PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Instability and the formation of bubbles and the plugs in fluidized beds

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This is an review paper, particulary concentrate on results not many researches by reason that are explain in the text. We consider stability of disperse, two-phase flow (gas-solid particles or liquid-solid particles) linear and non-linear. In particular we discuss the result of Anderson, Sundareson and Jackson (1995) [3] that for vertical dispersion flow one- and two-dimensional, they attack problem growing disturbances directly by numerical integration of equations of motion from given initial conditions (using computer Cray C-90). In principle, this would allow authors to explore all aspects of dynamical behaviour of fluidized beds. It is interesting mechanism of periodic plug describing by Anderson et al. and attest by other researchers. Second part of paper is more general, dedicate the problem of linear stability of uniformly fluidized state ("fluidized bed"). We make the most important stages of calculations (after to Jackson (2000) [23]) and demonstrate that the majority (but not all) of fluidized beds with parameters having technical importance is unstable, or stable in narrow interval of wave numbers k.
Rocznik
Strony
133--159
Opis fizyczny
Bibliogr. 38 poz., wykr., tab.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Applied Mathematics, al. Mickiewicza 30, 30-059 Cracow, Poland
Bibliografia
  • [1] Anderson T. B., Jackson, R.: Fluid mechanical description of fluid beds. Equation of motion. Ind. Eng. Chem Fundam. 7 (1967), 17-21.
  • [2] Anderson T.B., Jackson R.: Fluid mechanical description of fluid beds. Comparison of theory and experiment. Ind. Eng. Chem Fundam. 8 (1969), 137-144.
  • [3] Anderson K., Sundareson S., Jackson R.: Instabilities and the formation of bubbles in fluidized beds. J. Fluid Mech. 303 (1995), 327-366.
  • [4] Batchelor G.K.: A new theory of instability of fluidized bed. J. Fluid Mech. 193 (1988), 75-110.
  • [5] Brenner S. C, Scott L. T.: The Mathematical Theory of Finite Element Methods. Springer-Verlag, 1994.
  • [6] Drew D. A., Lahey R. T. Jr.: Analytical modeling muliphase flow, [in:] Particulare Two-Phase Flow, M.C. Roco (Ed.), Butterworth-Heinemann, 1993, pp. 510-566.
  • [7] Duru P., Nicolas M., Hinch J., Guzzelli E.: Constitutive laws in liquid-fluidized beds. J. Fluid Mech. 452 (2002), 371-404.
  • [8] El-Kaissy M. M., Homsy G. M.: Instability waves and the origin of bubbles in fluidized beds. Intl. J. Multiphasic Flow 2 (1976), 379-395.
  • [9] Fanucci J. B., Ness N., Yen R.-H.: Structure of shock waves is gas particulate bed model. Phys. Fluids 24 (1981), 1944-1954.
  • [10] Foscolo P. U., Gibilaro L.G.: Fluid dynamic stability of fluidized suspension, the particle bed model. Chem. Eng. Sci. 421 (1987), 1489-1500.
  • [11] Ganser G. H., Drew D.H.: Nonlinear stability analysis of uniform fluidized bed. Intl. J. Multiphase Flow 16 (1990), 447-460.
  • [12] Garg S., Pritchett J.W.: Dynamics of gas-fluidized beds. J. Appl. Phys. 46 (1975), 4499-4520.
  • [13] Gidaspow D.: Multiphase Flow and Fluidization Continuum and Kinetic Theory Description. Academic Press, 1994.
  • [14] Glasser B.I., Kevrekidis, Sundaresan S.: One-and two-dimensional travelling wave solutions in gas-fluidized beds. J. Fluid Mech. 306 (1996), 183-221.
  • [15] Glasser B. I., Kevrekidis & Sundaresan S.: Fully developed travelling wave solution and bubble formation in fluidized beds. J. Fluid Mech. 334 (1997), 157-188.
