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A NOTE ON GEODESIC
AND ALMOST GEODESIC MAPPINGS
OF HOMOGENEOUS RIEMANNIAN MANIFOLDS

Abstract. Let M be a differentiable manifold and denote by V and V two linear
connections on M. V and V are said to be geodesically equivalent if and only if they have
the same geodesics. A Riemannian manifold (M, g) is a naturally reductive homogeneous
manifold if and only if V and V=V-T are geodesically equivalent, where 7T is a
homogeneous structure on (M, g) ([7]). In the present paper we prove that if it is possible
to map geodesically a homogeneous Riemannian manifold (M,g) onto (M ,%), then the
map is affine. If a naturally reductive manifold (M, g) admits a nontrivial geodesic mapping
onto a Riemannian manifold (M,g) then both manifolds are of constant cutvature. We
also give some results for almost geodesic mappings (M, g) — (M, %)
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1. INTRODUCTION

Let (M, g) be an n-dimensional Riemannian manifold of class C*°. Let (M) be the
ring of differentiable functions and X(M) the F(M)—module of differentiable vector
fields on M. A complete and simply connected manifold (M, g) is homogeneous if
there exists a transitive and effective group G of isometries of M. Ambrose and
Singer proved (see [7]) that a complete and simply connected Riemannian manifold
(M, g) is homogeneous if and only if there exists a tensor field T of type (1,2) such

that:
(VxR)yz =[Tx,Ryz] — Rryvz — Ryryz, (1.1)
(VxT)y = [Tx,Ty] = Tryy,
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for X,Y,Z € X(M). Here V and R denote the Levi-Civita connection and the
Riemannian tensor field, respectively. A tensor field T satisfying the conditions (1.1)
on M is called a homogeneous structure on (M, g). It is easy to see that the conditions
(1.1) are equivalent to

(Vxg) (v.2) =0, (VxR)(v.2)=0, (VxT)(V,Z)=0  (12)
where V is the connection determined by
VxY =VyxY —T(X,Y). (1.3)

where T(X,Y) =TxY, X,Y,Z € X(M).

In [7] F. Tricerri and L. Vanhecke studied the decomposition of the space of
all the tensors T satisfying the conditions (1.1) into the irreducible components
under the action of orthogonal group. As is well-known, a geodesic in a Riemannian
manifold M is a curve of ¢: I — M whose tangent vector field ¢ is parallel along ¢ (I
is an open interval in the real line R'). A curve c is almost geodesic in a Riemannian
manifold M if there exists a 2— dimensional distribution E? complanar along c, to
which the tangent vector ¢ of this curve belongs at every point. Let (M,V) be a
differentiable manifold with a linear symmetric connection V. A mapping f: (M, g)
— (M, V) is called geodesic or projective if f carries geodesics in M to geodesics in
M. The mapping f is an almost geodesic mapping if, as a result of f, every geodesic
in the manifold M passes into an almost geodesic curve in the manifold M. If M
coincides with M and f is a diffeomorphism, f is called a geodesic or an almost
geodesic transformation of M.

It is well known, that the identity transformation is geodesic if and only the
connection deformation tensor P(X,Y) = VxY — VxY has the form ([1, 2, 3, 5])

P(X,Y) = (X)Y +(Y)X, (1.4)

where 1 is a certain 1-form and V denotes the Levi—Civita connection of (M, g),
X, Y e X(M).

In this case, V and V are said to be geodesically (or projectively) equivalent
or geodesically (projectively) related. Two such connections define the same system
of geodesics. Obviously ~ is an equivalence relation and an equivalence class [V]
containing V is called a projective structure on M.

