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TOPOLOGICAL APPROACH TO CHAIN RECURRENCE
IN CONTINUOUS DYNAMICAL SYSTEMS

Abstract. In this paper we present equivalent definitions of chain recurrent set for
continuous dynamical systems. This definitions allow us to define chain recurrent set in
topological spaces.
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1. INTRODUCTION

In his paper [4] Conley defined weak form of recurrence called chain recurrence.
Theory of chain recurrence is much developed, especially in the theory of discrete
dynamical systems [1, 2, 3] and it is essential part of stability theory. When we make
computer simulation, calculating orbit of a point in each step we have rounding errors,
so each time we obtain pseudo-orbit (ε-chain) instead of true orbit of observed point.
So we will rather detect chain recurrent points than periodic orbits in computer
experiments.

Chain recurrent set of continuous dynamical system on compact metric space
has many interesting properties: it is closed, flow invariant and restriction of the flow
to chain recurrent set does not change chain recurrent points. It is also well known
that flow restricted to limit set of any point in X is chain recurrent.

To define chain recurrent point in a way proposed by Conley we need to have flow
on metric space. However authors of [3] proved that in a case of discrete dynamical
systems given by homeomorphisms f chain recurrent points and chain recurrent set
may be defined in a equivalent way, using asymptotically stable sets or topological
properties of f . We will show that similar results may be obtained in a case of
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continuous dynamical systems. This result show that chain recurrent set depends
only on the topology of X.

In this paper we will give two equivalent definitions of chain recurrent set. We
will show that point x is chain recurrent iff it belongs to the set given by intersection
of all asymptotically stable sets containing positive limit set L+(x) of x. We will also
show that point is not chain recurrent if and only if it has open neighborhood of
a special kind (see Definition 16).

2. CHAIN RECURRENCE

Let X be a compact metric space with metric d. We say that a continuous function
ϕ : R×X → X is a flow (dynamical system) if ϕ(0, x) = x and ϕ(s, ϕ(t, x)) =
= ϕ(s+ t, x) for any s, t, x. We will usually write ϕ(I×A) = ϕ(I, A) and ϕt = ϕ(t, ·).
If I = {t} we will write ϕ(t, A).

By an orbit of point x we mean the set o(x) = {ϕ(t, x) : t ∈ R} and by po-
sitive (negative) semiorbit we mean the set o+(x) = {ϕ(t, x) : t ≥ 0} (o−(x) =
= {ϕ(t, x) : t ≤ 0}).

For a given point x we define positive limit set (or ω-limit set) of x as L+(x) =
= {y ∈ X : ϕ(tn, x) → y for some tn → ∞}.

A set A is said to be positively (resp. negatively) invariant if o+(x) ⊂ A (resp.
o−(x) ⊂ A) for every x ∈ A. If A is both positively and negatively invariant then we
say that it is invariant.

Let (X,ϕ) be a flow and let x, y ∈ X. Given ε > 0 and T > 0 an (ε, T )-chain
from x to y is a pair of finite sets of points {x0, . . . , xp+1} and {t0, . . . , tp} such that
x = x0, y = xp+1, tj > T and d(ϕ(tj , xj), xj+1) < ε for j = 0, . . . , p.

If for any ε > 0 and T > 0 there exists (ε, T )-chain from x to y then we write
xPy. Point x is chain-recurrent if xPx and the set CR(ϕ) = {x | xPx} is said to be
chain recurrent set of ϕ.

We recall that chain recurrent set is closed and invariant. It is also known that
that connected components of CR(ϕ) are equivalence classes of the relation ∼ where
x ∼ y iff xPy and yPx (see [4, Thm. 3.1]). Moreover set of chain recurrent points
does not change if we restrict flow to the set CR(ϕ) [6, Prop. 2.1]. Similar theory is
developed for discrete dynamical systems (see [2, 1]).

3. ASYMPTOTICAL STABILITY

In this section we will prove some properties of asymptotically stable sets. This
properties will be useful in the next section.

Let X be a compact metric space with metric d and let A ⊂ X be closed and
positively invariant. Set A is said to be stable if for every open neighborhood U of
A exists open neighborhood V of A such that for every x ∈ V positive semiorbit
o+(x) ⊂ A. If A is stable and there exists its open neighborhood U0 such that
L+(x) ⊂ A for every x ∈ U0 then A is called asymptotically stable.
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Theorem 1. Let A be asymptotically stable. Then there exists open neighborhood U0

of A such that if U is any open neighborhood of A then exists TU > 0 with property
that

∀ x ∈ U0 o+(ϕ(TU , x)) ⊂ U.