  • [16] Góz M. F.: Existence and uniqueness of time-dependent spatially periodic solution of fluidized bed equations. ZAMM 71 N° T750-T751 (1991).
  • [17] Góz M.F.: On the origin of the wave patterns in fluidized beds. J. Fluid Mech. 240 (1992), 379-404.
  • [18] Góz M.F.: Bifurcation of plane voidage waves in fluidized beds. Physica D 65 (1993), 319-351.
  • [19] Góz M. F.: Tranverse instability of plane wave trains in gas-fluidized beds. J. Fluid Mech. 303 (1995), 55-81.
  • [20] Hu H., Crochet H. J., Joseph D.D.: Direct simulation of fluid particle motion. Univ. ol Minnesota, Supercomputer Inst. Res. Rep. UMSI 91/190 (1991).
  • [21] Jackson R.: The mechanics of fluidized beds. Part I: The stability of the state of uniform fluidization. Trans. Inst. Chem. Engrs. 4 (1963).
  • [22] Jackson R.: The mechanics of fluidized beds. Part II: The motion of fully developed bubbles. Trans. Inst. Chem. Engrs. 41 (1963), 22-28.
  • [23] Jackson R.: The Dynamics of Fluidized Particles. Cambridge University Press 2000.
  • [24] Joseph D.D., Lundgren T.S.: Finite size effect in fluidized suspension experiments in "Particulate Two Phase Flow", [in:] Roco M.C., Butterworth-Heinemann 1993, 300-323.
  • [25] Joseph D.D., Lundgren T.S.: Ensemble average mixture theory equation for incompressible fluid particle suspensions. 1.3. Multiphase Flow v. 16 n°l (1999), 35-42.
  • [26] Koch D., Sangani A. S.: Particle pressure and marginal stability limits for a homogeneous monodisperse gas-fluidized bed: kinetic theory and numerical simulation. 3. Fluid Mech. 400 (1999), 229-263.
  • [27] Kolev M.I.: Multiphase Flow Dynamic 1. Fundamentals (2002).
  • [28] Kolev M.I.: Multiphase Flow Dynamic 2. Termal and Mechanical Interactions (+CD) Springer V. 2002.
  • [29] Lammers J.H., Bieheuvel A.: Concentration waves and the instability of bubbly flows. 3. Fluid Mech. 328 (1996), 67-93.
  • [30] Liu J. T. C: Note on a wave-hierarchy interpretation of fluidized bed instabilities. Proc. R. Soc. Lond. A. 380 (1982), 229-239.
  • [31] Murray J.D.: On the mathematics of fluidization. 3. Fluid Mech. 21 (1965), 465-493.
  • [32] Needham D.J., Pritchett J.W.: Dynamics of gas-fluidized beds. 3. Appl. Phys. 46 (1975), 4493-4500.
  • [33] Needham D. J., Merkin J. H.: The existence and stability of quasi steady periodic voidage waves in fluidized. Z. Angew. Mathem. Phys. 18 (1986), 119-132 ZAMP.
  • [34] Nigmatulin R. J.: Spatial averaging mechanics of heterogeneous dispersed systems. Intl. J. Multiphas. Flow 5 (1979), 353-385.
  • [35] Saurel R., Lemetayer O.: A multiphase model for compressible flow with interfaces, shoes, detonation, waves and cavitation. 3. Fluid Mech. 431 (2001), 239-271.
  • [36] Schulz P.: The continuous model of suspension flow in a mine ventilation shaft. Kraków, IMG PAN 1979.
  • [37] Schulz P.: On a problem of the so-called "water-lock rupture" in a mine ventilation shaft. P. I. General remarks. P. II. Stability of suspension flow. Archiwum Górnictwa, t. 30, z. 2, 1985, pp. 225-234-241.
  • [38] Zhang D.Z., Prosperetti H.: Averaged equations for inviscid disperse two-phase flow. J. Fluid Mech. 267 (1994), 185-219.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH4-0005-0072
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.