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Abstract. In the paper the Cauchy problem for an infinite system of parabolic type
equations is studied. The general operators of the parabolic type of second order with
variable coefficients are considered and the system is weakly coupled. Among the obtained
results there is a theorem on diffenential inequality as well as the existence and uniqueness
theorem in the class of continuous-bounded functions obtained by monotone iterative
method.
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1. INTRODUCTION

We consider an infinite system of weakly coupled semilinear parabolic equations of
reaction-diffusion-convection type of the form

F i[ui](t, x) = f i(t, x, u(t, x)), i ∈ S, (1)

supplemented with the initial condition

u(0, x) = ϕ(x) for x ∈ R
m . (2)

Here the functions f i and ϕ stand for the following mappings:

f i : Ω × R � (t, x, s) → f i(t, x, s) ∈ R, i ∈ S,

ϕ : S × R
m � (i, x) → ϕi(x) ∈ R,

respectively.
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Here:

F i :=
∂

∂t
−Ai,

Ai :=
m∑

j,k=1

ai
jk(t, x)

∂2

∂xj∂xk
+

m∑
j=1

bi
j(t, x)

∂

∂xj
+ ci(t, x),

(t, x) ∈ Ω := {(t, x) : t ∈ (0, T ], x ∈ R
m}, 0 < T < ∞, S is the set of indices and

u : Ω � (t, x) → u(t, x) ∈ B(S), where u(t, x) : S � i → ui(t, x) ∈ R

Let B(S) be the space of all mappings v : S � i → vi ∈ R, such that sup{∣∣vi
∣∣ :

i ∈ S} < ∞ endowed with the supremum norm

‖v‖B(S) := sup{∣∣vi
∣∣ : i ∈ S}.

Denote by CBS(Ω) the space of mappings w : Ω � (t, x) → w(t, x) ∈ B(S), where
w(t, x) : S � i → wi(t, x) ∈ R and the functions wi = wi(t, x) are continuous and
bounded in Ω, sup{∣∣wi(t, x)

∣∣ : (t, x) ∈ Ω, i ∈ S} < ∞. CBS(Ω) is endowed with the
following norm

‖w‖0 := sup{∣∣wi(t, x)
∣∣ : (t, x) ∈ Ω, i ∈ S}.

The space CBS(Rm) is understood in an analogous way. For w ∈ CBS(Ω) and for
a fixed t, t ≥ 0 we define

‖w‖0,t := sup{∣∣wi(t̃, x)
∣∣ : (t̃, x) ∈ Ω, t̃ ≤ t, i ∈ S}.

The aim of this paper is to prove the existence and the uniqueness of a solution
for system (1) supplemented with the initial condition (2) (Theorem, Section 4).
To obtain solution of considered problem we apply so-called monotone iterative
method (method of subsolutions and supersolutions) (cf. [13]). The first initial-
boundary value problem for infinite system of weakly coupled differential-functional
equations of parabolic type was dealt with the same monotone iterative technique
in [3, 4]. In this approach we have to assume the monotonicity of the reaction
functions in the last variable as well as the existence of a pair of lower and upper
solutions for the considered problem. The method sub and super solutions, coupled
with monotone iterative technique provides an effective and flexible mechanism that
ensures theoretical as well as constructive existence results for nonlinear problems(cf.
[12]). The lower and upper solutions serve as bounds for solutions which are improved
by a monotone iterative process. We use differential inequality to show that sequences
obtained by monotone iteration are sub and supersolutions, respectively, as well as
to get the uniform convergence of these sequences. We notice that Proposition 2,
Section 3, which proof is based on the Gronwall lemma (cf. [19, 5]), is crucial in the
proof of Theorem 1.

An infinite system of ordinary differential equations was considered first time by
M. Smoluchowski [17] as a model for coagulation of colloids moving according to a
Brownian motion. The classical Smoluchowski’s coagulation equations have described
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the binary coagulation of colloidal particles. Certain generalization of Smoluchowski’s
model which describes the space and time evolution of a system of a large number
of clusters moving by spatial diffusion is treated in [2]. The author assumes that the
clusters are composed of a number of identical units and are fully identified by their
size but the size of the clusters is not limited a priori therefore the infinite system
appears.

