
NataliaK. Prykarpatska, Marzena Pytel-Kudela

ON THE STRUCTURE OF CHARACTERISTIC SURFACES
RELATED WITH PARTIAL DIFFERENTIAL EQUATIONS

OF FIRST AND HIGHER ORDERS. PART 1.

Abstract. The geometric structure of characteristic surfaces related with partial differen-
tial equations of first and higher orders is studied making use the vector field technique on
hypersurfaces. It is shown, that corresponding characteristics are defined uniquely up to
some smooth tensor fields, thereby supplying additonal information about the suitable set
of their solutions. In particular, it may be very useful for studying asymptotic properties
of solutions to our partial differential equations under some boundary conditions.
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1. INTRODUCTION AND GEOMETRIC SETTING

Assume we are given a general partial differential equation of the first order in the
form

H(x; u, ux) = 0, (1.1)

where H : R
n × (R × R

n) → R is a twice-differentiable function. We will call a
mapping u ∈ C2(Rn; R) by the solution to (1.1) if it transforms the expression (1.1)
into identity. The equation (1.1) allows a geometric interpretation [1, 2, 6] based still
on Monge’s classical considerations. Namely, the equation (1.1) defines naturally the
so called Monge cone of normals K(x;u) ⊂ R

n at each point (x;u) ∈ R
n+1. Consider

now hypersurface S̄H ⊂ R
n+1 such that

S̄H := {(x;u) ∈ R
n × R : u = ψ(x)} (1.2)

Opuscula Mathematica • Vol. 25 • No. 2 • 2005

299



for some ψ ∈ C2(Rn; R). Let n(x) = (−1,∇u(x))|u=ψ(x) ∈ R
n+1 be the set of normal

vectors to S̄H . Then the surface S̄H like (1.2) will be a solution to (1.1) if and only
if the normal n(x) ∈ K(x;u) at each (x;u) ∈ S̄H . One can also define a family of
hyperplanes orthogonal to the cone K(x;u) at (x;u) ∈ S̄H and take the enveloping
them set K∗(x;u) ⊂ R

n+1 which is called a dual Monge cone. Then the surface will
be a solution to (1.1) if it is tangent to the dual Monge cone K∗(x;u) at each point
(x;u) ∈ R

n+1. It is seen that directions, along which our surface SH is tangent to the
Monge cone K∗, generate some vector fields on S̄H whose orbits fulfill completely
the surface S̄H . For constructing these vector fields on S̄H let us consider our surface
S̄H as a surface imbedded into some surface SH ⊂ R

2n × R
1 	 (x;u, p), where

p := ux ∈ R
n for all (x;u) ∈ R

n+1, that is

SH := {(x;u, p) ∈ R
2n × R : H(x;u, p) = 0} (1.3)

under the condition that ‖�pH‖ = 0. There exist many of vector fields on SH in the
general form

dx/dτ = aH(x;u, p), dp/dτ = bH(x;u, p), du/dτ = cH(x;u, p), (1.4)

where τ ∈ R is an evolution parameter, aH , bH ∈ C1(R2n+1; Rn) and cH ∈
C1(R2n+1; R) are some expressions depending on the function H ∈ C2(R2n+1; R),
defining the surface SH (1.3). In particular, from the tangency condition of vector
field (1.4) to the surface SH one gets easily that〈

∂H

∂x
, aH

〉
+

〈
∂H

∂p
, bH

〉
+
∂H

∂u
cH = 0 (1.5)

for all (x;u, p) ∈ SH . Assume that at some while of time τ ∈ R the vector field
(1.4), if reduced upon the sub-surface S̄H ⊂ SH , satisfies the tangency condition
concerning the corresponding dual Monge cone K∗. The latter can be realized if to
take into account that upon the sub-surface S̄H ⊂ SH the following constraint

du− 〈p, dx〉 = 0 (1.6)

holds for all (x;u) ∈ S̄H ⊂ SH . As a result of (1.6) one gets easily that along the
vector field (1.4) the expression

cH − 〈p, aH〉 = 0 (1.7)

holds for all (x;u, p) ∈ SH . Thus the condition (1.5), owing (1.7), will take the form〈
∂H

∂x
+ p

∂H

∂u
, aH

〉
+

〈
∂H

∂p
, bH

〉
= 0, (1.8)

being true for all (x;u, p) ∈ SH . The simplest way to satisfy the identity condition
(1.8) is to take a smooth tensor field s(1|1) ∈ C1(Rn+1 × R

n; Rn ⊗ R
n) and put, by

definition,

bH := −
〈
s(1|1),∗,

∂H

∂x
+ p

∂H

∂u

〉
, aH :=

〈
s(1|1),

∂H

∂p

〉
, (1.9)
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where s(1|1),∗ is the adjoint to s(1|1) tensor, being the generalized expressions modeling
the well known [4, 5, 6] classical Hamilton type equations, generated by the Hamilton
function (1.1).

