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CALCULATION OF DISTRIBUTION OF TEMPERATURE
IN THREE-DIMENSIONAL SOLID

CHANGING ITS SHAPE DURING THE PROCESS

Abstract. The present paper suplements and continues [2]. Galerkin method for the
Fourier–Kirchhoff equation in the case when Ω(t) – equation domain, dependending on
time t, is constructed. For special case Ω(t) ⊂ R

2 the computer program for above method
is written. Binaries and sources of this program are available on http://wms.mat.agh.edu.
pl/~bozek.
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1. INTRODUCTION

An inspiration to writing this paper were researches devoted to a simulation of the
squeeze out of carbon electrodes in transient press. Results were published in [3] and
[1]. In this paper the domain, in which the suitable differential equations describing
the project under discussion, depends on time. This situation takes place also in
many other technological processes such as continuous steel founding or producing
of wire by squeezing out technology (see [5]). Adaptation of Galerkin method to the
differential problem describing these matters runs into many difficulties. In this paper,
in order to make the problem easy, the Fourier–Kirchhoff equation is considered in
some domain Ω(t) of time and the Galerkin method for this problem is constructed.
These results are generalizations of [2]. The main difficulty lies in the fact that the
nodal points of triangulation which are used to discretization (12) of variational
problem (5) are varying in time, and it implies that the problems of work out of
time derivatives of basic functions ϕp(t) arrive. These derivatives also appear in the
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discretization (12). In formula (15) where the time derivative ∂
∂tϕp(t) is defined, the

unknown field v of the drift of the mesh occurs. In the special case of Ω(t) defined
by the formula (18), the construction of this field is shown.

2. INITIAL-BOUNDARY PROBLEM

Let Ω ⊂ R3 be a bounded Lipschitz domain, and v : [0, t�] × R3 → R3 be a smooth
vector field. We assume that field v is such that:

1) for every x0 ∈ Ω the equation x′(t) = v(t, x(t)) with initial condition x(t0) = x0

has a unique solution x(t, x0) defined on the interval [0, t�],

2) for every t ∈ [0, t�] the set

Ω(t) := {x(t, x0) : x0 ∈ Ω} (1)

is a bounded Lipschitz domain.

We consider the following Dirichlet problem for the Fourier equation of heat
conduction 

∂T

∂t
(t) + div (−Θt · ∇T (t)) = f(t) in Ω(t)

T (t) = T∂ on ∂Ω(t) for t ∈ [0, t�]
T (0) = T0 in Ω(0)

(2)

where:

t∗ ∈ ]0,∞] – time of observation of heat flow;

Ω(t) ⊂ R3 – domain, in which heat is spread out at a
moment t ∈ [0, t�];

T (t) : Ω(t) � x
df−→ T (t, x) ∈ R – seeking distribution of temperature at t;

T∂(t) : ∂Ω(t) � ζ
df−→ T∂(t, ζ) ∈ R – given lateral temperature at t;

T0 : Ω(0) → R – given initial temperature;

f(t) : Ω(t) � x
df−→ f(t, x) ∈ R – given external heat sources (or absorb-

tions);

Θ: R → ]0,∞[ – coefficient of heat conduction,

here we denote Θt : Ω(t) � x
df−→ Θ(T (t, x)) ∈ ]0,∞[, ∇ :=

(
∂

∂x1
, ∂

∂x2
, ∂

∂x3

)
, divx w =

= tr dxw =
∑3

i=1
∂wi

∂xi
for any differentiable vector field w : Ω(t) → R3 and for each

x ∈ Ω.

Assumptions 1. The following regularity of data will be assumed:

1) Ω(t) ⊂ R3 – bounded Lipschitz domain for t ∈ [0, t�];
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2) Θ: R → ]0,∞[ – locally Lipschitz function;

3) T0 ∈ L2(Ω(0));

4) f̃ ∈ L2
(
(0, t∗;

(
H1

0 (Ω(t))
)′)
for t ∈ [0, t�] (describing, instead of the classical

“f”, generalized outward effects);

5) for every moment t ∈ [0, t�] the boundary temperature T∂(t) : ∂Ω(t) → R can be
extended on the whole Ω(t) to some function T ∂(t) : Ω(t) → R in this way:

– T ∂ ∈ L2
(
0, t∗;H1 (Ω(t))

)
,

– the evolution T ∂ : [0, t∗] → L2 (Ω(t)) is absolutely continuous and

d

dt
T ∂ ∈ L2

(
0, t∗;L

6
5
(
Ω(t)

))
.

