Tomasz S. Zabawa

EXISTENCE OF SOLUTIONS OF THE DIRICHLET PROBLEM FOR AN INFINITE SYSTEM OF NONLINEAR DIFFERENTIAL-FUNCTIONAL EQUATIONS OF ELLIPTIC TYPE

Abstract. The Dirichlet problem for an infinite weakly coupled system of semilinear differential-functional equations of elliptic type is considered. It is shown the existence of solutions to this problem. The result is based on Chaplygin's method of lower and upper functions.

Keywords: infinite systems, elliptic differential-functional equations, monotone iterative technique, Chaplygin's method, Dirichlet problem.

Mathematics Subject Classification: Primary 35J45, Secondary 35J65, 35R10, 47H07.

1. INTRODUCTION

Let S be an infinite set. Let $G \subset \mathbb{R}^m$ be an open bounded domain with $C^{2+\alpha}$ boundary $(\alpha \in (0,1))$. Let $\mathcal{B}(S)$ be the Banach space of all bounded functions $w: S \to \mathbb{R}, w(i) = w^i \ (i \in S)$ with the norm

$$\|w\|_{\mathcal{B}(S)} := \sup_{i \in S} \left| w^i \right|.$$

In $\mathcal{B}(S)$ there is a partly order $w \leq \tilde{w}$ defined as $w^i \leq \tilde{w}^i$ for every $i \in S$. Elements of $\mathcal{B}(S)$ will be denoted by $(w^i)_{i \in S}$, too.

Let $C(\bar{G})$ be the space of all continuous functions $v: \bar{G} \to \mathbb{R}$ with the norm

$$|v|_{C(\bar{G})} := \max_{x \in \bar{G}} |v(x)|$$

In this space $v \leq \tilde{v}$ means that $v(x) \leq \tilde{v}(x)$ for every $x \in \overline{G}$. By $C^{l+\alpha}(\overline{G})$, where l = 0, 1, 2, ... and $\alpha \in (0, 1)$, we denote the space of all continuous functions in \overline{G} whose

derivatives of order less or equal l exist and are Hölder continuous with exponent α in G (see [5], pp. 52–53). By $H^{l,p}(G)$ we denote the Sobolev space of all functions whose weak derivatives of order l are included in $L^p(G)$ (see [1], pp. 44–46). A notation $g \in C^{l+\alpha}(\partial G)$ (resp. $g \in H^{l,p}(\partial G)$) means that there exists a function $\mathbf{g} \in C^{l+\alpha}(\bar{G})$ (resp. $\mathbf{g} \in H^{l,p}(G) \cap C(\bar{G})$) such that $\mathbf{g}(x) = g(x)$ for every $x \in \partial G$. In these spaces norms are defined as

$$|g|_{C^{l+\alpha}(\partial G)} := \inf\{|\mathbf{g}|_{C^{l+\alpha}(\bar{G})} : \mathbf{g} \in C^{l+\alpha}(\bar{G}) : \forall x \in \partial G : \mathbf{g}(x) = g(x)\}$$

and

$$|g|_{H^{2,p}(\partial G)} := \inf\{|\mathbf{g}|_{H^{2,p}(G)} : \mathbf{g} \in H^{2,p}(G) \cap C(\bar{G}) : \forall x \in \partial G : \mathbf{g}(x) = g(x)\}.$$

We denote $z = (z^i)_{i \in S} \in C_S(\bar{G})$ if $z : \bar{G} \to \mathcal{B}(S)$ and $z^i : \bar{G} \to \mathbb{R}$ $(i \in S)$ is a continuous function and $\sup_{i \in S} |z^i|_{C(\bar{G})} < \infty$. The space $C_S(\bar{G})$ is a Banach space with the norm

$$||z||_{C_S(\bar{G})} := \sup_{i \in S} |z^i|_{C(\bar{G})}$$

and the partly order $z \leq \tilde{z}$ defined as $z^i(x) \leq \tilde{z}^i(x)$ for every $x \in \bar{G}$, $i \in S$. The space $C_S^{l+\alpha}(\bar{G})$ is a space of all functions $(z^i)_{i\in S}$ such that $z^i \in C^{l+\alpha}(\bar{G})$ for every $i \in S$ and $\sup_{i\in S} |z^i|_{C^{l+\alpha}(\bar{G})} < \infty$. In this space the norm is defined as

$$||z||_{C_{S}^{l+\alpha}(\bar{G})} = \sup_{i\in S} |z^{i}|_{C^{l+\alpha}(\bar{G})}$$

