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1. INTRODUCTION

Let S be an infinite set. Let G ⊂ R
m be an open bounded domain with C2+α

boundary (α ∈ (0, 1)). Let B(S) be the Banach space of all bounded functions
w : S → R, w(i) = wi (i ∈ S) with the norm

‖w‖B(S) := sup
i∈S

∣∣wi
∣∣ .

In B(S) there is a partly order w ≤ w̃ defined as wi ≤ w̃i for every i ∈ S. Elements
of B(S) will be denoted by (wi)i∈S , too.
Let C(Ḡ) be the space of all continuous functions v : Ḡ → R with the norm

|v|C(Ḡ) := max
x∈Ḡ

|v(x)| .

In this space v ≤ ṽ means that v(x) ≤ ṽ(x) for every x ∈ Ḡ. By Cl+α(Ḡ), where
l = 0, 1, 2, .. and α ∈ (0, 1), we denote the space of all continuous functions in Ḡ whose
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derivatives of order less or equal l exist and are Hölder continuous with exponent α in
G (see [5], pp. 52–53). By H l,p(G) we denote the Sobolev space of all functions whose
weak derivatives of order l are included in Lp(G) (see [1], pp. 44–46). A notation
g ∈ Cl+α(∂G) (resp. g ∈ H l,p(∂G)) means that there exists a function g ∈ Cl+α(Ḡ)
(resp. g ∈ H l,p(G) ∩ C(Ḡ)) such that g(x) = g(x) for every x ∈ ∂G. In these spaces
norms are defined as

|g|Cl+α(∂G) := inf{|g|Cl+α(Ḡ) : g ∈ Cl+α(Ḡ) : ∀x ∈ ∂G : g(x) = g(x)}

and

|g|H2,p(∂G) := inf{|g|H2,p(G) : g ∈ H2,p(G) ∩ C(Ḡ) : ∀x ∈ ∂G : g(x) = g(x)}.

We denote z = (zi)i∈S ∈ CS(Ḡ) if z : Ḡ → B(S) and zi : Ḡ → R (i ∈ S) is
a continuous function and supi∈S

∣∣zi
∣∣
C(Ḡ)

< ∞. The space CS(Ḡ) is a Banach space
with the norm

‖z‖CS(Ḡ) := sup
i∈S

∣∣zi
∣∣
C(Ḡ)

and the partly order z ≤ z̃ defined as zi(x) ≤ z̃i(x) for every x ∈ Ḡ, i ∈ S. The space
Cl+α

S (Ḡ) is a space of all functions (zi)i∈S such that zi ∈ Cl+α(Ḡ) for every i ∈ S

and supi∈S

∣∣zi
∣∣
Cl+α(Ḡ)

< ∞. In this space the norm is defined as

‖z‖Cl+α
S (Ḡ) = sup

i∈S

∣∣zi
∣∣
Cl+α(Ḡ)

.

We will write that z = (zi)i∈S ∈ Lp
S(G) if zi ∈ Lp(G) for every i ∈ S and

supi∈S

∣∣zi
∣∣
Lp(G)

< ∞. A notation z = (zi)i∈S ∈ H l,p
S (G) means that zi ∈ H l,p(G) for

every i ∈ S and supi∈S

∣∣zi
∣∣
Hl,p(G)

< ∞. In these spaces the norms are defined as

‖z‖Lp
S(G) = sup

i∈S

∣∣zi
∣∣
Lp(G)

and
‖z‖Hl,p

S (G) = sup
i∈S

∣∣zi
∣∣
Hl,p(G)

.

We consider the Dirichlet problem for an infinite weakly coupled system of
semilinear differential-functional equations of the following form

−Li[ui](x) = f i(x, u(x), u), for x ∈ G, i ∈ S (1)

and

ui(x) = hi(x), for x ∈ ∂G, i ∈ S, (2)

where

Li[ui](x) :=
m∑

j,k=1

ai
jk(x)ui

xjxk
(x) +

m∑
j=1

bi
j(x)ui

xj
(x),

334 Tomasz S. Zabawa



which are strongly uniformly elliptic in Ḡ,

f i : Ḡ× B(S) × CS(Ḡ) � (x, y, z) �→ f i(x, y, z) ∈ R

for every i ∈ S. The notation f(x, u(x), u) means that the dependence of f on the
second variable is a function-type dependence and f(x, u(x), ·) is a functional-type
dependence.
A function u is said to be regular in Ḡ if u ∈ CS(Ḡ) ∩ C2

S(G). A function u is
said to be a classical (regular) solution of the problem (1), (2) in Ḡ if u is regular
in Ḡ and fulfills the system of equations (1) in G with the condition (2). A function
u is said to be a weak solution of the problem (1), (2) in Ḡ if u ∈ L2

S(G) such that
Li[ui] ∈ L2(G) and

−
∫
G

Li[ui](x)ξ(x) dx =
∫
G

f i(x, u(x), u)ξ(x) dx

for every i ∈ S and for any test function ξ ∈ C∞
0 (Ḡ).

