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A NOTE ON GEODESIC
AND ALMOST GEODESIC MAPPINGS

OF HOMOGENEOUS RIEMANNIAN MANIFOLDS

Abstract. Let M be a differentiable manifold and denote by ∇ and e∇ two linear
connections on M . ∇ and e∇ are said to be geodesically equivalent if and only if they have
the same geodesics. A Riemannian manifold (M, g) is a naturally reductive homogeneous
manifold if and only if ∇ and e∇ = ∇ − T are geodesically equivalent, where T is a
homogeneous structure on (M, g) ([7]). In the present paper we prove that if it is possible
to map geodesically a homogeneous Riemannian manifold (M, g) onto (M, e∇), then the
map is affine. If a naturally reductive manifold (M, g) admits a nontrivial geodesic mapping
onto a Riemannian manifold (M, g) then both manifolds are of constant cutvature. We
also give some results for almost geodesic mappings (M, g) → (M, e∇).
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1. INTRODUCTION

Let (M, g) be an n-dimensional Riemannian manifold of class C∞. Let F(M) be the
ring of differentiable functions and X(M) the F(M)−module of differentiable vector
fields on M . A complete and simply connected manifold (M, g) is homogeneous if
there exists a transitive and effective group G of isometries of M . Ambrose and
Singer proved (see [7]) that a complete and simply connected Riemannian manifold
(M, g) is homogeneous if and only if there exists a tensor field T of type (1, 2) such
that:

(i) g(TXY,Z) + g(Y, TXZ) = 0,

(ii) (∇XR)Y Z = [TX , RY Z ] − RTXY Z − RY TXZ ,

(iii) (∇XT )Y = [TX , TY ] − TTXY ,

(1.1)
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for X,Y, Z ∈ X(M). Here ∇ and R denote the Levi–Civita connection and the
Riemannian tensor field, respectively. A tensor field T satisfying the conditions (1.1)
on M is called a homogeneous structure on (M, g). It is easy to see that the conditions
(1.1) are equivalent to(

∇̃Xg
)

(Y, Z) = 0,
(
∇̃XR

)
(Y, Z) = 0,

(
∇̃XT

)
(Y,Z) = 0 (1.2)

where ∇̃ is the connection determined by

∇̃XY = ∇XY − T (X,Y ) . (1.3)

where T (X,Y ) = TXY, X, Y, Z ∈ X(M).
In [7] F. Tricerri and L. Vanhecke studied the decomposition of the space of

all the tensors T satisfying the conditions (1.1) into the irreducible components
under the action of orthogonal group. As is well-known, a geodesic in a Riemannian
manifold M is a curve of c : I → M whose tangent vector field ċ is parallel along c (I
is an open interval in the real line R1). A curve c is almost geodesic in a Riemannian
manifold M if there exists a 2− dimensional distribution E2 complanar along c, to
which the tangent vector ċ of this curve belongs at every point. Let (M,∇) be a
differentiable manifold with a linear symmetric connection ∇. A mapping f : (M, g)
→ (M,∇) is called geodesic or projective if f carries geodesics in M to geodesics in
M . The mapping f is an almost geodesic mapping if, as a result of f , every geodesic
in the manifold M passes into an almost geodesic curve in the manifold M . If M

coincides with M and f is a diffeomorphism, f is called a geodesic or an almost
geodesic transformation of M .

It is well known, that the identity transformation is geodesic if and only the
connection deformation tensor P (X,Y ) = ∇XY −∇XY has the form ([1, 2, 3, 5])

P (X,Y ) = ψ(X)Y + ψ(Y )X, (1.4)

where ψ is a certain 1-form and ∇ denotes the Levi–Civita connection of (M, g),
X,Y ∈ X(M).

In this case, ∇ and ∇ are said to be geodesically (or projectively) equivalent
or geodesically (projectively) related. Two such connections define the same system
of geodesics. Obviously ∼ is an equivalence relation and an equivalence class [∇]
containing ∇ is called a projective structure on M .