We will write that $z = (z^i)_{i \in S} \in L^p_S(G)$ if $z^i \in L^p(G)$ for every $i \in S$ and $\sup_{i \in S} |z^i|_{L^p(G)} < \infty$. A notation $z = (z^i)_{i \in S} \in H^{l,p}_S(G)$ means that $z^i \in H^{l,p}(G)$ for every $i \in S$ and $\sup_{i \in S} |z^i|_{H^{l,p}(G)} < \infty$. In these spaces the norms are defined as

$$||z||_{L^p_S(G)} = \sup_{i \in S} |z^i|_{L^p(G)}$$

and

$$||z||_{H^{l,p}_{S}(G)} = \sup_{i \in S} |z^{i}|_{H^{l,p}(G)}.$$

We consider the Dirichlet problem for an infinite weakly coupled system of semilinear differential-functional equations of the following form

$$-\mathcal{L}^{i}[u^{i}](x) = f^{i}(x, u(x), u), \quad \text{for } x \in G, \ i \in S$$

$$\tag{1}$$

and

$$u^{i}(x) = h^{i}(x), \quad \text{for } x \in \partial G, \ i \in S,$$
(2)

where

$$\mathcal{L}^{i}[u^{i}](x) := \sum_{j,k=1}^{m} a^{i}_{jk}(x) u^{i}_{x_{j}x_{k}}(x) + \sum_{j=1}^{m} b^{i}_{j}(x) u^{i}_{x_{j}}(x),$$

which are strongly uniformly elliptic in \overline{G} ,

$$f^i \colon \bar{G} \times \mathcal{B}(S) \times C_S(\bar{G}) \ni (x, y, z) \mapsto f^i(x, y, z) \in \mathbb{R}$$

for every $i \in S$. The notation f(x, u(x), u) means that the dependence of f on the second variable is a function-type dependence and $f(x, u(x), \cdot)$ is a functional-type dependence.

A function u is said to be *regular in* \overline{G} if $u \in C_S(\overline{G}) \cap C_S^2(G)$. A function u is said to be a *classical (regular) solution* of the problem (1), (2) in \overline{G} if u is regular in \overline{G} and fulfills the system of equations (1) in G with the condition (2). A function u is said to be a *weak solution* of the problem (1), (2) in \overline{G} if $u \in L_S^2(G)$ such that $\mathcal{L}^i[u^i] \in L^2(G)$ and

$$-\int_{G} \mathcal{L}^{i}[u^{i}](x)\xi(x) \, dx = \int_{G} f^{i}(x, u(x), u)\xi(x) \, dx$$

for every $i \in S$ and for any test function $\xi \in C_0^{\infty}(\overline{G})$.

We would like to find assumptions which guarantee existence of the classical solutions of the problem (1), (2)

$$u \colon \overline{G} \to \mathcal{B}(S).$$

Regular functions $u_0 = u_0(x)$ and $v_0 = v_0(x)$ in \overline{G} satisfying the infinite systems of inequalities:

$$\begin{cases} -\mathcal{L}^{i}[u_{0}^{i}](x) \leq f^{i}(x, u_{0}(x), u_{0}) & \text{for } x \in G, i \in S, \\ u_{0}^{i}(x) \leq h^{i}(x) & \text{for } x \in \partial G, i \in S, \end{cases}$$
(3)

$$\begin{cases} -\mathcal{L}^{i}[v_{0}^{i}](x) \geq f^{i}(x, v_{0}(x), v_{0}) & \text{for } x \in G, i \in S, \\ v_{0}^{i}(x) \geq h^{i}(x) & \text{for } x \in \partial G, i \in S \end{cases}$$

$$\tag{4}$$

are called a *lower* and an *upper function* for the problem (1), (2), respectively.

If $u_0 \leq v_0$, we define

$$\mathcal{K} := \{ (x, y, z) \colon x \in G, y \in [m_0, M_0], z \in \langle u_0, v_0 \rangle \},\$$

where $m_0 := (m_0^i)_{i \in S}, m_0^i := \min_{x \in \bar{G}} u_0^i(x), M_0 := (M_0^i)_{i \in S}, M_0^i := \max_{x \in \bar{G}} v_0^i(x)$ and $\langle u_0, v_0 \rangle := \{ \zeta \in C_S(\bar{G}) : u_0(x) \le \zeta(x) \le v_0(x) \text{ for } x \in \bar{G} \}.$

Assumptions. We make the following assumptions.