Definition 1.1. The vector fields (1.4) defined by means of expressions (1.9) are
called characteristics of the equation (1.1).

Denote now by Or(x;u, p) the orbit of the vector field (1.4), (1.9) through a point
(x;u, p) ∈ R

2n+1.

Definition 1.2. The set ΣH := ∪(x;u,p)∈⊀Or(x;u, p), where a set Σ ⊂ SH , is called
a characteristic strip of the equation (1.1).

Remark 1.1. It is to be noted here that the choice (1.9) is not unique which satisfies
the identity condition (1.8).

Before proceeding further we need to formulate the following lemma.

Lemma 1.1. If a function u ∈ C2(Rn+1; R) with the graph ΓH := {(x;u, ux) ∈
R

2n+1} solves the equation (1.1) and its characteristic strip ΣH has a common point
with the graph ΓH ⊂ SH , then the whole strip ΣH ⊂ ΓH .

Proof. Take a point (x(0);u(0), p(0)) ∈ ΣH ⊂ ΓH and put τ0 ∈ R being the value of
parameter τ ∈ R, corresponding to this point. Denote by l̄H a curve in R

n, such that

dx/dτ =
〈
s(1|1), ∂H/∂p

〉
, x|τ=τ0 = x(0). (1.10)

Let now lH ⊂ ΓH be a curve lying over the curve l̄H , that is its equations have the
form:

dx/dτ =
〈
s(1|1), ∂H/∂p

〉
, dp/dτ =

〈
∂(�u)/∂x,

〈
s(1|1), ∂H/∂p

〉〉
,

du/dτ =
〈
∂u/∂x,

〈
s(1|1), ∂H/∂p

〉〉
,

(1.11)

being considered at (x;u(x), p(x)) ∈ ΓH . For the theorem to be proved it is enough to
state that the vector-function (1.11) satisfies the characteristic set of equations (1.4)
at conditions (1.7) and (1.9) . Since (x(0);u(0), p(0)) ∈ lH ⊂ ΣH , owing to the
existence and unicity theorem for the characteristic equations (1.4) one can assert
that ΣH ⊂ ΓH . But it is easy to see that

〈
∂u/∂x,

〈
s(1|1), ∂H/∂p

〉〉
=

〈
p,

〈
s(1|1), ∂H/∂p

〉〉
= cH , (1.12)

and also, owing to (1.1), upon ΓH

∂H

∂x
+
∂H

∂u
p+

〈
∂H

∂p
,
∂p

∂x

〉
= 0. (1.13)
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Taking now into account (1.13) and (1.11), one finds easily that at p = ∂u(x)/∂x,
x ∈ R

n,
〈
∂(�u)/∂x, 〈s(1|1), ∂H/∂p〉〉 = − 〈

s(1|1), ∗, ∂H∂x + p∂H∂u
〉

= bH , thereby fini-
shing the proof.

As a consequence of this Lemma, one can formulate the following theorem.

Theorem 1.1. A function u ∈ C2(Rn; R) solves the equation (1.1) if and only if its
graph ΓH is woven of characteristic strips ΣH ⊂ SH , generated by vector field (1.4),
(1.7) and (1.9).

Proof. Let a function u ∈ C2(Rn; R) solves the equation (1.1). Through points if its
graph ΓH one can draw a characteristic strip ΣH , belonging to ΓH owing to the
Lemma 1.1. Conversely, let u ∈ C2(Rn; R) and graph ΓH is made of characteristic
bounds ΣH . Since at the same time there holds the condition H(x;u, p) = 0 along
characteristics ΣH the relationship p = ux holds too at each point (x;u, p) ∈ ΣH ⊂
ΓH . Thereby, the function u ∈ C2(Rn; R) solves the equation (1.1).