A system of infinite number of reaction-diffusion equations related to the system
of ODE derived by Smoluchowski arise among others in polymer science [11], aerosol
physics [7], phase transitions [9], biology and immunology [6, 14] and astrophysics
[16].

This paper is organised as follows. In the next section the necessary notations are
introduced. We also formulate the assumptions and an auxiliary lemma (cf. [8, 10])
in Section 2. In Section 3 we state and prove the comparison principles. The last
section contains a main result of the paper, i.e. the theorem on the existence and
the uniqueness of the solution for the problem (1), (2) and its proof.

2. NOTATIONS, DEFINITIONS AND ASSUMPTIONS

Throughout the paper, we use the following notation.
Let R be a positive number. By DR we denote the part of the domain Ω

contained in the cylindric surface (which we will denote by ΓR) described by the
equation

∑n
j=1 x

2
j = R2. DR stands for the base of S0

R.

We define the Niemycki operator F = {Fi}i∈S by setting

Fi[η](t, x) := f i(t, x, η(t, x)),

for each η ∈ CBS(Ω) and i ∈ S. This operator plays an important role in theory of
nonlinear equations (cf. [1])

Now we formulate the assumptions sufficient for existing the fundamental solu-
tion of the homogeneous system associated with system (1).

We will assume that

(H) the coefficients ai
jk(t, x), bi

j(t, x), ci(t, x), i ∈ S, j, k = 1, . . . ,m are bounded
continuous in Ω functions such that ai

jk(t, x) = ai
kj(t, x) and satisfy the following

uniform Hölder conditions with exponent α (0 < α ≤ 1) in Ω there exists H > 0
such that: ∣∣ai

jk(t, x) − ai
jk(t, x′)

∣∣ ≤ H |x− x′|α ,∣∣bi
j(t, x) − bi

j(t, x
′)

∣∣ ≤ H |x− x′|α ,∣∣ci(t, x) − ci(t, x′)
∣∣ ≤ H |x− x′|α ,

for all (t, x), (t, x′) ∈ Ω and j, k = 1, . . . ,m.
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We suppose as well that the operators F i, i ∈ S are uniformly parabolic
in Ω i.e. there is µ > 0 such that

m∑
j,k=1

ai
jk(t, x)ξjξk ≥ µ

m∑
j=1

ξ2
j

for all (t, x) ∈ Ω, and ξ = (ξ1, . . . , ξm) ∈ R
m.

Lemma 1 (cf. [8, 10]). Let the operators F i (i ∈ S) be uniformly parabolic in Ω
with the constant µ. If the coefficients ai

jk(t, x), bi
j(t, x), ci(t, x), i ∈ S, j, k = 1, . . . ,m

satisfy the condition (H) in Ω, then there exist the fundamental solutions Γi(t, x; τ, ξ)
of the equations F i[ui](t, x) = 0, i ∈ S and the following inequalities hold

∣∣Γi(t, x; τ, ξ)
∣∣ ≤ C(t− τ)−

m
2 exp

(
−µ∗ |x− ξ|2

4(t− τ)

)
, i ∈ S

for any µ∗ < µ where µ∗ depends on µ and H whereas C depends on µ, α, T and the
character of continuity ai

jk(t, x) in t.

Now we reinforce assumptions relating to the principal coefficients. Let the coeffi-
cients ai

jk(t, x) satisfy the uniform Hölder condition in Ω with exponent α with respect
to t and x in the sense of the parabolic distance, i.e. there exists H > 0 such that

(Ha)
∣∣ai

jk(t, x) − ai
jk(t, x′)

∣∣ ≤ H
(
|x− x′|α + |t− t′|α

2

)

for all (t, x), (t′, x′) ∈ Ω and j, k = 1, . . . ,m.

Remark 1 (cf. [10]). Let operators F i, i ∈ S be uniformly parabolic and their
coefficients satisfy the assuption (H) and (Ha), then Γi(t, x; τ, ξ) are the positive
functions.

Using the fundamental solutions and the Niemycki operator we can transform
the differential problem (1), (2) into the following associated integral system

ui(t, x) =
∫

Rm

Γi(t, x; 0, ξ)ϕi(ξ)dξ +

t∫
0

∫
Rm

Γi(t, x; τ, ξ)Fi[u](τ, ξ)dξdτ (3)

for t > 0, x ∈ R
m.