(a) \mathcal{L} is a strongly uniformly elliptic operator in \overline{G} , i.e., there exists a constant $\mu > 0$ such that

$$\sum_{j,k=1}^{m} a_{jk}^{i}(x)\xi_{j}\xi_{k} \ge \mu \sum_{j=1}^{m} \xi_{j}^{2}, \quad i \in S,$$

for all $\xi = (\xi_1, \dots, \xi_m) \in \mathbb{R}^m, x \in G$.

- (b) The functions a_{jk}^i , b_j^i for $i \in S$, j, k = 1, ..., m are functions of class $C^{0+\alpha}(\bar{G})$ and $a_{jk}^i(x) = a_{kj}^i(x)$ for every $x \in \bar{G}$.
- (c) $h^i \in C^{2+\alpha}(\partial G)$ for every $i \in S$ and $\sup_{i \in S} \left|h^i\right|_{C^{2+\alpha}(\partial G)} < \infty$.
- (d) There exists at least one ordered pair u_0 , v_0 of a lower and an upper function for the problem (1), (2) in \overline{G} such that

$$u_0(x) \le v_0(x)$$
 for $x \in \overline{G}$.

- (e) $f(\cdot, y, z) \in C_S^{0+\alpha}(\bar{G})$ for $y \in \mathcal{B}(S), z \in C_S(\bar{G})$.
- (f) For every $i \in S, x \in \overline{G}, y, \tilde{y} \in \mathcal{B}(S), z \in C_S(\overline{G})$

$$\left|f^{i}(x, y, z) - f^{i}(x, \tilde{y}, z)\right| \leq L_{f} \left\|y - \tilde{y}\right\|_{\mathcal{B}(S)}$$

where $L_f > 0$ is a constant independent of *i* and

$$\begin{aligned} \left| f^{i}(x, y^{1}, \dots, y^{i-1}, y^{i}, y^{i+1}, \dots, z) - f^{i}(x, y^{1}, \dots, y^{i-1}, \tilde{y}^{i}, y^{i+1}, \dots, z) \right| &\leq \\ &\leq k^{i} \left| y^{i} - \tilde{y}^{i} \right|, \end{aligned}$$

where $k^i > 0$ is a constant and there exists $\mathbf{k} < \infty$ such that $k^i \leq \mathbf{k}$ for every $i \in S$.

- (g) $f(x, \cdot, \cdot)$ is a continuous function for every $x \in \overline{G}$.
- (h) $f^i(x, \cdot, z)$ is a quasi-increasing function for every $i \in S$, $x \in \overline{G}$, $z \in C_S(\overline{G})$ i.e., for every $i \in S$ for arbitrary $y, \tilde{y} \in \mathcal{B}(S)$ if $y^j \leq \tilde{y}^j$ for all $j \in S$ such that $j \neq i$ and $y^i = \tilde{y}^i$, then $f^i(x, y, z) \leq f^i(x, \tilde{y}, z)$ for $x \in \overline{G}$, $z \in C_S(\overline{G})$.
- (i) $f^i(x, y, \cdot)$ is an increasing function for every $i \in S, x \in \overline{G}, y \in \mathcal{B}(S)$.

2. AUXILIARY RESULTS

From the assumption (f) we have $k := (k^i)_{i \in S} \in \mathcal{B}(S)$. Let $\beta = (\beta^i)_{i \in S} \in C_S^{0+\alpha}(\overline{G})$. We define the operator

$$\mathcal{P}\colon C^{0+\alpha}_S(\bar{G})\ni\beta\mapsto\gamma\in C^{2+\alpha}_S(\bar{G}),$$

where $\gamma = (\gamma^i)_{i \in S}$ is the solution (supposedly unique) of the following problem

$$\begin{cases} -(\mathcal{L}^{i} - k^{i}\mathcal{I})[\gamma^{i}](x) = f^{i}(x,\beta(x),\beta) + k^{i}\beta^{i}(x) & \text{for } x \in G, \ i \in S, \\ \gamma^{i}(x) = h^{i}(x) & \text{for } x \in \partial G, \ i \in . \end{cases}$$
(5)

We remark that the problem (5) is a system of separate problems with only one equation, so $\mathcal{P}[\beta]$ is a collection of solutions of these problems.