Proof. Set A is asymptotically stable so there exists open neighborhood W of A such
that L+(x) ⊂ A for any x ∈ W . Sets A and X\W are compact, so there exists open
set U0 with property that A ⊂ U0 ⊂ U0 ⊂ W . Observe that L+(x) ⊂ A for any point
x ∈ U0.

Let us take any open neighborhood U of A. We may also assume that U ⊂ U0.
There exists open neighborhood V of A such that o+(x) ⊂ U for any x ∈ V .
Furthermore

∀ x ∈ U0 ∃sx > 0 ϕ(sx, x) ∈ V.

Map ϕsx is continuous so there exists open neighborhood Wx of x such that
ϕsx(Wx) ⊂ V . Set U0 is compact and family {Wx} is its open cover, so we may
choose finite cover Wx1 , . . . ,Wxp of U0. As for any y ∈ Wxi and t > sxi we have
ϕ(t, y) ∈ U it is enough to take TU = maxi=1,...,p{sxi}.
Theorem 2. Let A be closed and positively invariant set. If there exists open neigh-
borhood U0 of A such that for any open neighborhood U of A exists time TU > 0 with
property

∀ x ∈ U0 o+(ϕ(TU , x)) ⊂ U

then A is asymptotically stable.

Proof. We must only show that A is stable. Let us assume that it is false. There
exists open neighborhood U of A and sequences {tk}, {xk} such that

xk → x0 ∈ A, tk > 0, ϕ(tk, xk) /∈ U.

However tk < TU and we may assume that tk → t0 ∈ [0, Tu]. Set A is positively
invariant and ϕ is continuous, so ϕ(xk, tk) → ϕ(x0, t0) ∈ A ∩ (X\U) = ∅.
Theorem 3. Let A be closed and positively invariant set. If there exists open neigh-
borhood V of A fulfilling following conditions:

∃ TV > 0 ∀ x ∈ V o+(ϕ(TV , x)) ⊂ V (3.1)
⋂

n∈N

ϕ(nTV , V ) ⊂ A (3.2)

then A is asymptotically stable.

Proof. Let U0 = V . We will show that U0 fulfills assumptions of Theorem 2.
Let us take any open neighborhood U of A and observe that ϕ(TV , V ) ⊂ V ⊂ V .

This implies that ϕ(nTV , V ) ⊂ ϕ((n − 1)TV , V ) and so sets ϕ(nTV , V ) forms

Topological Approach to Chain Recurrence in Continuous Dynamical Systems 263



decreasing family. Then by condition (3.2) exists positive integer n such that
ϕ(nTV , V ) ⊂ U and so for any x ∈ U0

o+
(
ϕ((n + 1)TV , x)

)
= ϕ

(
nTV , o+(ϕ(TV , x))

) ⊂ ϕ
(
nTV , V

) ⊂ U.

It is enough to take TU = nTV to finish the proof.

Corollary 4. Let V be open set which fulfills condition (3.1). In this case set

A =
⋂

n∈N

ϕ
(
nTV , V

)

is asymptotically stable.

Theorem 5. Let A be asymptotically stable. There exists open neighborhood W of A
fulfilling conditions:

∃ TW > 0 ∀ x ∈ W o+
(
ϕ(TW , x)

) ⊂ W (3.3)
⋂

n∈N

ϕ
(
nTW ,W

) ⊂ A (3.4)

Furthermore, if U is open neighborhood of A, then W may be chosen in a way that
A ⊂ W ⊂ W ⊂ U .

Proof. Theorem 1 implies that there exists open neighborhood U0 of A such that for
any open neighborhood U of A exists TU > 0 with property

∀ x ∈ U0 o+
(
ϕ(TU , x)

) ⊂ U.

Sets A and X\U0 are compact, so there exists open neighborhood W of A such that
A ⊂ W ⊂ W ⊂ U0. If U is fixed we may choose W in a way that W ⊂ U .

Observe that there exists TW > 0 such that

∀ x ∈ U0 o+
(
ϕ(TW , x)

) ⊂ W.