3. VARIATIONAL SOLUTION OF THE DIRICHLET PROBLEM

Definition 1. We say that a continuous curve T : [0, t�] → L2 (Ω(t)) is a solution of
(2), if and only if

∫ t�

0
‖∇T (t)‖2

L2(Ω(t)) dt < ∞, T−1
(
H1 (Ω(t))

)
has the full measure

in [0, t�] and:

1) ∀! t ∈ [0, t�] : T (t)|∂Ω(t) = T∂(t) (in the sense of the trace theory);

2) ∀ (t, ϕ) ∈ [0, t∗] ×H1
0 (Ω(t)):∫

Ω(t)

ϕ(t)
∂T

∂t
(t) dm = f̃(t)ϕ−

∫
Ω(t)

Θt (∇ϕ(t),∇T (t)) dm (3)

where m stands for the volume Lebesgue measure in R3, while “ ∀!” denotes “for
almost everywhere. . . ” in the sense of the standard Lebesgue measure. Here, (·, ·)
stands for the inner product in R3, and ‖·‖

L2
(
Ω(t)

) – is the usual norm in the Hilbert
space L2

(
Ω(t),R3

)
of all square summable vector fields on Ω(t). Finally, (·, ·)

L2
(
Ω(t)

)
denotes the scalar product in the Hilbert space L2

(
Ω(t)

)
of square summable scalar

functions.

4. HOMOGENIZATION OF THE BOUNDARY PROBLEM

The temperature T in the equation (3) may be decomposed to the sum of two
functions, i.e.

T (t) = T ∂(t) + T ◦(t), (4)

where T ∂(t) is an arbitrary chosen extension of T∂(t) satisfying the regularity e) of
Assumptions 1 given above, i.e.

T ∂(t) : Ω(t) → R, ∀
t
T ∂(t)|∂Ω(t) = T∂(t), T ∂(t) ∈ H1

(
Ω(t)

)
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while
∀
t
T ◦(t)|∂Ω(t) ≡ 0, or more precisely T ◦(t) ∈ H1

0

(
Ω(t)

)
.

Using decomposition (4) we can rewrite the equation (3) as follows∫
Ω(t)

ϕ(t)
∂T ◦

∂t
(t) dm = f̃(t)ϕ−

∫
Ω(t)

Θt (∇ϕ(t),∇T ◦(t)) dm +

−
∫

Ω(t)

Θt

(∇ϕ(t),∇T ∂(t)
)
dm +

∫
Ω(t)

ϕ(t)
∂T ∂

∂t
(t) dm

(5)

for a.e. t ∈ [0, t�].

Theorem 1. Under Assumptions 1 the problem (5) has the unique solution T ◦(t) ∈
H1

0

(
Ω(t)

)
for t ∈ [0, t�].

5. DISCRETIZATION Ω(t)

First we triangulate Ω(0) in manner described in paper [2], or any other one, for in-
stance the Delaunay algorithm. In a sequel, for every nodal point of our triangulation
we construct the sets of its neighbour nodal points and simplexes.

By W we denote the set of all nodal points of our triangulation. By W∂ and
W ◦ we denote respectively the sets of boundary nodal points and inner nodal points
of triangulation. Of course we have

W = W∂ ∪W ◦, W∂ ∩W ◦ = ∅.

6. GALERKIN METHOD

Now we consider regular source f̃(t)ϕ :=
∫
Ω(t)

f(t)ϕdm. We look for approximate
solution of the problem (5) in the following form

T ◦(t) =
∑

p∈W◦
λp(t) · ϕp(t), (6)

where ϕp(t) is an unique function, which is affinity on every simplex of cubic trian-
gulation, moreover in a nodal point p(t) it has a value 1 and in other nodal points
has a value 0.

Arbitrary chosen extension of T ∂(t) is approximated by the sum

T ∂(t) ≈
∑

p∈W∂

T∂(t, p(t)) · ϕp(t). (7)

We denote

T (t, p) :=

{
λp(t) for p ∈ W ◦

T∂(t, p(t)) for p ∈ W∂ .
(8)
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Coefficient of a heat convection is approximated by the sum

Θt ≈
∑
p∈W

Θ
(
T

(
t, p(t)

)) · ϕp(t). (9)

We approximate cubic heat sources by the following

f(t) ≈
∑
p∈W

f(t, p(t)) · ϕp(t). (10)

Homogeneous part of initial temperature is approximated by the formula

T ◦
0 ≈

∑
p∈W◦

T ◦
0 (p(0)) · ϕp(0). (11)

As a result we get the following system of differential equations indexed by the inner
nodal points w ∈ W ◦

∑
p∈W◦

I(w, p)λ̇p(t) =

= −
∑

p∈W∂

(
d

dt
(T∂(t, p(t))) I(w, p) + T∂(t, p(t))I

(
w,

p

t

))
+

−
∑

p∈W◦
λp(t)I

(
w,

p

t

)
+

∑
p∈W

f(t, p(t))I(w, p)+

−
∑
q∈W

p∈W◦

Θ
(
T ∂(t, q(t)) + λq(t)