Lemma 1. The operator $\mathcal{P}: C_S^{0+\alpha}(\bar{G}) \to C_S^{2+\alpha}(\bar{G})$ is a continuous and bounded operator. If the operator \mathcal{P} maps $C_S^{0+\alpha}(\bar{G})$ into $C_S^{0+\alpha}(\bar{G})$, then it is a compact operator. Proof. Let $\beta \in C_S^{0+\alpha}(\bar{G})$, so

$$\left|\beta^{i}(x) - \beta^{i}(\tilde{x})\right| \leq H_{\beta} \left\|x^{j} - \tilde{x}^{j}\right\|_{\mathbb{R}^{m}}^{\alpha},$$

where $H_{\beta} > 0$ is some constant independent of i and $\|x\|_{\mathbb{R}^m} = (\sum_{j=1}^m x_j^2)^{1/2}$.

We define the operator

$$\mathbf{F} = (\mathbf{F}^i)_{i \in S} \colon C_S^{0+\alpha}(\bar{G}) \ni \beta \mapsto \delta \in C_S^{0+\alpha}(\bar{G})$$

such that for every $i \in S$

$$\mathbf{F}^{i}[\beta](x) = \delta^{i}(x) := f^{i}(x,\beta(x),\beta) + k^{i}\beta^{i}(x).$$

For arbitrary $i \in S$ we have:

$$\begin{aligned} \left| \delta^{i}(x) - \delta^{i}(\tilde{x}) \right| &= \left| f^{i}(x, \beta(x), \beta) + k^{i}\beta^{i}(x) - f^{i}(\tilde{x}, \beta(\tilde{x}), \beta) - k^{i}\beta^{i}(\tilde{x}) \right| \leq \\ &\leq \left| f^{i}(x, \beta(x), \beta) - f^{i}(\tilde{x}, \beta(x), \beta) \right| + \left| f^{i}(\tilde{x}, \beta(x), \beta) - f^{i}(\tilde{x}, \beta(\tilde{x}), \beta) \right| + \\ &+ k^{i} \left| \beta^{i}(x) - \beta^{i}(\tilde{x}) \right| \leq \left(H_{f} + L_{f}H_{\beta} + \mathbf{k}H_{\beta} \right) \left\| x - \tilde{x} \right\|_{\mathbb{R}^{m}}^{\alpha}, \end{aligned}$$

where $H_f + L_f H_{\beta} + \mathbf{k} H_{\beta}$ is some constant independent of *i*.

By the properties of f, we see that the operator ${\bf F}$ is a continuous and bounded operator.

Now, we have our problem for arbitrary $i \in S$ in the following form

$$\begin{cases} -(\mathcal{L}^{i} - k^{i}\mathcal{I})[\gamma^{i}](x) = \delta^{i}(x) & \text{for } x \in G, \\ \gamma^{i}(x) = h^{i}(x) & \text{for } x \in \partial G, \end{cases}$$
(6)

which satisfies the assumptions of the Schauder theorem ([7], p. 115), so the problem (6) for every $i \in S$ has a unique solution $\gamma^i \in C^{2+\alpha}(\bar{G})$ and the following estimate

$$\left|\gamma^{i}\right|_{C^{2+\alpha}(\bar{G})} \leq C\left(\left|\delta^{i}\right|_{C^{0+\alpha}(\bar{G})} + \left|h^{i}\right|_{C^{2+\alpha}(\partial G)}\right)$$
(7)

holds, where C > 0 is independent of δ , h and i.

Let us introduce the operator

$$\mathbf{G} = (\mathbf{G}^i)_{i \in S} \colon C_S^{0+\alpha}(\bar{G}) \ni \delta \mapsto \gamma \in C_S^{2+\alpha}(\bar{G}).$$

The function

$$\gamma^i = \mathbf{G}^i[\delta^i] = \mathbf{G}^i_1[h^i] + \mathbf{G}^i_2[\delta^i],$$

where

$$\mathbf{G}_1^i \colon C^{2+\alpha}(\bar{G}) \ni h^i \mapsto \mathbf{G}_1^i[h^i] \in C^{2+\alpha}(\bar{G})$$

and $\mathbf{G}_1^i[h^i]$ is the unique solution of the problem (6) with $\delta^i(x) = 0$ in \overline{G} , and

$$\mathbf{G}_2^i \colon C^{0+\alpha}(\bar{G}) \ni \delta^i \mapsto \mathbf{G}_2^i[\delta^i] \in C^{2+\alpha}(\bar{G})$$