We would like to find assumptions which guarantee existence of the classical
solutions of the problem (1), (2)

u : Ḡ → B(S).

Regular functions u0 = u0(x) and v0 = v0(x) in Ḡ satisfying the infinite systems
of inequalities: {

−Li[ui
0](x) ≤ f i(x, u0(x), u0) for x ∈ G, i ∈ S,

ui
0(x) ≤ hi(x) for x ∈ ∂G, i ∈ S,

(3)

{
−Li[vi

0](x) ≥ f i(x, v0(x), v0) for x ∈ G, i ∈ S,

vi
0(x) ≥ hi(x) for x ∈ ∂G, i ∈ S

(4)

are called a lower and an upper function for the problem (1), (2), respectively.
If u0 ≤ v0, we define

K := {(x, y, z) : x ∈ Ḡ, y ∈ [m0,M0], z ∈ 〈u0, v0〉},
where m0 := (mi

0)i∈S , mi
0 := minx∈Ḡ ui

0(x), M0 := (M i
0)i∈S , M i

0 := maxx∈Ḡ vi
0(x)

and 〈u0, v0〉 := {ζ ∈ CS(Ḡ) : u0(x) ≤ ζ(x) ≤ v0(x) for x ∈ Ḡ}.

Assumptions. We make the following assumptions.

(a) L is a strongly uniformly elliptic operator in Ḡ, i.e., there exists a constant
µ > 0 such that

m∑
j,k=1

ai
jk(x)ξjξk ≥ µ

m∑
j=1

ξ2
j , i ∈ S,

for all ξ = (ξ1, . . . , ξm) ∈ R
m, x ∈ G.
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(b) The functions ai
jk, b

i
j for i ∈ S, j, k = 1, . . . ,m are functions of class C0+α(Ḡ)

and ai
jk(x) = ai

kj(x) for every x ∈ Ḡ.

(c) hi ∈ C2+α(∂G) for every i ∈ S and supi∈S

∣∣hi
∣∣
C2+α(∂G)

< ∞.
(d) There exists at least one ordered pair u0, v0 of a lower and an upper function
for the problem (1), (2) in Ḡ such that

u0(x) ≤ v0(x) for x ∈ Ḡ.

(e) f(·, y, z) ∈ C0+α
S (Ḡ) for y ∈ B(S), z ∈ CS(Ḡ).

(f) For every i ∈ S, x ∈ Ḡ, y, ỹ ∈ B(S), z ∈ CS(Ḡ)∣∣f i(x, y, z) − f i(x, ỹ, z)
∣∣ ≤ Lf ‖y − ỹ‖B(S) ,

where Lf > 0 is a constant independent of i and

∣∣f i(x, y1, . . . , yi−1, yi, yi+1, . . . , z) − f i(x, y1, . . . , yi−1, ỹi, yi+1, . . . , z)
∣∣ ≤

≤ ki
∣∣yi − ỹi

∣∣ ,
where ki > 0 is a constant and there exists k < ∞ such that ki ≤ k for every
i ∈ S.

(g) f(x, ·, ·) is a continuous function for every x ∈ Ḡ.

(h) f i(x, ·, z) is a quasi-increasing function for every i ∈ S, x ∈ Ḡ, z ∈ CS(Ḡ) i.e.,
for every i ∈ S for arbitrary y, ỹ ∈ B(S) if yj ≤ ỹj for all j ∈ S such that j �= i

and yi = ỹi, then f i(x, y, z) ≤ f i(x, ỹ, z) for x ∈ Ḡ, z ∈ CS(Ḡ).

(i) f i(x, y, ·) is an increasing function for every i ∈ S, x ∈ Ḡ, y ∈ B(S).

2. AUXILIARY RESULTS

From the assumption (f) we have k := (ki)i∈S ∈ B(S). Let β = (βi)i∈S ∈ C0+α
S (Ḡ).