Assumptions related to the initial data ϕ = {ϕi}i∈S and right hand side f =
= {f i}i∈S are as follows:

(ϕ) ϕi ∈ CB(Rm) for all i ∈ S, i.e. ϕ ∈ CBS(Rm);

(Cf ) f i(t, x, s) are continuous in Ω × R for all i ∈ S;

(Bf ) f i(t, x, s) are commonly bounded in Ω × R for all i ∈ S;

(If ) f i(t, x, s) are increasing with respect to s for all i ∈ S.
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Furthermore, let function function f = {f i}i∈S satisfies the following additional
conditions:

(Hf ) locally Hölder continuous with respect to x;

(Lf ) Lipchitz continuous in s.

Moreover, we assume that
(O) In the space CBS(Ω) the following order (precisely partial order) is intro-

duced for z, z̃ ∈ CBS(Ω), the inequality z ≤ z̃ means that zi(t, x) ≤ z̃i(t, x) for all
(t, x) ∈ Ω and i ∈ S.

3. COMPARISON PRINCIPLES

The main goal of this section is to state some auxiliary results which will be our
tools in the next section. We start this section with a simple comparison principle.
The Gronwall lemma will be our main tool in proofs of this section.

Proposition 1. Let functions f i = f i(t, x, s) be Lipschitz continuous in s uniformly
with respect to i ∈ S ∣∣f i(t, x, s) − f i(t, x, s̃)

∣∣ ≤ L ‖s− s̃‖B(S) .

If v, w ∈ CS(Ω) satisfy the following systems

F i[vi](t, x) = f i(t, x, v(t, x)), F i[wi](t, x) = f̄ i(t, x, w(t, x)), i ∈ S, (4)

and if there exists a nonnegative constant M independent of i ∈ S such that∣∣f i(t, x, s) − f̄ i(t, x, s)
∣∣ ≤ M,

then

‖v − w‖0,t ≤ C ‖v(0, ·) − w(0, ·)‖0 e
tCL + CM

t∫
0

e(t−τ)CL dτ

provided that v − w ∈ CBS(Ω).

Proof. We consider the auxiliary function z̃(t) := ‖z(t)‖B(S), where z(t) = {zi(t)}i∈S

and zi(t) = supx∈Rm, t̄≤t

∣∣vi(t̄, x) − wi(t̄, x)
∣∣ =:

∥∥vi − wi
∥∥

0,t
.

At first we show a certain estimate for this function. Since the functions v, w
satisfy the systems (4), then we have

vi(t, x) − wi(t, x) =
∫

Rm

Γi(t, x; 0, ξ)
[
vi(0, ξ) − wi(0, ξ)

]
dξ+

+

t∫
0

∫
Rm

Γi(t, x; τ, ξ)
[
f i(τ, ξ, v(τ, ξ)) − f̄ i(τ, ξ, w(τ, ξ))

]
dξ dτ ≤

≤ Czi(0) +

t∫
0

C[M + L ‖z(τ)‖B(S)]dτ, i ∈ S,
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therefore the function z̃ satisfies the following integral inequality

z̃(t) ≤ Cz̃(0) +

t∫
0

C[M + Lz̃(τ)]dτ.

Thus by the virtue of the Gronwall lemma, we obtain

z̃(t) ≤ Cz̃(0)etCL +

t∫
0

CMe(t−τ)CL dτ,

and the proof of Proposition 1 is complete.

Remark 1. In particular, if the right hand sides of the systems (4) are equal and
v(0, x) = w(0, x), then Proposition 1 yields the uniqueness.

In the next section we construct the certain sequences of successive approxima-
tion as solutions of linear systems of differential equations. But first we formulate
the result which ensures the uniform convergence of these sequences to the desired
solution of the problem (1), (2).