2. CHARACTERISTIC SURFACES RELATED WITH PARTIAL
DIFFERENTIAL EQUATIONS OF HIGHER ORDER

Consider the following differential expression

H(x;u, ux, uxx, . . . , umx) = 0, (2.1)

where a function u ∈ Cm+1(Rn; R) turns (2.1) into the identity. Such a function is
called the solution to (2.1), where the function H ∈ Cm+1(Rn+1×R

n×R
n(n+1)

2 , . . . ; R)
satisfies the natural condition |�umx

H| = 0. Similarly to the reasoning in Section 1
consider a surface SH ⊂ R

n+1 × R
N(m,n), where N(m,n) ∈ Z+ counts the whole

number of independent partial derivatives ukx, where k = 1,m:

SH :=
{(
x;u, p(1), . . . , p(m)

) ∈ R
n+1 × R

N(m,n) : H
(
x;u, p(1), . . . , p(m)

)
= 0

}
(2.2)

and
∣∣∇p(m)H

∣∣ �= 0 on SH . Now we proceed to constructing a characteristic strip
ΣH ⊂ SH by means of orbits of vector fields:

dx/dτ = ax
(
x;u, p(1), . . . , p(m)

)
,

du/dτ = cH
(
x;u, p(1), . . . , p(m)

)
,

dp(j)/dτ = b
(j)
H

(
x;u, p(1), . . . , p(m)

)
,

(2.3)

where a multi-index j ∈ Z
n
+ and |j| = 1,m, and (x;u, p(1), . . . , p(m)) ∈ R

n+1×R
N(m,n) .

The right handsides of (2.3) should be now chosen in such a way that for all
admissible τ ∈ R points

(
x(τ);u(τ), p(1)(τ), . . . , p(m)

) ∈ SH and, simultaneously, the
set of conditions: 〈

p(1), dx
〉
− du = 0,〈

p(1), dx
〉
− dp(1) = 0,〈

p(m), dx
〉
− dp(m−1) = 0

(2.4)
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together with 〈
∂H

∂x
, aH

〉
+

m∑
|j|=0

〈
∂H

∂p(j)
, b

(j)
H

〉
+
∂H

∂u
cH = 0 (2.5)

to be satisfied. From (2.4) one easily finds that:
〈
p(1), aH

〉
− cH = 0,〈

p(1), aH

〉
− b

(1)
H = 0,

. . .〈
p(m), aH

〉
− b

(m−1)
H = 0

(2.6)

for all points on SH . For the condition (2.5) to be satisfied identically on SH , one
can put owing to (2.6) that:

aH :=
〈
s(1|m),

∂H

∂p(m)

〉
,

b
(m)
H :=

〈
s(1|m),∗,

∂H

∂x
+ p(1) ∂H

∂u
+

〈
p(2),

∂H

∂p(1)

〉
+ · · · +

〈
p(m),

∂H

∂p(m−1)

〉〉
,

(2.7)

where s(1|m) ∈ C1(Rn+1 × R
N(m,n) ; Rn ⊗ R

N(m,n)) is some arbitrarily chosen tensor
field. Thereby the vector field (2.3) is now completely determined, generating the
characteristic strips ΣH in the unique way. Following the reasonings similar to those
from Section 1, one can formulate the following theorem.

Theorem 2.1. A function u ∈ C2(Rn; R) solves the partial differential equation
(2.1) iff its graph ΓH = {(x;u, ux) ∈ R

2n+1} is woven of characteristics strips ΣH ,
generated by vector field (2.3) under conditions (2.6) and (2.7).

3. THE STRUCTURE OF CHARACTERISTIC SURFACES
RELATED WITH SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS

Consider the following system of two partial differential equations:

H(1)(x;u(1), u(2), u(1)
x , u(2)

x ) = 0,

H(2)(x;u(1), u(2), u(1)
x , u(2)

x ) = 0,
(3.1)

where scalar functions H(1),H(2) ∈ C2(Rn × R
2 × R

2n; R) one mapping u1, u2 ∈
C2(Rn; R) are called solutions to (3.1), if they turn it into identity. Define, as above,
the following surface

SH :=
{

(x;u(1), u(2), p1, p2) ∈ R
n × R

2 × R
2n :