We define the operator

P : C0+α
S (Ḡ) � β �→ γ ∈ C2+α

S (Ḡ),

where γ = (γi)i∈S is the solution (supposedly unique) of the following problem{
−(Li − kiI)[γi](x) = f i(x, β(x), β) + kiβi(x) for x ∈ G, i ∈ S,

γi(x) = hi(x) for x ∈ ∂G, i ∈ .
(5)

We remark that the problem (5) is a system of separate problems with only one
equation, so P[β] is a collection of solutions of these problems.
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Lemma 1. The operator P : C0+α
S (Ḡ) → C2+α

S (Ḡ) is a continuous and bounded
operator. If the operator P maps C0+α

S (Ḡ) into C0+α
S (Ḡ), then it is a compact operator.

Proof. Let β ∈ C0+α
S (Ḡ), so∣∣βi(x) − βi(x̃)

∣∣ ≤ Hβ

∥∥xj − x̃j
∥∥α

Rm ,

where Hβ > 0 is some constant independent of i and ‖x‖
Rm = (

∑m
j=1 x

2
j )

1/2.

We define the operator

F = (Fi)i∈S : C0+α
S (Ḡ) � β �→ δ ∈ C0+α

S (Ḡ)

such that for every i ∈ S

Fi[β](x) = δi(x) := f i(x, β(x), β) + kiβi(x).

For arbitrary i ∈ S we have:

∣∣δi(x) − δi(x̃)
∣∣ =

∣∣f i(x, β(x), β) + kiβi(x) − f i(x̃, β(x̃), β) − kiβi(x̃)
∣∣ ≤

≤ ∣∣f i(x, β(x), β) − f i(x̃, β(x), β)
∣∣ +

∣∣f i(x̃, β(x), β) − f i(x̃, β(x̃), β)
∣∣ +

+ ki
∣∣βi(x) − βi(x̃)

∣∣ ≤ (Hf + LfHβ + kHβ) ‖x− x̃‖α
Rm ,

where Hf + LfHβ + kHβ is some constant independent of i.

By the properties of f , we see that the operator F is a continuous and bounded
operator.
Now, we have our problem for arbitrary i ∈ S in the following form{

−(Li − kiI)[γi](x) = δi(x) for x ∈ G,

γi(x) = hi(x) for x ∈ ∂G,
(6)

which satisfies the assumptions of the Schauder theorem ([7], p. 115), so the problem
(6) for every i ∈ S has a unique solution γi ∈ C2+α(Ḡ) and the following estimate

∣∣γi
∣∣
C2+α(Ḡ)

≤ C
(∣∣δi

∣∣
C0+α(Ḡ)

+
∣∣hi

∣∣
C2+α(∂G)

)
(7)

holds, where C > 0 is independent of δ, h and i.
Let us introduce the operator

G = (Gi)i∈S : C0+α
S (Ḡ) � δ �→ γ ∈ C2+α

S (Ḡ).

The function
γi = Gi[δi] = Gi

1[h
i] + Gi

2[δ
i],

where
Gi

1 : C2+α(Ḡ) � hi �→ Gi
1[h

i] ∈ C2+α(Ḡ)
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and Gi
1[h

i] is the unique solution of the problem (6) with δi(x) = 0 in Ḡ, and

Gi
2 : C0+α(Ḡ) � δi �→ Gi

2[δ
i] ∈ C2+α(Ḡ)

and Gi
2[δ

i] is the unique solution of the problem (6) with hi(x) = 0 on ∂G. The
operator Gi is a continuous operator because the operator Gi

1 is independent of δ
i,

and Gi
2 is a continuous operator (from (7)) with respect to δi. By (7), we have

∣∣γi
∣∣
C2+α(Ḡ)

=
∣∣Gi ◦ Fi[βi]

∣∣
C2+α(Ḡ)

≤ C
(∣∣δi

∣∣
C2+α(Ḡ)

+
∣∣hi

∣∣
C2+α(∂G)

)
,

where C > 0 is independent of δ, h and i. Thus the operator G ◦ F is a continuous
and bounded operator.

Since ∂G ∈ C2+α, the imbedding operator

I : C2+α
S (Ḡ) → C0+α

S (Ḡ)

is a compact operator ([1], p. 11). So P = I ◦ G ◦ F is a compact operator.

Next, let us consider the operator P as a operator mapping Lp
S(G).

Lemma 2. The operator P is a compact operator mapping Lp
S(G) into Lp

S(G).