)
λp(t)I (q, (∇w|∇p))+

−
∑
q∈W

p∈W∂

Θ
(
T ∂(t, q(t)) + λq(t)

)
T∂(p(t))I (q, (∇w|∇p)) ,

(12)

where:

I(w, p) =
∫

Ω(t)

ϕw(t)ϕp(t)dm,

I
(
w,

p

t

)
:=

∫
Ω(t)

ϕw(t)
d

dt

(
ϕp(t)

)
dm,

I
(
w, (∇w|∇p)

)
:=

∫
Ω(t)

ϕw(t)

(∇ϕq(t)|∇ϕp(t)

)
dm,

with the initial conditions

λw(0) = T ◦
0 (w(0)) (w ∈ W ◦) , (13)
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In order to obtain (12) we use following formula

d

dt

∫
Ω(t)

ψ(t, x) dx =
∫

Ω(t)

(
dψ

dt
(t, x) + div

x
(ψ · v)(t, x)

)
dx (14)

which is consequence of Liouville’s theorem. Let us notice, that for field ψ : ψ|∂Ω = 0
second component of right side of (14) disappears.

From theorem concerning implicite functions one can lead out the following
identity

d

dt
ϕw(t)(x) = −

3∑
j=0

det (q1(t) − q0(t), q2(t) − q0(t), v (t, qj(t)))
det (q1(t) − q0(t), q2(t) − q0(t), q3(t) − q0(t))

ϕqj(t)(x) (15)

for x ∈ S(t) := conv (q0(t), q1(t), q2(t), q3(t)), where qj(t) (j = 0, 1, 2, 3) are adjoining
nodes of triangulation W (t) and q3(t) = w(t).

Theorem 2. Let T ∂(t) ∈ H1
(
Ω(t)

)
,

(
T ∂(t)

)
|∂Ω(t)

= T∂(t). Let (VN (t))∞N=1 be an

approximation of Hilbert space H1
0 (Ω(t)). Then:

1) for every N ∈ N the variational problem (5) has exactly one solution T ◦
N (t) ∈

VN (t),

2) T ◦
N (t) + T ∂(t) N→∞−→ T (t) in H1(Ω(t)), where T (t) is the only solution of the
problem (3).

In our case we have

VN (t) := span
{
ϕp(t) : p ∈ W ◦} , N := #W ◦.

7. SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS

Let us introduce the following notations

Λ(t) := (λv(t))v∈W◦ , Λi := Λ(ti).

Here we solve the system of ordinary differential equations which takes form:

G(t)Λ̇(t) = F (t,Λ(t)) (16)

with initial condition determined by initial condition for equation (13), where G(t)
denotes a Gram matrix of spline functions vanishing on ∂Ω(t). The system (16) can
be rewritten in the following equivalent form

Λ̇(t) = G(t)−1F (t,Λ(t)) =: F̃ (t,Λ(t)).

For consecutive time points ti (i = 0, 1, . . .) we consider consecutive values
Λi := Λ(ti) (i = 1, 2, . . .) of temperature in points of the set W ◦.
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In order to solve this last equation, we can apply one of the multi-step methods
e.g. Adams–Bashforth of third degree

Λi+1 − Λi =
h

12

(
23F̃ (ti,Λi) − 16F̃ (ti−1,Λi−1) + 5F̃ (ti−2,Λi−2)

)
.

From above we have

G (ti) · (Λi+1 − Λi) =
h

12
(23F (ti,Λi) − 16F (ti−1,Λi−1) + 5F (ti−2,Λi−2)) . (17)

Let us put Ri as a solution of the system (17) (linear equations), then we can write

Λi+1 = Λi + Ri.

8. EXAMPLE OF VECTOR FIELD v

Now we consider situation, when domain Ω(t) is known for every t, and we have
to construct vector field v induced by formula (1). We examine one special case of
definition Ω(t) and method of construction of the field v(t, x) in this case.

Let us consider an arbitrary domain Ξ ⊂ R3 with regular boundary such that

∀ζ ∈ ∂Ξ: n(ζ) ∦ e3

and

R e3 ⊂ Ξ,

where n(ζ) denotes normal vector to ∂Ξ in the point ζ and e3 denotes axis versor.
There are given functions hmin, hmax, such that 0 ≤ hmin(t) < hmax(t).

