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EXISTENCE OF SOLUTIONS OF THE DIRICHLET
PROBLEM FOR AN INFINITE SYSTEM OF NONLINEAR
DIFFERENTIAL-FUNCTIONAL EQUATIONS
OF ELLIPTIC TYPE

Abstract. The Dirichlet problem for an infinite weakly coupled system of semilinear
differential-functional equations of elliptic type is considered. It is shown the existence of
solutions to this problem. The result is based on Chaplygin’s method of lower and upper
functions.
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1. INTRODUCTION

Let S be an infinite set. Let G C R™ be an open bounded domain with C?*+¢
boundary (a € (0,1)). Let B(S) be the Banach space of all bounded functions
w: S — R, w(i) =w’ (i € S) with the norm

lwllges) = fgg jw'].

In B(S) there is a partly order w < @ defined as w! < @' for every i € S. Elements
of B(S) will be denoted by (w');cs, too.
Let C(G) be the space of all continuous functions v: G — R with the norm

v ~y «— max |v(T)| .
e = max|o(z)]

In this space v < ¥ means that v(z) < 9(z) for every x € G. By C'*%(G), where

1=0,1,2,.. and a € (0, 1), we denote the space of all continuous functions in G whose
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derivatives of order less or equal [ exist and are Holder continuous with exponent « in
G (see [5], pp. 52-53). By H"?(G) we denote the Sobolev space of all functions whose
weak derivatives of order ! are included in LP(G) (see [1], pp. 44-46). A notation
g € C*(9G) (resp. g € H'P(OG)) means that there exists a function g € C'T(Q)
(resp. g € HP(G) N C(Q)) such that g(x) = g(z) for every x € dG. In these spaces
norms are defined as

9lttaoe) = nf{[8lciiaq) - g € CF(G) : Vo € 0G : g(x) = g(x)}

and
|g\H2,p(aG) = inf{|g|H2,p(G) cg € H*?(G)NC(G) : Vx € 9G : g(x) = g(x)}.

We denote z = (2%);es € Cs(GQ) if 2: G — B(S) and 2: G — R (i € §) is
a continuous function and sup;cg |zi|c(é) < 00. The space Cs(G) is a Banach space
with the norm

z - i=sup|zt| , -
Izl = sup || o)
and the partly order z < Z defined as z'(x) < Z!(z) for every z € G, i € S. The space

CL (@) is a space of all functions (2%);es such that z' € C'**(G) for every i € S
and sup;cg |Zi|CZ+0‘(G‘) < 00. In this space the norm is defined as

e % _
”ZHC?'“(G) - jgg |Z |Cl+a(G) .

We will write that z = (2%);es € L&(Q) if 2* € LP(G) for every i € S and
SUP;cg }Zi|LP(G) < 00. A notation z = (2%);es € Hg"(G) means that 2* € H-P(G) for

every i € S and sup;cg ’zi‘Hl,p(G) < 00. In these spaces the norms are defined as

I#llzg ) = sup [2'] 1
and
12l ey = ey ’Zi’Hl,p(G) :
We consider the Dirichlet problem for an infinite weakly coupled system of
semilinear differential-functional equations of the following form
—L'u')(z) = fi(x, u(x),u), forxeG,ieS (1)
and

u'(x) = hi(x), forx € 0G, i € S, (2)

where
Lu')(x) =Y alp(@)ul,, (@) + Y bzl (2),
j k= j=1

J,k=1
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which are strongly uniformly elliptic in G,
i G x B(S) x Cs(G) 3 (z,y,2) — fi(z,y,2) €ER

for every ¢ € S. The notation f(x,u(x),u) means that the dependence of f on the
second variable is a function-type dependence and f(z,u(x),-) is a functional-type
dependence.

A function u is said to be regular in G if u € Cs(G) N C%(G). A function u is
said to be a classical (regular) solution of the problem (1), (2) in G if u is regular
in G and fulfills the system of equations (1) in G' with the condition (2). A function
u is said to be a weak solution of the problem (1), (2) in G if u € L%(G) such that
Li[u'] € L?(G) and

- / Cilul)(@)€(x) do = / £, u(z), u)E() de
G G

for every ¢ € S and for any test function £ € C§°(G).
We would like to find assumptions which guarantee existence of the classical
solutions of the problem (1), (2)

u: G — B(S).