Proof. We define δ and the operator F such in the proof of Lemma 1 but on an
element of Lp

S(G).
The operator F : Lp

S(G) → Lp
S(G) and F is a continuous and bounded operator

by arguing as [6] (Th. 2.1, Th. 2.2 and Th. 2.3, pp. 31–37) and [9] (Th. 19.1, p. 204).
Now, we have our problem for arbitrary i ∈ S in the following form{

−(Li − kiI)[γi](x) = δi(x) for x ∈ G,

γi(x) = hi(x) for x ∈ ∂G,
(8)

which satisfies the assumptions of Agmon–Douglis–Nirenberg theorem for arbitrary
i ∈ S, so the problem (8) has a unique weak solution γi ∈ H2,p(G) and the following
estimate ∣∣γi

∣∣
H2,p(G)

≤ C
(∣∣δi

∣∣
Lp(G)

+
∣∣hi

∣∣
H2,p(∂G)

)
(9)

holds, where C > 0 is independent of δ, h and i.
Let us introduce the operator

G = (Gi)i∈S : Lp
S(G) � δ �→ γ ∈ H2,p

S (G).

The function
γi = Gi[δi] = Gi

1[h
i] + Gi

2[δ
i],

where
Gi

1 : H2,p(G) � hi �→ Gi
1[h

i] ∈ H2,p(G)
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and Gi
1[h

i] is the unique weak solution of the problem (8) with δi(x) = 0 in Ḡ, and

Gi
2 : Lp(G) � δi �→ Gi

2[δ
i] ∈ H2,p(G)

and Gi
2[δ

i] is the unique solution of the problem (8) with hi(x) = 0 on ∂G. The
operator Gi is a continuous operator because the operator Gi

1 is independent of δ
i,

and Gi
2 is a continuous operator (from (9)) with respect to δi. Also we know that

∣∣γi
∣∣
H2,p(G)

=
∣∣Gi ◦ Fi[βi]

∣∣
H2,p(G)

≤ C
(∣∣δi

∣∣
Lp(G)

+
∣∣hi

∣∣
H2,p(∂G)

)
,

where C > 0 is independent of δ, h and i. Thus the operator G ◦ F is a continuous
and bounded operator. Since ∂G ∈ C2+α, the imbedding operator

I : H2,p
S (G) → Lp

S(G)

is a compact operator ([1], p. 97), and P = I ◦G ◦F is also a compact operator.

Now, we prove next some properties of the operator P.
Lemma 3. The operator P is an increasing operator.
Proof. Let β(x) ≤ β̃(x) in Ḡ, so for all i ∈ S, βi(x) ≤ β̃i(x) in Ḡ. Let γ := P[β] and
γ̃ := P[β̃]. For arbitrary i ∈ S


−(Li − kiI)[γ̃i − γi](x) =

= f i
(
x, β̃(x), β̃

)
− f i(x, β(x), β) + ki

(
β̃i(x) − βi(x)

) for x ∈ G,

(γ̃i − γi)(x) = 0, for x ∈ ∂G.

By assumption (h), (i) and (f),

− (Li − kiI)[γ̃i − γi](x) ≥
≥

[
f i

(
x, β1(x), . . . , βi−1(x), β̃i(x), βi+1(x), . . . , β

)
− f i(x, β(x), β)

]
+

+ ki
(
β̃i(x) − βi(x)

)
≥ 0.

So for every i ∈ S {
−(Li − kiI)[γ̃i − γi](x) ≥ 0 for x ∈ G,

γ̃i(x) − γi(x) = 0 for x ∈ ∂G.

By the maximum principle ([8], p. 64)

γ̃i(x) − γi(x) ≥ 0 in Ḡ.

We have for all i ∈ S γi(x) ≤ γ̃i(x), so

γ(x) ≤ γ̃(x) in Ḡ.
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Lemma 4. If β is an upper (resp. a lower) function for the problem (1), (2) in Ḡ,
then P[β] ≤ β (resp. P[β] ≥ β) in Ḡ and P[β] is an upper (resp. a lower) function
for problem (1), (2) in Ḡ.

Proof. Let γ = P[β]. By (5) we have for every i ∈ S

− (Li − kiI)[γi − βi](x) = −(Li − kiI)[γi](x) + (Li − kiI)[βi](x) =

= f i(x, β(x), β) + kiβi(x) + Li[βi](x) − kiβi(x) = f i(x, β(x), β) + Li[βi](x)

and from (4)
f i(x, β(x), β) + Li[βi](x) ≤ 0

and
(γi − βi)(x) = hi(x) − βi(x) ≤ 0.

So for every i ∈ S {
−(Li − kiI)[γi − βi](x) ≤ 0 for x ∈ G,

(γi − βi)(x) ≤ 0 for x ∈ ∂G.

Now, by using the maximum principle ([8], th. 6, p. 64) separately for every i ∈ S

γi(x) − βi(x) ≤ 0 in Ḡ.