and $\mathbf{G}_{2}^{i}[\delta^{i}]$ is the unique solution of the problem (6) with $h^{i}(x) = 0$ on ∂G . The operator \mathbf{G}_{1}^{i} is a continuous operator because the operator \mathbf{G}_{1}^{i} is independent of δ^{i} , and \mathbf{G}_{2}^{i} is a continuous operator (from (7)) with respect to δ^{i} . By (7), we have

$$\left|\gamma^{i}\right|_{C^{2+\alpha}(\bar{G})} = \left|\mathbf{G}^{i} \circ \mathbf{F}^{i}[\beta^{i}]\right|_{C^{2+\alpha}(\bar{G})} \leq C\left(\left|\delta^{i}\right|_{C^{2+\alpha}(\bar{G})} + \left|h^{i}\right|_{C^{2+\alpha}(\partial G)}\right),$$

where C > 0 is independent of δ , h and i. Thus the operator $\mathbf{G} \circ \mathbf{F}$ is a continuous and bounded operator.

Since $\partial G \in C^{2+\alpha}$, the imbedding operator

$$\mathbf{I} \colon C^{2+\alpha}_S(\bar{G}) \to C^{0+\alpha}_S(\bar{G})$$

is a compact operator ([1], p. 11). So $\mathcal{P} = \mathbf{I} \circ \mathbf{G} \circ \mathbf{F}$ is a compact operator.

Next, let us consider the operator \mathcal{P} as a operator mapping $L_S^p(G)$.

Lemma 2. The operator \mathcal{P} is a compact operator mapping $L_S^p(G)$ into $L_S^p(G)$.

Proof. We define δ and the operator **F** such in the proof of Lemma 1 but on an element of $L_S^p(G)$.

The operator $\mathbf{F} \colon L^p_S(G) \to L^p_S(G)$ and \mathbf{F} is a continuous and bounded operator by arguing as [6] (Th. 2.1, Th. 2.2 and Th. 2.3, pp. 31–37) and [9] (Th. 19.1, p. 204).

Now, we have our problem for arbitrary $i \in S$ in the following form

$$\begin{cases} -(\mathcal{L}^{i} - k^{i}\mathcal{I})[\gamma^{i}](x) = \delta^{i}(x) & \text{for } x \in G, \\ \gamma^{i}(x) = h^{i}(x) & \text{for } x \in \partial G, \end{cases}$$
(8)

which satisfies the assumptions of Agmon–Douglis–Nirenberg theorem for arbitrary $i \in S$, so the problem (8) has a unique weak solution $\gamma^i \in H^{2,p}(G)$ and the following estimate

$$|\gamma^{i}|_{H^{2,p}(G)} \le C\left(\left|\delta^{i}\right|_{L^{p}(G)} + \left|h^{i}\right|_{H^{2,p}(\partial G)}\right)$$
(9)

holds, where C > 0 is independent of δ , h and i.

Let us introduce the operator

$$\mathbf{G} = (\mathbf{G}^i)_{i \in S} \colon L^p_S(G) \ni \delta \mapsto \gamma \in H^{2,p}_S(G).$$

The function

$$\gamma^i = \mathbf{G}^i[\delta^i] = \mathbf{G}^i_1[h^i] + \mathbf{G}^i_2[\delta^i],$$

where

$$\mathbf{G}_1^i \colon H^{2,p}(G) \ni h^i \mapsto \mathbf{G}_1^i[h^i] \in H^{2,p}(G)$$

and $\mathbf{G}_{1}^{i}[h^{i}]$ is the unique weak solution of the problem (8) with $\delta^{i}(x) = 0$ in \overline{G} , and

$$\mathbf{G}_2^i \colon L^p(G) \ni \delta^i \mapsto \mathbf{G}_2^i[\delta^i] \in H^{2,p}(G)$$

and $\mathbf{G}_{2}^{i}[\delta^{i}]$ is the unique solution of the problem (8) with $h^{i}(x) = 0$ on ∂G . The operator \mathbf{G}_{1}^{i} is a continuous operator because the operator \mathbf{G}_{1}^{i} is independent of δ^{i} , and \mathbf{G}_{2}^{i} is a continuous operator (from (9)) with respect to δ^{i} . Also we know that