Regular functions ug = uo(z) and vy = vo(x) in G satisfying the infinite systems
of inequalities:

{mug}(x) < fi(z,uo(z),uo) forz € G,i€ S, @)

uf(x) < hi(x) forx € 0G,i € S,

{Ei[vé](x) > fi(x,vo(x),v0) forz € G,ie S, @)

vi(x) > hi(x) forx € 0G,i€ S

are called a lower and an upper function for the problem (1), (2), respectively.
If ug < vg, we define

K= {(x,y,z): S Gay € [m07MO]7z € <U071]0>},
where mg := (m})ies, Trﬁé = ming g uf(z), My := (Mg)ées, M{ = max, g vh(x)
and (ug,vo) 1= {¢ € Cs(G): ug(x) < {(x) <wo(x) for z € G}.
Assumptions. We make the following assumptions.

(a) £ is a strongly uniformly elliptic operator in G, i.e., there exists a constant
> 0 such that

Y ah @G =nYy &, €S,
j,k=1 j=1

for all £ = (&1,...,&m) ER™, z € G.
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(b) The functions aé-k, b;- fori € S, j,k =1,...,m are functions of class C°*(Q)
and a} (x) = aj;(x) for every x € G.

(c) h' € C*T*(9G) for every i € S and sup,;cg |hi|c2+a(a(;) < 0.

(d) There exists at least one ordered pair wug, vg of a lower and an upper function
for the problem (1), (2) in G such that

uo(z) < vo(x) for z € G.
(e) f(y,2) € CgT(G) for y € B(S), z € Cs(G).
(f) For every i € S, z € G, y,7 € B(S), z € Cs(Q)
|fi(m,y,z) - fl(a:,gj,z)} < Lf ||y - QHB(S) ’
where L; > 0 is a constant independent of ¢ and
|fl(x’y1’ A 7y74717y17y1+17 R 7Z) - fl(x7y17 A 7y1717gl7yl+17 A 7Z)| S
< k! ’yl - g’L‘ )

where k* > 0 is a constant and there exists k < oo such that k% < k for every

i€S.
(g) f(z,-,-) is a continuous function for every = € G.

(h) fi(x,-,2) is a quasi-increasing function for every i € S, z € G, z € Cg(G) i.e.,
for every i € S for arbitrary y,§ € B(S) if y/ < ¢/ for all j € S such that j # i
and y' = ¢, then fi(x,y,2) < fi(x,9,2) for z € G, z € C5(G).

(i) fi(z,y,-) is an increasing function for every i € S, x € G, y € B(S).

2. AUXILIARY RESULTS

From the assumption (f) we have k := (k%);es € B(S). Let 8 = (8')ics € Co(G).
We define the operator

P: CoT(G) 3 B v € CET(@G),
where v = (7%);cs is the solution (supposedly unique) of the following problem

(£ KDY = [ f@). 6) + KF (@) TorzeGics, o
yz(x) — hz(x) forxz € 0G, i €.

We remark that the problem (5) is a system of separate problems with only one
equation, so P[0] is a collection of solutions of these problems.
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Lemma 1. The operator P: C3T*(G) — C3 (G ) is a continuous and bounded
operator. If the operator P maps Cg+°‘ (G) into C’O+ (G), then it is a compact operator.

Proof. Let 8 € Cg+a(é), SO
|6(x) = ()| < Hp [|27 — 27|50 .

where Hp > 0 is some constant independent of i and [[]|gm = (372, 2%)"/2.

We define the operator
F = (F)ies: C5™(G) 2 = 0 € Cg™(G)
such that for every i € §
F'[f)(x) = 0'(x) := f'(x, B(x), B) + k' (x).
For arbitrary i € S we have:
|6°(x) = 6"(%)| = | (=, B(x), B) +k’ﬂi( ) = (& 8(%),8) = k'8'(%)] <

< |f(x, B(x), B) = F1(Z, B(x), )| + | [1(&, B(=), B) — F'(Z, B(2), B)| +
+E |5 (= )—61( )| < (Hy + LyHg + kHpg) |2 — Z[[gm ,

where Hy + LyHg + kHpg is some constant independent of 4.

By the properties of f, we see that the operator F is a continuous and bounded
operator.