Ξ

Ω(0)

Ω(t)

Fig. 1. Example of domain Ω(t) defined by formula (18)

We define (see Fig. 1):

Ω(t) := {x ∈ Ξ: hmin(t) < x3 < hmax(t)} . (18)
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If Ξ is rotational set with rotate axis R e3 we define the field v of drift by the
following formula

v(t, x) =
(hmax(t) − x3) ḣmin(t) + (x3 − hmin(t)) ḣmax(t)

hmax(t) − hmin(t)
u(x). (19)

Horizontal part u of the field v we construct as below.
Let

R : R � h → R(h) ∈ R+

be a given function. R(h) stand for radius of the rotational solid Ξ on the „height”
h. We consider the function

ψ(h, r) := r −R(h). (20)

It is easy to see that ψ(h, r) = 0 for r = R(h) and

∇(h,r)ψ =
(−Ṙ(h), 1

)
,

∣∣∇(h,r)ψ
∣∣ =

√
Ṙ(h)2 + 1, (21)

where |·| denote euclidean norm in R3, so the normal takes form

n
(
h,R(h)

)
=

∇(h,r)ψ∣∣∇(h,r)ψ
∣∣ =

(−Ṙ(h), 1
)√

Ṙ(h)2 + 1
. (22)

Let us assume h = (x | e3), x = x′ + he3, where (·|·) stands for the inner product in
R3. In this situation for point x lying on cone’s side surface:

n(x) =
1√

Ṙ(h)2 + 1

(
−Ṙ(h)e3 +

x′

|x′|
)
. (23)

Example 1. Cylinder: R(h) = const. In this case n(x) = x′
|x′| .

Example 2. Cone: R(h) = c · h. In this case n(x) = 1√
c2+1

(
−ce3 + x′

|x′|
)
.

We assume, that nodal point w = w(0) on the lavel 0 is moving up together
with net of triangulation and on the high h takes position x = w(h).

From proportion
|x′|
R(h)

=
|w|
R(0)

we have

|x′| =
R(h)
R(0)

|w| , x′ =
R(h)
R(0)

w.

So (cf. Fig. 2)

w(h) = x = x′ + he3 =
R(h)
R(0)

w + he3 (24)
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|w|
w

R(0)

|x′|
x
R(h)

rotational axis trajectory of node w

side surface

Fig. 2. Illustration to the formula (24)

and in consequence

ẇ(h) =
Ṙ(h)
R(0)

w + e3 =: u(w(h)),

or, what is the same,

u(x) = u(w(h)) =
Ṙ(h)
R(0)

w + e3. (25)

Since h = (x | e3) and

w =
x− he3

R(h)
R(0) =

x− (x | e3) e3

R((x | e3))
R(0)

it follows finally that

u(x) =
Ṙ

R

(
(x | e3)

)(
x− (x | e3) e3

)
+e3. (26)

We can rewrite this formula in the form

u (x1, x2, x3) =

(
Ṙ (x3)
R (x3)

x1,
Ṙ (x3)
R (x3)

x2, 1

)
. (27)

Assume that |x′| = R(h), which means that the point x lies on side surface. Then√
Ṙ(h)2 + 1

(
n(x)|u(x)

)
=

(
−Ṙ(h)e3 +

x′

R(h)
| Ṙ
R

(h)
(
x− he3

)
+e3

)
=

=

(
x′

R(h)
− Ṙ(h)e3| Ṙ(h)

R(h)
x′ + e3

)
=

|x′|2 Ṙ(h)
R2(h)

− Ṙ(h) =

=
R2(h)Ṙ(h)

R2(h)
− Ṙ(h) = 0,

so, for x = x′ + he3 such that |x′| = R(h) we have(
n(x)|u(x)

)
= 0,

what means, that the field u is tangent to side surface.
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On the other hand, if |x′| = 0 e.g. x1 = x2 = 0, then by (26) (or (27)) we have
u(x) = u(0, 0, x3) = (0, 0, 1) what means, that the vector field v is parallel to versor
e3 for all points x from rotational axis.

In the situation in which Ξ is not rotational, but it can be approximated by a
rotational set, we can approximate the field u by the formula

u(x) =
(

1 − |x′|
R(h)

)
e3 +

|x′|
R(h)

· s

(s|e3)
, (28)

for x = x′ + he3 and |x′| > 0, where vector s �= 0 tangent to ∂Ξ lies in the plane
which is determine by the rotational axis and the point x. For points x such that
|x′| = 0 we define u(x) = 0.

9. NUMERICAL REALIZATION OF PRESENTED METHOD

Computer program which realizes algorithm (12) in two-dimensional case e.g. n = 2
and for Ω(t) defined by (18) was written in C. Source code and binaries of this
program are available on http://wms.mat.agh.edu.pl/~bozek. Please consult the
Read.me file in this distribution for instructions how to use this program. To generate
the triangulation of domain Ω(0) we made use of source code of program EasyMesh
v.1.4 written by Boyan Niceno, taken from http://www-dinma.univ.trieste.it/
~nirftc/research/easymesh/. To solve algebraic linear systems of equations the
function linbcg from Numerical Recipes library has been used.
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