Proposition 2 (Differential inequalities). Let functions f i = f i(t, x, s) satisfy
the condition (If ) and f i = f i(t, x, s) also satisfy the one-sided Lipschitz condition
with respect to s (uniformly with respect to i ∈ S)

f i(t, x, s) − f i(t, x, s̃) ≤ L ‖s− s̃‖B(S) for s ≥ s̃

If v, w ∈ CBS(Ω) satisfy the following systems of inequalities:

F i[vi](t, x) ≤ f i(t, x, v(t, x)), F i[wi](t, x) ≥ f i(t, x, w(t, x)), i ∈ S, (5)

and v(0, x) ≤ w(0, x) in R
m then v(t, x) ≤ w(t, x) for (t, x) ∈ Ω.

Proof. We define an auxiliary function y(t) = {yi(t)}i∈S by setting yi(t) :=

max{0, zi(t)} where zi = supx∈Rm,t̄≤t

(
vi(t̄, x) − wi(t̄, x)

)
. It is easy to see that

0 ≤ yi(t) < ∞ and zi(t) ≤ yi(t) for all i ∈ S. Now, applying the condition (If ) and
the one-sided Lipschitz condition we estimate the differences

f i(t, x, v(t, x)) − f i(t, x, w(t, x)) = f i(t, x, [w + (v − w)](t, x)) − f i(t, x, w(t, x)) ≤
≤ f i(t, x, w(t, x) + y(t)) − f i(t, x, w(t, x)) ≤ L ‖y(t)‖B(S)

Since the functions v, w satisfy the systems (5), then for all i ∈ S we have the
following inequalities
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vi(t, x) − wi(t, x) ≤
∫

Rm

Γi(t, x; 0, ξ)
[
vi(0, ξ) − wi(0, ξ)

]
dξ+

+

t∫
0

∫
Rm

Γi(t, x; τ, ξ)
[
f i(τ, ξ, v(τ, ξ)) − f i(τ, ξ, w(τ, ξ))

]
dξ dτ ≤

t∫
0

CL ‖y(τ)‖B(S) dτ.

Thus, for function ỹ(t) = ‖y(t)‖B(S) we have the inequality

ỹ(t) ≤
t∫

0

CLỹ(τ) dτ.

Having this fact, on the basis the Gronwall lemma we obtain ỹ(t) ≡ 0, which means
that v(t, x) ≤ w(t, x) in Ω. Proposition 2 is proved.

4. MONOTONE ITERATION. EXISTENCE AND UNIQUENESS SOLUTION

Before formulating the main theorem of this section we introduce the following
notation. Namely, for every sufficiently smooth function β we denote by P the
operator P : β �→ γ = P[β], where γ is a unique solution of the following initial value
problem:

F i[γi](t, x) = f i(t, x, β(t, x)), i ∈ S,

γ(0, x) = ϕ(x) for x ∈ R
m .

Remark 1. Due to the fact that the functions f i = f i(t, x, s), i ∈ S are increasing
with respect to s and Γi(t, x; τ, ξ) are positive functions the operator P is increasing.

Functions v = v(t, x) and w = w(t, x) ∈ CBS(Ω) satysfying the system of the
following inequalities:

F i[vi](t, x) ≤ f i(t, x, v(t, x)), i ∈ S,

u(0, x) ≤ ϕ(x) for x ∈ R
m,

F i[wi](t, x) ≥ f i(t, x, w(t, x)), i ∈ S,

u(0, x) ≥ ϕ(x) for x ∈ R
m .

are called, respectively, a subsolution and a supersolution for problem (1), (2) in Ω.

Assumption A.We assume that there exists at least one pair v0, w0 ∈ CBS(Ω)
of a subsolution and a supersolution of the problem (1), (2) in Ω which are Hölder
continuous in x uniformly with respect to t.
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Remark 2. If v and w are a subsolution and supersolution for the problem (1), (2)
in Ω, respectively, and u is any classical solution of this problem, then Proposition 2
yields

v(t, x) ≤ u(t, x) ≤ w(t, x) for (t, x) ∈ Ω.

In particular, we have

v0(t, x) ≤ u(t, x) ≤ w0(t, x) for (t, x) ∈ Ω.

Now we formulate the theorem on the existence and the uniqueness of a solution
of the problem (1), (2) obtained by simple iterative method, i.e. starting the iteration
procedure from the subsolution v0 and the supersolution w0 we define the iterative
sequence by induction as follows vn+1 := P[vn], wn+1 := P[wn], (n = 1, 2, . . . ). Thus,
on each step we have the infinite system of the linear equations.