0 = H(1)(x;u(1), u(2), p1, p2), 0 = H(2)(x;u(1), u(2), p1, p2)
}

(3.2)
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under the condition
∣∣∇pH

(j)
∣∣ �= 0, j = 1, 2, and construct upon it some vector fields

both tangent to SH and compatible with the following set of natural Monge type
constraints:

du(1) − 〈p1, dx〉 = 0,

du(2) − 〈p2, dx〉 = 0,
(3.3)

valid for all points of some graph ΓH :=
{

(x;u(1)(x), u(2)(x), u(1)
x (x), u(2)

x (x))
}
⊂ SH ,

generated by two mappings u(1), u(2) ∈ C2(Rm; R). We will seek our tangent to SH
vector fields in the following general form:

dx/dτ = aH , du(1)/dτ = c
(1)
H , du(2)/dτ = c

(2)
H ,

dp1/dτ = b
(1)
H , dp2/dτ = b

(2)
H ,

(3.4)

where τ ∈ R is an evolution parameter, mappings aH and b
(j)
H ∈ C2(Rn × R

2 ×
R

2n; Rn), j = 1, 2, and mappings c(j)H ∈ C2(Rn×R
2×R

2n; R), j = 1, 2, simultaneously
satisfy upon SH the following tangency conditions:

〈
∂H(1)

∂x
, aH

〉
+

2∑
j=1

(
∂H(1)

∂u(j)
c
(j)
H +

〈
∂H(1)

∂pj
, b

(j)
H

〉)
= 0,

〈
∂H(2)

∂x
, aH

〉
+

2∑
j=1

(
∂H(2)

∂u(j)
c
(j)
H +

〈
∂H(1)

∂pj
, b

(j)
H

〉)
= 0.

(3.5)

From expressions (3.3) and (3.4) one easily gets that c(1)H =
〈
p(1), aH

〉
, c(2)H =

=
〈
p(2), aH

〉
,

2X
j=1

fi
s
(1|1)
1,j ,

∂H(1)

∂pj

fl
= aH =

2X
j=0

fi
s
(1|1)
2,j ,

∂H(2)

∂pj

fl
,

*
s
(1|1),∗
1,1 ,

∂H(1)

∂x
+

2X
k=1

pk
∂H(1)

∂u(k)

+
= −b

(1)
H =

*
s
(1|1)
2,1 ,

∂H(2)

∂x
+

2X
k=1

pk
∂H(2)

∂u(k)

+
,

*
s
(1|1),∗
1,2 ,

∂H(1)

∂x
+

2X
k=1

pk
∂H(1)

∂u(k)

+
= −b

(2)
H =

*
s
(1|1,∗)
2,2 ,

∂H(2)

∂x
+

2X
k=1

pk
∂H(2)

∂u(k)

+
,

(3.6)

where tensor fields s(1|1)j,k ∈ C2(Rn×R
2×R

2n; Rn⊗R
n), j, k = 1, 2, must be compatible

with conditions (3.6). If the surface SH defined by (3.2) is not empty, one can easily
show that the suitable tensor fields satisfying (3.6) do exist, thereby there exist the
corresponding characteristic strips ΣH , woven with orbits of the vector field (3.4).

Remark 3.1. It is clear enough that in the case of only one partial differential
equation of the form (3.1) conditions (3.6) determine the sought tangent vector field
(3.4) uniquely, that is seen from the constraint H1 = H2 and natural conditions
s
(1|1)
i,j := s

(1|1)
j ∈ C2(Rn×R

2 ×R
2n; Rn⊗R

n), i, j = 1, 2, being suitable smooth tensor
fields. Similar analysis as above can be evidently applied also to systems of partial
differential equations of higher order.
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4. CONCLUSION

We considered some aspects of existence characteristic surfaces related with partial
differential equations of first and higher orders. In particular, the geometric structure
of characteristic surfaces was analyzed by means of some specially generalized vector
fields, constructed in accordance with a given partial differential equation of first
order, and then generalized for that of higher order making use of specially defined
tensor fields. Since the constructed vector fields can possess in the general case
some important properties, it is a very interesting problem to make use of them
for studying asymptotic behavior of solutions [3, 7, 8, 9] to our partial differential
equations under suitable boundary conditions. These and related problems we plan
to study in more detail in part 2 of this work.
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