Sinyukow [5] defined three kinds of almost geodesic mappings, namely π1, π2

and π3 which are characterized, respectively, by the conditions:

π1 : S
X,Y,Z

[(∇XP )(Y, Z) + P (P (X,Y ), Z) − a(X,Y )Z − P (X,Y )b(Z)] = 0

(S is cyclic sum),
(1.5)
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π2 : P (X,Y ) = ψ(X)Y + ψ(Y )X + F (X)ϕ(Y ) + F (Y )ϕ(X),

(∇XF )(Y ) + (∇Y F )(X) + F (F (X))ϕ(Y ) + F (F (Y ))ϕ(X) =

= µ(X)F (Y ) + µ(Y )F (X) + ρ(X)Y + ρ(Y )X;

(1.6)

π3 : P (X,Y ) = ψ(X)Y + ψ(Y )X + a(X,Y )ν,

∇Xν = θ(X)ν + λX, λ ∈ F(M); X,Y, Z ∈ X(M),
(1.7)

where P (X,Y ) = ∇XY −∇XY is the connection deformation tensor and ϕ, ψ, b, θ,
ρ, ν, a, F are tensors of the corresponding types.

In the present paper we shall study a geodesic and an almost geodesic related
connections ∇ and ∇̃ = ∇− T , where T is a homogeneous structure on (M, g).

2. GEODESIC MAPPINGS OF HOMOGENEOUS RIEMANNIAN MANIFOLDS

By [7], Theorem 6.8, a complete and simply connected Riemannian manifold (M, g)
is naturally reductive homogeneous manifold if and only if there exists a tensor field
T of type (1, 2) satisfying the conditions (1.1) and such that ∇̃ and ∇ are geodesically
equivalent.

Now we shall prove

Lemma 2.1. If it is possible to map geodesically a homogeneous Riemannian manifold
(M, g) onto a manifold (M, ∇̃), then the map is affine.

Proof. The connections ∇ and ∇̃ are geodesically equivalent if and only if the
connection deformation D have the form

D(X,Y ) = −T (X,Y ) = ψ(X)Y + ψ(Y )X + S(X,Y ) (2.1)

where ψ is a 1-form and the tensor field S satisfies

S(X,Y ) + S(Y,X) = 0.

We put
0

P (X,Y ) =
1
2

(T (X,Y ) + T (Y,X))

and
0

P (X,Y, Z) = g(
0

P (X,Y ), Z).

From (1.1 (i)) we obtain

S
X,Y,Z

0

P (X,Y, Z) = 0.

Hence and from (2.1) we have

ψ(X)g(Y, Z) + ψ(Y )g(X,Z) + ψ(Z)g(X,Y ) = 0.

Therefore ψ(X) = 0 for all X ∈ X(M). This completes the proof.
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If T = 0, then (1.1) implies that (M, g) is a symmetric manifold. In view of the
Sinyukov theorem we obtain: if it is possible to map geodesically a complete and
simply connected Riemannian manifold with the homogeneous structure T = 0 into
a manifold (M, g) then both manifolds are of constant sectional curvature.

Let (M, g) be a connected Riemannian manifold and suppose M admits a non-
trivial homogeneous structure T by

T (X,Y, Z) + T (Y,X,Z) = 0, (2.2)

where X,Y, Z ∈ X(M).
From (1.1) and (2.2) we get easily.

Lemma 2.2. Let (M, g) be a connected Riemannian manifold with the homogeneous
structure of type (2.2). Then Ricci tensor on M satisfies

S
X,Y,Z

(∇XRic)(Y,Z) = 0. (2.3)

Now we shall prove

Theorem 2.1. If it is possible to map geodesically on (M, g) satysfying (2.3) onto a
manifold (M, g), then both manifolds are of constant curvature.

Proof. As is well-known a manifold (M, g) admits a geodesic mapping if and only if
there exists a function ϕ ∈ F(M) and a symmetric non-singular bilinear form a on
M satisfying

(∇Xa) (Y, Z) = (Y ϕ)g (X,Z) + (Zϕ)g (X,Y ) (2.4)

for all X,Y, Z ∈ X(M) ([5]).
Let p ∈ M be such that dϕ �= 0 and (2.4) hold at p. Choose a local coordinate

system (U, x) so that p ∈ U . By Rl
ijk, Rik, gik, aik, ϕik we denote the components

of the tensors R, Ric, g, a and the Hessian Hϕ of ϕ in this coordinate system.
Differentiating covariantly (2.4) and applying the Ricci identity we get

aitR
t
jkl + atjR

t
ikl = ϕligjk + ϕljgik − ϕkigjl − ϕkjgil. (2.5)

Differentiating covariantly (2.5) with respect to xm, contracting with glm and apply-
ing the Ricci identity, by (2.4) and (2.3), we obtain

4ϕtR
t
jki = 3Rt

kϕtgji − 4ϕkRji + 4ψiRjk − 3gjkR
t
iϕt + ajgik − akgji, (2.6)

where ai = ∇sϕitg
ts. Transvecting (2.6) with gjk we get Rt

iϕt = ρϕi, ρ ∈ F(U).
Following considerations made in [6] we get

at
iϕt = τϕi, ϕt

iϕt = λϕi, τ, λ ∈ F(U),

and finally we obtain
Hϕ(X,Y ) = Φ(ϕ)g(X,Y ) (2.7)

where Hϕ is the Hessian of ϕ and Φ ∈ F(M).
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By [7] if a complete and simply connected manifold with homogeneous structure
T admits condition (2.7), then the manifold (M, g) is of constant curvature. This
completes the proof.

