domination in graphs. Networks 10 (1980), 211-219.
- [2] Hedetniemi S.T., Laskar R. C: Bibliography on domination in graphs and some basic definitions of domination parameters. Discrete Mathematics 86 (1990), 257—277.
- [3] Pushpa Latha L., Sampathkumar E.: Strong weak domination and domination balance in a graph. Discrete Mathematics 161 (1996), 235-242.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH4-0005-0081