$$|\gamma^{i}|_{H^{2,p}(G)} = |\mathbf{G}^{i} \circ \mathbf{F}^{i}[\beta^{i}]|_{H^{2,p}(G)} \le C\left(|\delta^{i}|_{L^{p}(G)} + |h^{i}|_{H^{2,p}(\partial G)}\right),$$

where C > 0 is independent of δ , h and i. Thus the operator $\mathbf{G} \circ \mathbf{F}$ is a continuous and bounded operator. Since $\partial G \in C^{2+\alpha}$, the imbedding operator

$$\mathbf{I} \colon H^{2,p}_S(G) \to L^p_S(G)$$

is a compact operator ([1], p. 97), and $\mathcal{P} = \mathbf{I} \circ \mathbf{G} \circ \mathbf{F}$ is also a compact operator. \Box

Now, we prove next some properties of the operator \mathcal{P} .

Lemma 3. The operator \mathcal{P} is an increasing operator.

Proof. Let $\beta(x) \leq \tilde{\beta}(x)$ in \bar{G} , so for all $i \in S$, $\beta^i(x) \leq \tilde{\beta}^i(x)$ in \bar{G} . Let $\gamma := \mathcal{P}[\beta]$ and $\tilde{\gamma} := \mathcal{P}[\tilde{\beta}]$. For arbitrary $i \in S$

$$\begin{cases} -(\mathcal{L}^{i}-k^{i}\mathcal{I})[\tilde{\gamma}^{i}-\gamma^{i}](x) = \\ = f^{i}\left(x,\tilde{\beta}(x),\tilde{\beta}\right) - f^{i}(x,\beta(x),\beta) + k^{i}\left(\tilde{\beta}^{i}(x) - \beta^{i}(x)\right) \\ (\tilde{\gamma}^{i}-\gamma^{i})(x) = 0, & \text{for } x \in \partial G. \end{cases}$$

By assumption (h), (i) and (f),

$$-\left(\mathcal{L}^{i}-k^{i}\mathcal{I}\right)[\tilde{\gamma}^{i}-\gamma^{i}](x) \geq \\ \geq \left[f^{i}\left(x,\beta^{1}(x),\ldots,\beta^{i-1}(x),\tilde{\beta}^{i}(x),\beta^{i+1}(x),\ldots,\beta\right)-f^{i}(x,\beta(x),\beta)\right]+ \\ +k^{i}\left(\tilde{\beta}^{i}(x)-\beta^{i}(x)\right) \geq 0.$$

So for every $i \in S$

$$\begin{cases} -(\mathcal{L}^i - k^i \mathcal{I})[\tilde{\gamma}^i - \gamma^i](x) \ge 0 & \text{for } x \in G, \\ \tilde{\gamma}^i(x) - \gamma^i(x) = 0 & \text{for } x \in \partial G. \end{cases}$$

By the maximum principle ([8], p. 64)

$$\tilde{\gamma}^i(x) - \gamma^i(x) \ge 0$$
 in \bar{G} .

We have for all $i \in S \ \gamma^i(x) \leq \tilde{\gamma}^i(x)$, so

$$\gamma(x) \leq \tilde{\gamma}(x)$$
 in \bar{G} .

Lemma 4. If β is an upper (resp. a lower) function for the problem (1), (2) in \overline{G} , then $\mathcal{P}[\beta] \leq \beta$ (resp. $\mathcal{P}[\beta] \geq \beta$) in \overline{G} and $\mathcal{P}[\beta]$ is an upper (resp. a lower) function for problem (1), (2) in \overline{G} .

Proof. Let $\gamma = \mathcal{P}[\beta]$. By (5) we have for every $i \in S$

$$-(\mathcal{L}^{i}-k^{i}\mathcal{I})[\gamma^{i}-\beta^{i}](x) = -(\mathcal{L}^{i}-k^{i}\mathcal{I})[\gamma^{i}](x) + (\mathcal{L}^{i}-k^{i}\mathcal{I})[\beta^{i}](x) =$$
$$= f^{i}(x,\beta(x),\beta) + k^{i}\beta^{i}(x) + \mathcal{L}^{i}[\beta^{i}](x) - k^{i}\beta^{i}(x) = f^{i}(x,\beta(x),\beta) + \mathcal{L}^{i}[\beta^{i}](x)$$

and from (4)

$$f^i(x,\beta(x),\beta) + \mathcal{L}^i[\beta^i](x) \le 0$$

and

$$(\gamma^i - \beta^i)(x) = h^i(x) - \beta^i(x) \le 0.$$

So for every $i \in S$

$$\begin{cases} -(\mathcal{L}^{i}-k^{i}\mathcal{I})[\gamma^{i}-\beta^{i}](x) \leq 0 & \text{for } x \in G, \\ (\gamma^{i}-\beta^{i})(x) \leq 0 & \text{for } x \in \partial G. \end{cases}$$

Now, by using the maximum principle ([8], th. 6, p. 64) separately for every $i \in S$

$$\gamma^i(x) - \beta^i(x) \le 0$$
 in \overline{G} .