This implies that W fulfills condition (3.3) and family
{
ϕ(nTW ,W )

}
is decreasing.

Then to prove (3.4) it is enough to find N large enough to have ϕ(NTW ,W ) ⊂ U .
By the definition of U0 there exists time TU > 0 such that

∀ x ∈ U0 o+
(
ϕ(TU , x)

) ⊂ U (3.5)

Let us take positive integer NU such that NUTW > TU . Condition (3.5) implies
that ϕ(NUTW ,W ) ⊂ U .

Corollary 6. Let sets A1 be A2 asymptotically stable. Then set A = A1 ∩A2 is also
asymptotically stable.

Remark 7. Let A be closed and positively invariant set. Theorems 1 and 2 give
equivalent definition of asymptotical stability of A. Theorems 3 and 5 give another
one.
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4. EQUIVALENT DEFINITIONS OF CHAIN RECURRENT SET

In this section we will assume that (X, d) is a compact metric space and ϕ is a flow.
However most of techniques used in this and previous section will work in the case
that X is T2 topological space and ϕ is semi-dynamical system.

Definition 8. Let A(x) denote the family of the sets

A(x) =
{
A | L+(x) ⊂ A and A is asymptotically stable

}
.

By Q(x) we will denote the set

Q(x) =
⋂

A∈A(x)

A.

Remark 9. Set Q(x) is closed and positively invariant.

Definition 10. The set of all points y ∈ X such that there exists
(

1
n , n

)
-chain from

x to y will be denoted by Rn(x).

Lemma 11. Set Rn(x) has following properties:

Rn(x) is open (4.6)

y ∈ Rn(x) =⇒ o+
(
ϕ(4n, y)

) ⊂ Rn(x) (4.7)

o+
(
ϕ(4n, x)

) ⊂ Rn(x) and L+(x) ⊂ Rn(x) (4.8)

Proof. Let sequences
{x, x1, . . . , xp, y}, {t1, . . . , tp}

form
(

1
n , n

)
-chain from x to y. By the definition d(ϕ(tp, xp), y) < 1

n , so there exists
δ > 0 such that d(ϕ(tp, xp), y) + δ < 1

n . Then for any point z ∈ K(y, δ) sequences

{x, x1, . . . , xp, z}, {t1, . . . , tp}

form
(

1
n , n

)
-chain from x to y. This implies that ball B(y, δ) ⊂ Rn(x) and Rn(x) is

open. This proves condition (4.6).
Let y ∈ Rn(x). Then there exists sequence {xk} ⊂ Rn(x) such that xk → y ∈

Rn(x). Map ϕ2n is continuous so there exists δ > 0 such that

∀x ∈ X d(x, y) < δ =⇒ d(ϕ2n(x), ϕ2n(y)) <
1
n
.

Let us take K ∈ N large enough to have d(xK , y) < δ. Point xK ∈ Rn(x) so there
exists sequences

{x, x1, . . . , xp, xK}, {t0, . . . , tp}
forming

(
1
n , n

)
-chain from x to xK .
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Observe that sequences

{x, x1, . . . , xp, xK , ϕ(2n, y), ϕ(2n + t, y)}, {t0, . . . , tp, 2n, t}

form
(

1
n , n

)
-chain from x to ϕ(t, y) for any t > n. This proves condition (4.7).

Sequences {x, ϕ(t, x)}, {t} form
(

1
n , n

)
-chain iff t > n. This implies that for any

fixed T > 0 we have inclusion o+(ϕT (x)) ⊂ Rn(x). If y ∈ L+(x) then there exists
T > 0 such that d(ϕ(T, x), y) < 1

n . Then sequences {x, y}, {T} form
(

1
n , n

)
-chain

from x to y and we obtain condition (4.8).

Theorem 12. If y ∈ Q(x) then xPy.

Proof. It is enough to show that for any n ∈ N point y ∈ Rn(x). Let us take any
n ∈ N and let V = Rn(x). Set V is open and for TV = 4n we have

∀ x ∈ V o+
(
ϕ(TV , x)

) ⊂ V.

The set A =
⋂

n∈N
ϕ(nTV , V ) is, by Corollary 4, asymptotically stable. By (4.8)

we have inclusion L+(x) ⊂ A. Observe that y ∈ Q(x) ⊂ A ⊂ Rn(x).