Now, we have our problem for arbitrary ¢ € S in the following form

{;(U — K'I)[y'](x) = 6'(z) forx € G, (©)

‘(z) = hi(z) for z € 0G,

which satisfies the assumptions of the Schauder theorem ([7], p. 115), so the problem
(6) for every i € S has a unique solution 7* € C2+%(G) and the following estimate

[ lezsai@ < € (Flonsa + Wlenin o) 7

holds, where C' > 0 is independent of §, h and 3.
Let us introduce the operator

G = (G)jes: CoT(G) 36 — v € CH(G).

The function _ o o o
7' = G'[¢"] = G[h'] + G5[6'],
where A ‘ o
Gi: 0?T(G) 3 h' — Gi[h'] € O?T*(G)
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and Gi[h'] is the unique solution of the problem (6) with 6°(z) =0 in G, and
Gh: CY(G) 3 6" — GL[6'] € C*T(Q)

and G4[6%] is the unique solution of the problem (6) with hi(x) = 0 on OG. The
operator G’ is a continuous operator because the operator Gi is independent of ¢,
and GY is a continuous operator (from (7)) with respect to 6°. By (7), we have

|7i|cz+a((;) =|G'o Fi[ﬁi”c%a(é) <C (|5¢|02+a(é) + |hi|c2+a(ac)) J

where C' > 0 is independent of §, h and 7. Thus the operator G o F is a continuous
and bounded operator.

Since 0G € C?*®, the imbedding operator
I C27(G) — CL™(G)
is a compact operator ([1], p. 11). So P =10 G oF is a compact operator. O
Next, let us consider the operator P as a operator mapping L%(G).
Lemma 2. The operator P is a compact operator mapping L' (G) into L(G).

Proof. We define § and the operator F such in the proof of Lemma 1 but on an
element of L%(G).

The operator F: L% (G) — L% (G) and F is a continuous and bounded operator
by arguing as [6] (Th. 2.1, Th. 2.2 and Th. 2.3, pp. 31-37) and [9] (Th. 19.1, p. 204).

Now, we have our problem for arbitrary ¢ € S in the following form

{—(U — KT)[yi](x) = 6'(x) forz €@, -

vi(x) = hi(x) for z € 0G,
which satisfies the assumptions of Agmon—Douglis—Nirenberg theorem for arbitrary

i € S, so the problem (8) has a unique weak solution v € H*P(G) and the following
estimate

|7l|H2,p(G) <C <|6Z|LP(G) + ‘hl|H2aP(6G)) )
holds, where C' > 0 is independent of §, h and i.
Let us introduce the operator
G = (G)ies: L4(G) 30— v € HZ(G).
The function ‘ o o o
¥ = 5] = Gi[W] + G361,

where ‘ ‘ o
Gi: H?P(G) 3 h' — Gi[hi] € H*P(G)
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and Gi[h'] is the unique weak solution of the problem (8) with §°(z) = 0 in G, and
GL: LP(G) 3 8" — GL[0'] € H*?(Q)

and G4[6%] is the unique solution of the problem (8) with hi(z) = 0 on OG. The
operator G’ is a continuous operator because the operator G¢ is independent of ¢,
and GY is a continuous operator (from (9)) with respect to 6°. Also we know that

= |G o F [ o

"Vi’Hzm(G) o = C (|‘51

’LP(G) + ‘hi’szp(aGQ '

where C > 0 is independent of 0, A and . Thus the operator G o F is a continuous
and bounded operator. Since G € C?*%, the imbedding operator

I: H3P(G) — L5(G)
is a compact operator ([1], p. 97), and P =Io GoF is also a compact operator. [
Now, we prove next some properties of the operator P.
Lemma 3. The operator P is an increasing operator.

Proof. Let B(x) < B(z) in G, so for all i € S, fi(z) < F(z) in G. Let v := P[G] and
4 := P[f]. For arbitrary i € S

for z € G,
(5 — ) (z) = 0, for z € G.
By assumption (h), (i) and (f),
— (L= KD = +(@) 2
> [1 (08" @), B @) B @) B @) B) — i B@), 8)| +
+ k' (@)~ B'(x)) > 0.
So for every i € S

—(L = KD)F =~ (z) >0 forx € G,
Fi(z) —yi(z) =0 for z € 0G.