Theorem. Let the operators F i, i ∈ S be uniformly parabolic in Ω. Let the assump-
tions (H), (Ha), (ϕ), (Cf ), (Bf ), (If ), (Hf ), (Lf ), (O) and the assumption A hold.
Consider the following infinite system of linear equations

F i[vi
n+1](t, x) = f i(t, x, vn(t, x)), (6)

F i[wi
n+1](t, x) = f i(t, x, wn(t, x)), (7)

for (t, x) ∈ Ω, i ∈ S, for n = 1, 2, . . . with the initial condition (2) and let
N0 = ‖w0 − v0‖ < ∞. Then:
(i) there exist unique classical bounded solutions vn and wn (n = 1, 2 . . . ) of systems

(6) and (7) with the initial condition (2) in Ω;

(ii) functions vn and wn (n = 1, 2)̇s are the subsolutions and supersolutions for
problem (1), (2) in Ω, respectively;

(iii) the following inequalities

v0(t, x) ≤ · · · ≤ vn(t, x) ≤ vn+1(t, x) ≤ · · · ≤ wn+1(t, x) ≤ wn(t, x) ≤ · · · ≤ w0(t, x

hold for (t, x) ∈ Ω, (n = 1, 2 . . . );

(iv) limn→∞[wi
n(t, x) − vi

n(t, x)] = 0 uniformly in Ω, i ∈ S;

(v) the function u(t, x) = limn→∞ vn(t, x) is a unique bounded solution of problem
(1), (2) in Ω.

Proof of Theorem. (i) Starting the iteration procedure from the subsolution v0 and
the supersolution w0 we define v1, w1 as the solutions of the systems of linear equ-
ations (6), (7) supplemented with initial condition (2), i.e. v1 = P[v0], w1 = P[w0].
We observed that considered systems have the following property: the i-th equation
depends on the i-th unknown function only, therefore since v0, w0 satisfy the as-
sumption A, the classical theorems on existence and uniqueness of solution of linear
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parabolic Cauchy problem (cf. [10]) assert that there exist the unique solutions of
the above problems v1, w1 ∈ CBS(Ω) and functions v1 and w1 are Hölder continuous
with respect to x (cf. [8]). Next we define by induction the succesive terms of the
iteration sequences {vn}, {wn} as solutions of the linear systems (6), (7) supple-
mented with initial condition (2), i.e. vn = P[vn−1], wn = P[wn−1]. The preceding
reasoning yields that vn, wn exist, are uniquely defined. Moreover, for each i ∈ S,
n = 1, 2, . . . vi

n, w
i
n belong to C1,2(Ω) and they are Hölder continuous in x uniformly

with respect to t.

(ii) We now show by induction argument that the functions vn are subsolutions.
v0 is the subsolution by assumption (A). Let vn be a subsolution of (1), (2), i.e.

F i[vi
n](t, x) ≤ f i(t, x, vn(t, x)), i ∈ S, (8)

vn(0, x) ≤ ϕ(x) for x ∈ R
m . (9)

From the definition of the operator P follows that

F i[vi
n+1](t, x) = f i(t, x, vn(t, x)), i ∈ S, (10)

vn+1(0, x) = ϕ(x) for x ∈ R
m . (11)

Thus, Proposition 2 yields the inequality

[vn − vn+1](t, x) ≤ 0 for (t, x) ∈ Ω,

i.e.
vn(t, x) ≤ P[vn](t, x) for (t, x) ∈ Ω.

Now the monotonicity condition (If ) enables us to obtain the following

F i[vi
n+1](t, x) − f i(t, x, vn+1(t, x)) = f i(t, x, vn(t, x)) − f i(t, x,P[vn](t, x)) ≤ 0

for all i ∈ S, (t, x) ∈ Ω. We conclude that function vn+1 is a subsolution as well. To
proof that functions wn are supersolutions we proceed in a similar way.

(iii) The monotonicity of the sequences {vn}, {wn} is equivalent of the fact
that functions vn, wn are subsolutions and supersolutions, respectively, whereas the
inequality vn ≤ wn is the consequence of the fact that v0 ≤ w0 and the fact that the
operator P is increasing.