Lemma 13. If U is open neighborhood of Q(x) then there exists asymptotically stable
set A such that

Q(x) ⊂ A ⊂ U.

Proof. Let A be the family of asymptotically stable sets containing L+(x). Observe
that A �= ∅ as it contains X.

Suppose that there exists open neighborhood U of Q(x) such that A∩(X\U) �= ∅
for any A ∈ A. Let us denote by S the family

S = {SA = A ∩ (X\U) : A ∈ A}.

By Corollary 6 family S is centered, so there exists y ∈ X such that

∀ A ∈ A y ∈ SA.

It is a contradiction, as otherwise y ∈ Q(x) ∩ (X\U) = ∅.
Theorem 14. If xPy, then y ∈ Q(x).

Proof. Suppose that y /∈ Q(x) and observe that then there exists open neighborhood
U of Q(x) such that y /∈ U . Lemma 13 guaranties that there exists asymptotically
stable set A such that Q(x) ⊂ A ⊂ U . By Theorem 5 there exists open set W and
time TW such that A ⊂ W ⊂ W ⊂ U and conditions (3.3) and (3.4) are fulfilled. For
any z ∈ W we have inclusion

o+(ϕ(2TW , z)) = ϕ
(
TW , o+(ϕ(TW , z))

) ⊂ ϕ(TW ,W ) ⊂ ϕ(TW ,W ) ⊂ W.
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If we take ε > 0 small enough to have d(ϕ(TW ,W ), X\W ) > ε then for any
T > 2TW every (ε, T )-chain starting in x must end in W and it is in contradiction
with xPy.

Corollary 15.
x ∈ CR(ϕ) ⇐⇒ x ∈ Q(x)

Proof. Consequence of Theorem 12 and 14.

Definition 16. We define set CRT (ϕ) in a following way. Point x ∈ CRT (ϕ) iff
there do not exist open set U and time TU > 0 such that

∀ y ∈ U o+
(
ϕ(TU , y)

) ⊂ U (4.9)

x /∈ U and ϕ(TU , x) ∈ U (4.10)

Remark 17. It is enough to assume that x /∈ U in Definition 16.

Proof. Suppose that x ∈ ∂U and U fulfills conditions (4.9) and (4.10).
Then

∀ y ∈ U o+
(
ϕ(2TU , y)

)
= ϕ

(
TU , o+(ϕ(TU , y))

) ⊂ ϕ(TU , U) ⊂ ϕ(TU , U) ⊂ U

and there exists open set W such that

ϕ(TU , U) ⊂ W ⊂ W ⊂ U.

Let us take TW = 2TU and observe that

ϕ(TW , x) = ϕ
(
TU , ϕ(TU , x)

) ∈ ϕ(TU , U) ⊂ W.

We may replace U by W to keep both conditions (4.9) and (4.10) fulfilled.

Theorem 18.
x ∈ CRT (ϕ) ⇐⇒ x ∈ Q(x)

Proof. Suppose that x /∈ CRT (ϕ). There exists open set V and time TV > 0 such
that

∀ y ∈ V o+
(
ϕ(TU , y)

) ⊂ V.

By Corollary 4 we obtain that the set

A =
⋂

n∈N

ϕ(nTV , V )

is asymptotically stable.
We have inclusion L+(x) ⊂ A and then Q(x) ⊂ A ⊂ V . But x /∈ V and so

x /∈ Q(x).
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To prove second implication let us assume that x /∈ Q(x). Then there exists
asymptotically stable set A such that x /∈ A and L+(x) ⊂ A. By Theorem 5 there
exists open neighborhood U of A such that conditions (3.3) and (3.4) are fulfilled and
x /∈ U . Inclusion L+(x) ⊂ A implies that there exists T > 0 such that ϕ(x, T ) ⊂ U .
Takeing this U to Definition 16 we obtain that x /∈ CRT (ϕ). The proof is ended.

Corollary 19. Sets CR(ϕ) and CRT (ϕ) are equal.

Remark 20. Proof of Theorem 18 and definitions of sets Q(x) and CRT (ϕ) need only
that X is T2 (Hausdorf) topological space. This allows us to define chain recurrent sets
in topological spaces, and in metric spaces this definitions are equivalent to classical
Conley definition.

Remark 21. All presented results stay true when ϕ is a semi-dynamical system.
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