Sinyukow [5] defined three kinds of almost geodesic mappings, namely 7, o
and 73 which are characterized, respectively, by the conditions:

m: 6 [(VxP)Y,Z)+P(P(X,Y),Z) —a(X,Y)Z — P(X,Y)b(Z)] = 0
X,Y,Z (1.5)
(6 is cyclic sum),
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m: P(X,Y) = ¢(X)Y +¢(Y)X + F(X)p(Y) + F(Y)p(X),
(VxE)(Y) + (Vy F)(X) + F(F(X))p(Y) + F(F(Y))p(X) = (1.6)
= p(X)EY) +pY)FX) + p(X)Y + p(Y)X;

m3: P(X,Y) = (X)Y + (V)X +a(X,Y)r,

1.
Vxv=0(X)v+ X, ANeEF(M); X,Y,Z € X(M), (17)

where P(X,Y) = VxY — VxY is the connection deformation tensor and ¢, ¥, b, 0,
p, v, a, F are tensors of the corresponding types.

In the present paper we shall study a geodesic and an almost geodesic related
connections V and V =V — T, where T is a homogeneous structure on (M, g).

2. GEODESIC MAPPINGS OF HOMOGENEOUS RIEMANNIAN MANIFOLDS

By [7], Theorem 6.8, a complete and simply connected Riemannian manifold (M, g)
is naturally reductive homogeneous manifold if and only if there exists a tensor field
T of type (1,2) satisfying the conditions (1.1) and such that ¥V and V are geodesically
equivalent.

Now we shall prove

Lemma 2.1. Ifit is possible to map geodesically a homogeneous Riemannian manifold
(M, g) onto a manifold (M,V), then the map is affine.

Proof. The connections V and V are geodesically equivalent if and only if the
connection deformation D have the form

D(X,Y) = =T(X,Y) = (X)Y + (V)X + 5(X,Y) (2.1)
where 1 is a 1-form and the tensor field S satisfies
S(X,Y)+ S5, X)=0.

We put

P(X,Y) = 2 (T(X,Y) + T(Y, X))

1
2
and o o

P(X,)Y,Z2) =g(P(X,Y), Z).
From (1.1 (i)) we obtain

0
& P(X.Y,Z)=0.
X.\Y,Z

Hence and from (2.1) we have
P(X)g(Y, 2) +9(Y)g(X, 2) + ¢(Z2)9(X,Y) = 0.

Therefore ¢(X) = 0 for all X € X(M). This completes the proof. O
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If T =0, then (1.1) implies that (M, g) is a symmetric manifold. In view of the
Sinyukov theorem we obtain: if it is possible to map geodesically a complete and
simply connected Riemannian manifold with the homogeneous structure 7' = 0 into
a manifold (M,g) then both manifolds are of constant sectional curvature.

Let (M, g) be a connected Riemannian manifold and suppose M admits a non-
trivial homogeneous structure T by

T(X,Y,Z) +T(Y.X,Z) =0, (2.2)

where X,Y, Z € X(M).
From (1.1) and (2.2) we get easily.

Lemma 2.2. Let (M, g) be a connected Riemannian manifold with the homogeneous
structure of type (2.2). Then Ricci tensor on M satisfies

& (VxRi)(Y.2) =0. (2.3)

Now we shall prove

Theorem 2.1. If it is possible to map geodesically on (M, g) satysfying (2.3) onto a
manifold (M,g), then both manifolds are of constant curvature.

Proof. As is well-known a manifold (M, g) admits a geodesic mapping if and only if
there exists a function ¢ € F(M) and a symmetric non-singular bilinear form a on
M satisfying

(Vxa) (Y, Z) = (Yo)g (X, Z) + (Z¢)g (X,Y) (2.4)
for all X,Y,Z € X(M) ([5]).

