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ON SOME APPLICATION
OF BIORTHOGONAL SPLINE SYSTEMS
TO INTEGRAL EQUATIONS

Abstract. We consider an operator Py: L,(I) — Sn(An), such that Pyf = f for
f € Sn(An), where S,(An) is the space of splines of degree n with repect to a given
partition Ay of the interval I. This operator is defined by means of a system of step
functions biorthogonal to B-splines. Then we use this operator to approximation to the
solution of the Fredholm integral equation of the second kind. Convergence rates for the
aproximation of the solution of this equation are given.
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mation.
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1. INTRODUCTION

The purpose of the paper is to give some application of biorthogonal spline systems
defined earlier by the author in [15] to the Fredholm integral equation of the second
kind.

Let A be a given partition of the interval I = [a,b] and let {N;} be a system of
normalized B-splines of degree n with respect to A. We constructed a system of step
functions {A;} biorthogonal to the system {V;} such that supp A; C supp N; in [15].
Then we defined the following operator: Py: L,(I) — S,(An), such that Pyf = f
for f € S, (An), where S,,(Ay) is the space of splines of degree n with repect to a
given partition Ay of the interval 1.

Py (@) =Y (£, \)Nj(x), feL’(D), (1)
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b -
where (f,g) = [ f(t) g(t) dt and we estimated the difference f — Py with respect to

the modulus of smoothness of the function f in the space LP(I), 1 < p < oo.
Consider the Fredholm integral equation of the second kind

b
M@=ﬂ@+A/K@ﬁMﬂ% @)

where f € C(I), K € C(I?) and X € R.

We may find basic facts on integral equations and main methods for finding the
solutions of them in [1, 2, 9, 11]. A method of application of interpolating splines
is given in [12]. Our method of approximation of the solution of the equation (2) is
based on three methods of finding the solutions of integral equations: a change the
kernel K by the degenerated kernel Pg, the method of the Bubnov—Galerkin and
the method of iteration (cf. [1, 2, 9]).

We assume that

b
/\max/ |K(x,t)|dt =0 < 1.
zel
a
Then we approximate the function f by the operators of the form (1) and the kernel

K by the operators of the form
Py .k (x,t) = Y (K, \id;) Ni(z) N(t),

.3
where (K, \; \;) = [ K(z,t) \i(z) \;(t) dz dt. For any € > 0 we can find an operator
72
Pn i (see [15] and also [13, 14]) such that
|Py i (x,t) — P(z,t)] <& for (x,t) €I

and
b
/\ma;( /|PN7K(o:,t)|dt < 1.
fAS

Then we solve the following integral equation with the degenerate kernel Py k:

b
@) =Py + 0 [ Prclat)ylt)dr

The solution of this equation is a spline. We find it using the method of iteration
and we give the recurrence formula for it in the case of equidistant partitions.

At the end of the paper we consider the order of approximation of the solution
of the equation (2) in the space W)'(I) for 1 < p < oc.

It seems that the simplicity and good properties of approximation of the algo-
rithm may have some applications.
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2. A SYSTEM OF STEP FUNCTIONS BIORTHOGONAL
TO B-SPLINES AND APPROXIMATION BY SPLINES

For the simplicity we confine to the equidistant partitions of the interval I = [a, b].
Let

AN:{a:t_n:...:t0<t1<...<tN:...:tN+n:b}, (3)
where t; = a+ jhy, hy = I’_T“, j =1,...,N. Setting 2% := (max{0,z})*, the
B-spline of degree n with respect to Ay is defined as follows: (see [8] or [4, 5, 6, 7])

M’i,’n(s) = Mi,n(xi7 ... 7xi+n+1; S) = [$i7 ceey $i+n+1 : (fL' - S)iL
where [z,...,Zivny1 : f] is the (n + 1) order divided difference of f at
Zjy ..., Titnt+1. The normalize B-spline N; ., is defined as follows

Titn4+1 — T4
Ni(2) = == M ().

Further we need the following properties of B-splines:
supp M; n+1 = supp Ny i1 = (i, Titnt1), Nins1 € C" (D),

/Mi,n_H(Jf) dl‘ = 1,
I

N-1
Z Nips1(xz) =1 for zel,

it=—n

Nipt1(xz) >0 for zel.