(iv) In this step of our proof we show by induction that

mi
n(t, x) := wi

n(t, x) − vi
n(t, x) ≥ 0

is estimated as follows:

mi
n(t, x) ≤ N0

(Lt)n

n!
, n = 0, 1 . . . , for (t, x) ∈ Ω, i ∈ S.
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The inequality for mi
0 is obvious. Suppose it holds for mi

n. Due to the condition (Lf )
and the induction assumption we have the following estimation

F i[mi
n+1](t, x) = f i(t, x, wn(t, x)) − f i(t, x, vn(t, x)) ≤ L ‖mn‖B(S) ≤ N0

Ln+1tn

n!

in Ω and mi
n+1(0, x) = 0 for x ∈ R

m, i ∈ S. In order to apply the theorem on
differential inequality, let us consider the comparison system

F i[M i
n+1](t, x) = N0

Ln+1tn

n!
for (t, x) ∈ Ω, i ∈ S

supplemented with the initial condition M i
n+1(0, x) ≥ 0 for x ∈ R

m, i ∈ S. The

functions M i
n+1(t, x) = N0

(Lt)n+1

(n+1)! are the solutions of comparison problem, therefore,
owing to Proposition 2 we get

mi
n+1(t, x) ≤ M i

n+1(t, x) = N0
(Lt)n+1

(n + 1)!
, for (t, x) ∈ Ω, i ∈ S,

so, the step induction is proved. Now, the uniform convergence of mi
n in Ω for all

i ∈ S is obvious. Since {vn} and {wn} are bounded and monotone sequences of
continuous functions, there exist continuous functions ui = ui(t, x) such that

lim
n→∞ vi

n(t, x) = ui(t, x), lim
n→∞wi

n(t, x) = ui(t, x) (12)

uniformly in Ω for all i ∈ S and the function u = {ui}i∈S satisfies the initial
condition (2).

(v) First, we prove that the function u defined above satisfies the system (1). It is
enough to show that u fulfills (1) in every compact set contained in Ω. Consequently,
due to the definition DR we only need to prove it in DR for any R > 0. Due to the
condition (W ) and the inequalities (iii) it follows that f i(t, x, vn−1) are uniformly
bounded in DR (with respect to n) therefore, the solution vn(t, x) of the linear system

F i[vi
n](t, x) = f i(t, x, vn−1(t, x)), i ∈ S (13)

with the suitable initial condition is Hölder continuous with exponent α with respect
to x with the constant independent of n (cf. [8]) and i ∈ S (by Bf ). Hence, we
conclude by (12) that the boundary function u(t, x) satisfies the Hölder condition
with respect to x as well.

Now, let us consider the following system of equations

F i[zi](t, x) = f i(t, x, u(t, x)), i ∈ S (14)

supplemented with the conditions:

z(t, x) = u(t, x) on ΓR, (15)

z(0, x) = ϕ(x) on S0
R. (16)
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Owing to the facts that u(t, x) is Hölder continuous with respect to x and the
conditions (Hf ) and (Lf ) hold, the right hand sides of this system are continuous in
DR and locally Hölder continuous with respect to x.

Thus, on the basis the classical theorems on existence and uniqueness of solution
of linear parabolic initial-boundary valued problem (cf. [10]) there exists the unique
solutution z(t, x) of the problem (14), (15), (16) in DR.

On the other hand, from (12) and (Lf ) it follows that

lim
n→∞ f i(t, x, vn−1(t, x)) = f i(t, x, u(t, x)) uniformly in DR.

Moreover, the boundary values vn(t, x) converge uniformly to u(t, x) on ΓR and
initial values are equal, therefore using the theorem on the continuous dependence
of the solution on the right hand sides of the system and on the initial-boundary
values (cf. [18]) to systems (14) and (13) we conclude

lim
n→∞ vi

n(t, x) = zi(t, x) uniformly in DR.

Thus zi(t, x) = ui(t, x) in DR for all i ∈ S, for arbitrary R > 0, which means
z(t, x) = u(t, x) for all (t, x) ∈ Ω, i.e. u(t, x) is the classical bounded solution of the
problem (1), (2).

The uniqueness of the solution follows directly from Remark 2. This completes
the proof of the Theorem.
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