So
γ(x) ≤ β(x) in Ḡ.

From Lemma 1 it follows that γ ∈ C2+α
S (G) and from (5) and the assumption

(f), we get for every i ∈ S

− Li[γi](x) − f i(x, γ(x), γ) = −(Li − kiI)[γi](x) − f i(x, γ(x), γ) − kiγi(x) =

= f i(x, β(x), β) + kiβi(x) − f i(x, γ(x), γ) − kiγi(x) ≥
≥ (

f i(x, γ1(x), . . . , γi−1(x), βi(x), γi+1(x), . . . , γ) − f i(x, γ(x), γ)
)
+

+ ki(βi(x) − γi(x)) ≥ 0 in Ḡ,

so it is a upper the function for problem (1), (2) in Ḡ.

3. MAIN RESULT

Theorem. If the assumptions (a)–(i) hold, then the problem (1), (2) has at least one
classical solution u such that u ∈ 〈u0, v0〉.
Proof. By induction, we define two sequences of functions {un}∞n=0 and {vn}∞n=0 by
setting:

u1 = P[u0], un = P[un−1],

v1 = P[v0], vn = P[vn−1].
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Because u0 and v0 are regular functions , these sequences are well defined by Lemma 1.
The sequence {un}∞n=0 is increasing and {vn}∞n=0 is decreasing by Lemma 4:

u1(x) = P[u0](x) ≥ u0(x) in Ḡ,

v1(x) = P[v0](x) ≤ v0(x) in Ḡ,

and by induction:

un(x) = P[un−1](x) ≥ un−1(x) in Ḡ, n = 1, 2, . . .

vn(x) = P[vn−1](x) ≤ vn−1(x) in Ḡ, n = 1, 2, . . .

Since the operator P is increasing and by the assumption (d) we have

u1(x) = P[u0](x) ≤ P[v0](x) = v1(x) in Ḡ

and consequently by induction

un(x) ≤ vn(x) in Ḡ.

Therefore

u0(x) ≤ u1(x) ≤ · · · ≤ un(x) ≤ · · · ≤ vn(x) ≤ · · · ≤ v1(x) ≤ v0(x).

The sequences {un}∞n=0 and {vn}∞n=0 are monotone and bounded, so they have
pointwise limits and we can define:

u(x) := lim
n→∞un(x), v̄(x) := lim

n→∞ vn(x)

for every x ∈ Ḡ.
The functions {un}∞n=0 and {vn}∞n=0 are functions of class L

p
S(G). Let be p ∈

(m,∞) (we need this assumption to can use a imbedding theorem). Because {un}∞n=0

and {vn}∞n=0 are bounded functions in L
p
S(G) and P is an increasing compact operator

in Lp
S(G) (from Lemma 2), {Pun} and {Pvn} are converging sequences in Lp

S(G)
and

u(x) = lim
n→∞P[un](x) = lim

n→∞P[P[un−1]
]
(x) = P[u](x),

v̄(x) = lim
n→∞P[vn](x) = lim

n→∞P[P[vn−1]
]
(x) = P[v̄](x).

Since u, v̄ ∈ Lp
S(G) and:

u = P[u], v̄ = P[v̄] (10)

by the Agmon–Douglis–Nirenberg theorem we have

u, v̄ ∈ H2,p
S (G).
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Because the Sobolev space H2,p(Ḡ) for p > m is continuously imbedding in C0+α(Ḡ)
and ∣∣ui

∣∣
C0+α(Ḡ)

≤ C
∣∣ui

∣∣
H2,p(G)

,

where C is independed of i ([1], p. 97–98), we get

u, v̄ ∈ C0+α
S (Ḡ). (11)

Applaying the Schauder theorem to (10) separately for every s ∈ S for (11) we get

u, v̄ ∈ C2+α
S (Ḡ).

From the proof we know that

u0(x) ≤ u(x) ≤ v̄(x) ≤ v0(x).

Corollary. The solutions u, v̄ are minimal and maximal solution of the problem (1),
(2) in 〈u0, v0〉.
Proof. If w is a solution of the problem (1), (2) then w(x) = P[w](x) and u0(x) ≤
w(x) ≤ v0(x). Because P is an increasing operator, we have

u1(x) = P[u0](x) ≤ P[w](x) = w(x) = P[w](x) ≤ P[v0](x) = v1(x)

and by induction we get
un(x) ≤ w(x) ≤ vn(x).

Thus
u(x) = lim

n→∞un(x) ≤ w(x) ≤ lim
n→∞ vn(x) = v̄(x).
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