Let p € M be such that dp # 0 and (2.4) hold at p. Choose a local coordinate
system (U, x) so that p € U. By Rﬁjk, Rik, Gik, aik, i we denote the components
of the tensors R, Ric, g, a and the Hessian Hp of ¢ in this coordinate system.
Differentiating covariantly (2.4) and applying the Ricci identity we get

ait Ry + a; Ry = Quigin + 01igik — Prigjt — Prjdit- (2.5)

Differentiating covariantly (2.5) with respect to ™, contracting with g™ and apply-
ing the Ricci identity, by (2.4) and (2.3), we obtain

401 Ry = 3R 15 — ApRji + 4i Ry — 3gjuRige + ajgin — argjs, (2.6)
where a; = Vgpigt*. Transvecting (2.6) with ¢g/% we get Rip, = pp;, p € F(U).
Following considerations made in [6] we get

ajpe =T, @i =Api,  T,AEFU),

and finally we obtain
Hy(X,Y) = 0(p)g(X,Y) (2.7)

where H, is the Hessian of ¢ and & € F(M).
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By [7] if a complete and simply connected manifold with homogeneous structure
T admits condition (2.7), then the manifold (M,g) is of constant curvature. This
completes the proof. O
From Lemmas 2.1 i 2.2 and Theorem 2.1 we obtain

Theorem 2.2. On a homogeneous manifold the geodesic of V and V =V-T are the
same if and only if M is naturally reductive. The geodesic mapping (M, g) — (M, %) is
affine. If a naturally reductive manifold (M, g) admits a non-trivial geodesic mapping
onto a Riemannian manifold (M,g), then both manifolds are of constant curvature.

3. ALMOST GEODESIC MAPPINGS OF HOMOGENEOUS MANIFOLDS
On the basis [7] the most general form of the structure tensor 7' is following

TX,Y)=g(X, V)P —g(D, V)X + %(X,Y) (3.1)

2
where ® is a given vector field on (M, g) and T is a tensor field such that

o(T(X.Y), Z) + g(Y,T(X, Z)) = 0. (3.2)

~ 2
VT =0,
2 L)
Ci2(T) =Y T(X;, X;) =0,
i=1

where X is the base vector of the natural frame.

We put
P(X,Y) = 5 (X)Y +9(V)X) ~ (X, V),
S(XY) = 5 XY — p(V)X)),
1 /2 2 (3.3)
PX,)Y)= —5 (T(X, Y)+T(Y, X)) ,
S0ey) = (fn - o).

and L )
P(X,Y)=P(X,Y)+ P(X,Y)

S(X,Y) = S(X,Y) + S(X,Y)
where ¢¥(X) = g(X, D).

Here P denotes the symmetric part of the tensor field T' and S — the skew-
symmetric one.
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Then we have B
VxY =VxY+P(X,Y)+ S(X,Y). (3.4)

and the connection deformation tensor D have the form
D(X,Y)=P(X,Y)+ S(X,Y) (3.5)
for all X,Y € X(M).
We shall prove

Theorem 3.1. On the homogeneous Riemannian manifold the connections V and
V defined by (3.3) and (3.4) are almost geodesically related if and only if the tensor
2 2

fields P and S satisfy the relations

xSz (VxP)(Y.Z) + P(P(X,Y), 2) - P(X,Y)b(Z) — P(X,$)g(Y, Z)+

— Ig(é(X, Y),Z) - g*(x, V)g(Y, Z)+ (3.6)

— X, Y)Vzp + k(X,Y, Z2) + (X, Y)Z| =0,

where: b, d, h, k, q are tensors of the corresponding types.

Proof. By [5] the mapping V — V is almost geodesic if and only if the connection
deformation tensor D satisfies the relations

(V,Dhy+ D}, DY) X*APXT = bDL AN + a A (3.7)

where \! = ‘% denotes the vector tangent to the geodesic c(t) = (¢!(t)). We conclude
from (3.3), (3.4), (3.5), (3.7) that (3.6) holds. This proves the theorem. O

2 2
Corollary 3.1. If P =0 and S = 0 then the almost geodesic mapping is of the kind
(1.7).

2 2
Corollary 3.2. If P =0 and S = 0 then a homogeneous Riemannian manifold is
a manifold of constant curvature (see [7]).

Corollary 3.3. If g(X,Y)V 2+ g(X, V) P(Z, 1)+ g(X, Y)S(Z, )+ (X, Y, Z)b = 0

then the almost geodesic mapping (3.6) is of the kind (1.5).
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