From Lemmas 2.1 i 2.2 and Theorem 2.1 we obtain

Theorem 2.2. On a homogeneous manifold the geodesic of ∇ and ∇̃ = ∇−T are the
same if and only ifM is naturally reductive. The geodesic mapping (M, g) → (M, ∇̃) is
affine. If a naturally reductive manifold (M, g) admits a non-trivial geodesic mapping
onto a Riemannian manifold (M, g), then both manifolds are of constant curvature.

3. ALMOST GEODESIC MAPPINGS OF HOMOGENEOUS MANIFOLDS

On the basis [7] the most general form of the structure tensor T is following

T (X,Y ) = g(X,Y )Φ − g(Φ, Y )X +
2

T (X,Y ) (3.1)

where Φ is a given vector field on (M, g) and
2

T is a tensor field such that

g(
2

T (X,Y ), Z) + g(Y,
2

T (X,Z)) = 0, (3.2)

∇̃
2

T = 0,

C12(
2

T ) =
n∑

i=1

2

T (Xi, Xi) = 0,

where Xi is the base vector of the natural frame.
We put

1

P (X,Y ) =
1
2

(ψ(X)Y + ψ(Y )X)) − g(X,Y ),

1

S(X,Y ) =
1
2

(ψ(X)Y − ψ(Y )X)) ,

2

P (X,Y ) = −1
2

(
2

T (X,Y ) +
2

T (Y,X)
)

,

2

S(X,Y ) = −1
2

(
2

T (X,Y ) −
2

T (Y,X)
)

,

(3.3)

and
P (X,Y ) =

1

P (X,Y ) +
2

P (X,Y )

S(X,Y ) =
1

S(X,Y ) +
2

S(X,Y )

where ψ(X) = g(X,Φ).

Here P denotes the symmetric part of the tensor field T and S – the skew-
symmetric one.
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Then we have
∇̃XY = ∇XY + P (X,Y ) + S(X,Y ). (3.4)

and the connection deformation tensor D have the form

D(X,Y ) = P (X,Y ) + S(X,Y ) (3.5)

for all X,Y ∈ X(M).

We shall prove

Theorem 3.1. On the homogeneous Riemannian manifold the connections ∇ and
∇̃ defined by (3.3) and (3.4) are almost geodesically related if and only if the tensor

fields
2

P and
2

S satisfy the relations

S
X,Y,Z

[
(∇X

2

P )(Y, Z) +
2

P (
2

P (X,Y ), Z) −
2

P (X,Y )b(Z) −
2

P (X,ψ)g(Y, Z)+

−
2

P (
2

S(X,Y ), Z) −
2

S(X,ψ)g(Y, Z)+

− h(X,Y )∇Zψ + k(X,Y, Z)ψ + q(X,Y )Z

]
= 0,

(3.6)

where: b, d, h, k, q are tensors of the corresponding types.

Proof. By [5] the mapping ∇ → ∇̃ is almost geodesic if and only if the connection
deformation tensor D satisfies the relations(∇γDh

αβ + Dh
δαDδ

βγ

)
λαλβλγ = bDh

αβλαλβ + aλh (3.7)

where λi = dci

dt denotes the vector tangent to the geodesic c(t) =
(
ci(t)

)
. We conclude

from (3.3), (3.4), (3.5), (3.7) that (3.6) holds. This proves the theorem.

Corollary 3.1. If
2

P = 0 and
2

S = 0 then the almost geodesic mapping is of the kind
(1.7).

Corollary 3.2. If
2

P = 0 and
2

S = 0 then a homogeneous Riemannian manifold is
a manifold of constant curvature (see [7]).

Corollary 3.3. If g(X,Y )∇Zψ+g(X,Y )
2

P (Z,ψ)+g(X,Y )
2

S(Z,ψ)+k(X,Y, Z)ψ = 0
then the almost geodesic mapping (3.6) is of the kind (1.5).
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