PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Corona Theorem and isometries

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this note is to discuss a new operator theory approach to Corona Problem. An equivalent operator problem invariant under unitary equivalence is stated. The related condition involves certain joint spectra of commuting subnormal operators. A special case leading to isometries is studied. As a result one obtains a relatively short proof of Corona Theorem for a wide class of domains in the plane, where Marshall's Theorem on the approximation by inner functions holds.
Słowa kluczowe
Rocznik
Strony
123--131
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Applied Mathematics, al. Mickiewicza 30, 30-059 Cracow, Poland, grrudol@cyf-kr.edu.pl
Bibliografia
  • [1] Amar E.: A problem of ideals, [in:] Coupet B. (ed.) et al, Colloque d'analyse complexe et geometrie, Marseille, France, 13-17 Janvier 1992. Paris: Soc. Math, de France, Asterisque 217 (1993), 9-12.
  • [2] Amar E., Menini C: A counterexample to the Corona for operators on H(2Dn). Pacific J. Math 206 (2002), 257-268.
  • [3] Andersson M.: The H2-corona problem and [symbol], in weakly pseudoconvex domains. Trans. Amer. Math. Soc. 342 (1994), 241-255.
  • [4] Bernard A., Garnett J. B., Marshall D.E.: Algebras generated by inner functions. J. Functional Anal. 25 (1977), 275-287.
  • [5] Carleson L.: Interpolation by bounded analytic functions and the corona problem. Ann. Math 76 (1962), 547-559.
  • [6] Gamelin T.W.: Localization of the corona theorem. Pacific J. Math. 34 (1970), 73-81.
  • [7] Garnett J. B., Jones P. W.: The corona theorem for Denjoy domains. Acta Math. 155 (1985), 27-40.
  • [8] Harte R.E.: Invertibility and Singularity for Bounded Linear Operators. Pure and Appl. Math., vol. 109, N.Y., Marcel Dekker 1988.
  • [9] Kon S.H.: Inner functions and the maximal ideal space of H°°(Un). Proc. Amer. Math. Soc. 72 (1978), 294-296.
  • [10] Kai-Ching Lin: On the Hp solutions to the corona equation. Bull Sci. Math. 118 (1994), 271-286.
  • [11] Marshall D. E.: Blashke products generate H°°. Bull. Amer. Math. Soc. 82 (1976), 494-496.
  • [12] Putinar M.: On joint spectra of pairs of analytic Toeplitz operators. Stud. Math. 115 (1995), 129-134.
  • [13] Rudol K.: Spectral mapping theorems for analytic functional calculae. Invariant Subspaces and Other Results of Op. Th. Operator Theory: Adv. Appl 17 (R. G. Douglas et al.) 17 (1986), 331-340.
  • [14] Rudol K.: Spectra of subnormal Hardy - type operators. Ann. Polon. Math., 1997, 213-222.
  • [15] Rudol K.: Spectra of pairs of isometries. (to appear).
  • [16] Scheinberg S.: Cluster sets and corona theorems. Banach Spaces of Analytic functions, [in:] Lect. Notes in Math., J. Baker et al., 604 (1977), 103-106.
  • [17] Taylor J.L.: A joint spectrum for several commuting operators. J. Functional Analysis 6 (1970), 172-191.
  • [18] Treil S. R.: Geometric methods in spectral theory of vector-valued functions: some recent results. Operator Theory: Advances and Applications 42 (1989), 209-280.
  • [19] Wolff R.: Spectra of analytic Toeplitz tuples on Hardy spaces. Bull. London Math. Soc. 29 (1997), 65-72.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH4-0005-0071
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.