 So

$$\gamma(x) \leq \beta(x)$$
 in \overline{G} .

From Lemma 1 it follows that $\gamma \in C_S^{2+\alpha}(\overline{G})$ and from (5) and the assumption (f), we get for every $i \in S$

$$\begin{aligned} -\mathcal{L}^{i}[\gamma^{i}](x) - f^{i}(x,\gamma(x),\gamma) &= -(\mathcal{L}^{i} - k^{i}\mathcal{I})[\gamma^{i}](x) - f^{i}(x,\gamma(x),\gamma) - k^{i}\gamma^{i}(x) = \\ &= f^{i}(x,\beta(x),\beta) + k^{i}\beta^{i}(x) - f^{i}(x,\gamma(x),\gamma) - k^{i}\gamma^{i}(x) \ge \\ &\ge \left(f^{i}(x,\gamma^{1}(x),\ldots,\gamma^{i-1}(x),\beta^{i}(x),\gamma^{i+1}(x),\ldots,\gamma) - f^{i}(x,\gamma(x),\gamma)\right) + \\ &\quad + k^{i}(\beta^{i}(x) - \gamma^{i}(x)) \ge 0 \text{ in } \bar{G}, \end{aligned}$$

so it is a upper the function for problem (1), (2) in \overline{G} .

3. MAIN RESULT

Theorem. If the assumptions (a)–(i) hold, then the problem (1), (2) has at least one classical solution u such that $u \in \langle u_0, v_0 \rangle$.

Proof. By induction, we define two sequences of functions $\{u_n\}_{n=0}^{\infty}$ and $\{v_n\}_{n=0}^{\infty}$ by setting:

$$u_1 = \mathcal{P}[u_0], \qquad u_n = \mathcal{P}[u_{n-1}],$$

$$v_1 = \mathcal{P}[v_0], \qquad v_n = \mathcal{P}[v_{n-1}].$$

Because u_0 and v_0 are regular functions, these sequences are well defined by Lemma 1. The sequence $\{u_n\}_{n=0}^{\infty}$ is increasing and $\{v_n\}_{n=0}^{\infty}$ is decreasing by Lemma 4:

$$u_1(x) = \mathcal{P}[u_0](x) \ge u_0(x) \quad \text{in } \bar{G},$$

$$v_1(x) = \mathcal{P}[v_0](x) \le v_0(x) \quad \text{in } \bar{G},$$

and by induction:

$$u_n(x) = \mathcal{P}[u_{n-1}](x) \ge u_{n-1}(x) \qquad \text{in } \bar{G}, \ n = 1, 2, \dots$$
$$v_n(x) = \mathcal{P}[v_{n-1}](x) \le v_{n-1}(x) \qquad \text{in } \bar{G}, \ n = 1, 2, \dots$$

Since the operator \mathcal{P} is increasing and by the assumption (d) we have

$$u_1(x) = \mathcal{P}[u_0](x) \le \mathcal{P}[v_0](x) = v_1(x)$$
 in G

and consequently by induction

$$u_n(x) \le v_n(x)$$
 in \overline{G} .

Therefore

$$u_0(x) \le u_1(x) \le \dots \le u_n(x) \le \dots \le v_n(x) \le \dots \le v_1(x) \le v_0(x).$$

The sequences $\{u_n\}_{n=0}^{\infty}$ and $\{v_n\}_{n=0}^{\infty}$ are monotone and bounded, so they have pointwise limits and we can define:

$$\underline{u}(x) := \lim_{n \to \infty} u_n(x), \qquad \overline{v}(x) := \lim_{n \to \infty} v_n(x)$$

for every $x \in \overline{G}$.