By the maximum principle ([8], p. 64)
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Lemma 4. If 3 is an upper (resp. a lower) function for the problem (1), (2) in G,
then P[B] < B (resp. P|B] > () in G and P|B] is an upper (resp. a lower) function
for problem (1), (2) in G.

Proof. Let v = P[3]. By (5) we have for every i € S

— (L' =KD = () = (£ = KD)}](2) + (£ = k'T)[6)(x) =
= f'(x, B(x), B) + k'3 (2) + L'[3"])(x) — k' 5" (x) = (2, B(x), B) + L[] (x)
and from (4)
fi(z, Bx), B) + L'[F](x) <0
and
(7' = ) (z) = h'(z) = f(x) <0

So for every i € S

—(LP = K'T)[y* - B)(x) <0 forz € G,
(v = B9 (z) <0 for x € 0G.

Now, by using the maximum principle ([8], th. 6, p. 64) separately for every i € S
v (z) — B (z) <0 in G.
So B
Y(z) < B(z) in G.

From Lemma 1 it follows that v € C3"*(G) and from (5) and the assumption
(f), we get for every i € S

— L'y (@) = fila,v(2),7) = (L' = KD [y](2) = (2, 7(x),7) = Ky (2) =
= [z, B(x), B) + k' B (x) — f'(x,7(x),7) — k'y'(z) >

> (1@ (@), T @), B (), Y T (@), y) = [ (@),7)

+ KB (x) — ' (x))

so it is a upper the function for problem (1), (2) in G. O

)+
>0in G,

3. MAIN RESULT

Theorem. If the assumptions (a)—(i) hold, then the problem (1), (2) has at least one
classical solution w such that u € (ug, vo).

Proof. By induction, we define two sequences of functions {u,}52, and {v,}2, by
setting:

uy = Plug], Up = Plp_1],
vy = Pluo], Up = Plvp_1].
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Because ug and vq are regular functions , these sequences are well defined by Lemma 1.
The sequence {u, }2°, is increasing and {v,}52, is decreasing by Lemma 4:

and by induction:

P[un—l](x) Zun—l(x) in G? n= 1727"'
Plon—1](z) < vp_1(x) inG, n=1,2,...

vp ()

Since the operator P is increasing and by the assumption (d) we have

up(z) = Plug](z) < Plvo)(x) = v1(z) in G

and consequently by induction

Therefore

The sequences {uy,}52, and {v,}32, are monotone and bounded, so they have

pointwise limits and we can define:
u(z) := lm wu,(x), o(x) := lim v, (x)
n—oo n— 00

for every x € G.

The functions {u,}52, and {v,}52, are functions of class L% (G). Let be p €
(m, 00) (we need this assumption to can use a imbedding theorem). Because {u,, }22,
and {v, }>2; are bounded functions in L% (G) and P is an increasing compact operator
in L%(G) (from Lemma 2), {Pu,} and {Pv,} are converging sequences in L% (G)
and

u(z) = lim Pluy|(z) = lim P[P[unfl]](x) = Plul(x),

n—oo n— o0

t(z) = lim Plv,](z) = lim ”P[P[vn,l]](x) = P[o](z).

n—oo n—oo

Since u, v € L% (G) and:

by the Agmon—Douglis—Nirenberg theorem we have

u, € Hy"(QG).
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Because the Sobolev space H*P(G) for p > m is continuously imbedding in C°+%(Q)
and

|ul|CO+°(G) <C |“Z|H2m(c) )
where C' is independed of ¢ ([1], p. 97-98), we get

u,v € O5T(@). (11)
Applaying the Schauder theorem to (10) separately for every s € S for (11) we get
u,v € O2T(@).
From the proof we know that

uo(x) < u(z) < o(x) < wvx). O

Corollary. The solutions u, v are minimal and mazimal solution of the problem (1),
(2) m <’LL(),'U0>.

Proof. If w is a solution of the problem (1), (2) then w(z) = Plw](z) and ug(z) <
w(z) < wvo(x). Because P is an increasing operator, we have

u1(2) = Pluo)(z) < Plwl(r) = w(z) = Plw|(z) < Pluo)(r) = vi(z)

and by induction we get

Thus
u(z) = lim u,(z) <w(x) < lim v,(z) = 9(z). O
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