The functions $\{u_n\}_{n=0}^{\infty}$ and $\{v_n\}_{n=0}^{\infty}$ are functions of class $L_S^p(G)$. Let be $p \in (m, \infty)$ (we need this assumption to can use a imbedding theorem). Because $\{u_n\}_{n=0}^{\infty}$ and $\{v_n\}_{n=0}^{\infty}$ are bounded functions in $L_S^p(G)$ and \mathcal{P} is an increasing compact operator in $L_S^p(G)$ (from Lemma 2), $\{\mathcal{P}u_n\}$ and $\{\mathcal{P}v_n\}$ are converging sequences in $L_S^p(G)$ and

$$\underline{u}(x) = \lim_{n \to \infty} \mathcal{P}[u_n](x) = \lim_{n \to \infty} \mathcal{P}[\mathcal{P}[u_{n-1}]](x) = \mathcal{P}[\underline{u}](x),$$
$$\bar{v}(x) = \lim_{n \to \infty} \mathcal{P}[v_n](x) = \lim_{n \to \infty} \mathcal{P}[\mathcal{P}[v_{n-1}]](x) = \mathcal{P}[\bar{v}](x).$$

Since $\underline{u}, \overline{v} \in L^p_S(G)$ and:

$$\underline{u} = \mathcal{P}[\underline{u}], \qquad \bar{v} = \mathcal{P}[\bar{v}] \tag{10}$$

by the Agmon–Douglis–Nirenberg theorem we have

$$\underline{u}, \overline{v} \in H^{2,p}_S(G).$$

Because the Sobolev space $H^{2,p}(\bar{G})$ for p > m is continuously imbedding in $C^{0+\alpha}(\bar{G})$ and

$$u^{i}|_{C^{0+\alpha}(\bar{G})} \leq C |u^{i}|_{H^{2,p}(G)},$$

where C is independed of i ([1], p. 97–98), we get

$$\underline{u}, \bar{v} \in C_S^{0+\alpha}(\bar{G}). \tag{11}$$

Applaying the Schauder theorem to (10) separately for every $s \in S$ for (11) we get

$$\underline{u}, \overline{v} \in C_S^{2+\alpha}(\overline{G}).$$

From the proof we know that

$$u_0(x) \le \underline{u}(x) \le \overline{v}(x) \le v_0(x).$$

Corollary. The solutions \underline{u} , \overline{v} are minimal and maximal solution of the problem (1), (2) in $\langle u_0, v_0 \rangle$.

Proof. If w is a solution of the problem (1), (2) then $w(x) = \mathcal{P}[w](x)$ and $u_0(x) \le w(x) \le v_0(x)$. Because \mathcal{P} is an increasing operator, we have

$$u_1(x) = \mathcal{P}[u_0](x) \le \mathcal{P}[w](x) = w(x) = \mathcal{P}[w](x) \le \mathcal{P}[v_0](x) = v_1(x)$$

and by induction we get

$$u_n(x) \le w(x) \le v_n(x).$$

Thus

$$\underline{u}(x) = \lim_{n \to \infty} u_n(x) \le w(x) \le \lim_{n \to \infty} v_n(x) = \overline{v}(x).$$

REFERENCES

- [1] Adams R. A.: Sobolev Spaces. New York, Academic Press 1975.
- [2] Agmon S., Douglis A., Nirenberg L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary condition. I. Comm. Pure Appl. Math. 12 (1959), 623–727.
- [3] Appell J., Zabreiko P.: Nonlinear Superposition Operators. Cambridge, Cambridge University Press 1990.
- [4] Brzychczy S.: Existence of solution of nonlinear Dirichlet problem for differentialfunctional equations of elliptic type. Ann. Polon. Math. 58 (1993), 139–146.
- [5] Gilbarg D., Trudinger N.S.: Eliptic Partial Differential Equations of Second Order. Berlin, Heidelberg, New York, Tokyo, Springer 1983.
- [6] Krasnosel'skii M.A.: Topological Methods in the Theory of Nonlinear Integral Equations. Oxford, Pergamon Press 1963.

- [7] Ladyzhenskaya O. A., Ural'tseva N. N.: Linear and Quasilinear Elliptic Equations. New York, London, Academic Press 1968.
- [8] Protter M. H., Weinberger H. F.: Maximum Principles in Differential Equations. New York, Springer 1984.
- [9] Vainberg M. M.: Variational Methods for the Study of Nonlinear Operators. San Francisco, Holden-Day 1964.

Tomasz S. Zabawa zabawa@mat.agh.edu.pl

AGH University of Science and Technology, Faculty of Applied Mathematics al. Mickiewicza 30, 30-059 Kraków, Poland

Received: October 18, 2004.