Theorem 2.1 (cf. [4, 7]). Let % + % =1, N € L) =LyI),i=-n,...,N - 1.
Then for any integer j = —n,...,N —1 X;(Njn+1) = 6 if and only if \; = D" f
for some f such that f|an, = w:n+1|AN’ where

(@) = (@ —tig1) - (@ —tiga) ... (@ = tign)/n!

N—1 .
biorthonor-

Using this theorem we construct a system of step functions {\;};_ "
mal to the system of B-splines {ij};y:__ln as in [15] such that supp A\; C [titk, titkt1)
fori=—-k,—k+1,..., N—k—1withn=2korn=2k+1andfori=—-n,...,—k—1
ori=N—k,...,N—1suppA; C [to,t1] or supp \; C [tn—1,tn] respectively.

Let supp Ai C [ty timta] and A = 300 Aij X(r, .7y.0) (%), where 75 = tn, + jh
for j =0,...,n, h = (tymy1 —tm)/(n+1) and x|y, -,,,) is the characteristic function
of the interval [7;,7;11). To obtain the function J; it suffices to solve the following
Cramer system of n + 1 equations with n 4+ 1 unknowns A; ;

tm41

Xi(Z)Njp(x)de=6,;, j=m-—n,...,m.
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Example 2.1. Let Ay :{ti}f:tll, t_1=0,t; =4 forj=0,...,N and ty11 = N.
Then forn =1

T —1 fori<z<i+1,

i+2—x fori+l<ax<i+2,i=0,...,N—2,

0 otherwise,

l—z forO<z<1,

0 otherwise,

N () r—N+1 forN—-1<ax<N,
—11(x) =
Nl 0 otherwise,
-1 fori<z<i+3,i=0,..,N—1,

3 fori+i<z<i+l,

otherwise,
3 f0r0<x§%,

1

-1 fors<xz<1,
0 otherwise.

For the partition (3) we have

—t —t; . b—
N—l,h(x) :N—l,l ("EO>’ Ni,h(x) :NO,l (x >a 2:03"'3N727 h= Na

h h
N (2) = No1 (H%) Jortny—1 <z <in,
N—1,} =

' 0 otherwise

and

—t — 1 )
Ain(z) =P A (I N 0>  Ain(z) =h"1 <x - ) ,i=0,...,N—2,

h=Th (&t tnvog <z <tn,
/\N_Lh( ): 0( 3 ) for tn '1 T SUN
0 otherwise.
Example 2.2. Let Ay = {ti}i\itll, to=t1=0,t =4 forj=0,...,N and
tny1 =tny2 = N. Then forn =2

(z—0)*

5 fori<aoz<i+1,
Nig(x) =4 —(x—i)?+3(x—4)—3 fori+l<a<i+3,i=0,...,N—3,
0 otherwise,

2x—%x2 foro<ax <1,
— ) @e-a)?
Noiz2(z) = { 5+ forl<az <2,

0 otherwise,
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N2 a(a) (x—1)%2 for0<z<I1,
_oo(x) =
2 0 otherwise,

L@x—N)BN—-4—2) forN—-2<az<N-1,

Nn-22() = No1p(N —2) = W for N—1<z <N,
0 otherwise,
—N-1)? N-1<z<N
NN—l,Q(m):N_Q,Q(N—x): (CU ) fOT Tr < s
0 otherwise,

f% fori+1<z§i+%,

() 10 fori+3<i+3,i=-10,...,N—2,

() =

' % fori—l—g<sc§i+2,

0 otherwise,

L foro<a<
7 1 2

)\72(‘%): —3 fO’f'g <z < 3

for%<x§1,

1
0 otherwise,

)

Wl

—_

forN—1<x§N—§,
—% forN—%<$§N—%,

12—1 fOTN*%<£E§N,

o

otherwise.

For the partition (3) we have

l’*to

ZL‘*ti
N_op(x) =N_29 ( W ) , Nin(x) = Ny ( 5 ) )

and

I‘—to

t —
A_Zum):illx_g( . ), AN_LMx):lzlA_2< Nh z).

We may write the operator (1) in the form

N-1

Py(z) = Pyg(z) = D> (\jy f) Nju() (4)

j=—n
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and for the norm of the operator Py: L,(I) — L,(I), for 1 < p < co we have the
estimate

N—1 ©
1Pull,m < S / i (1)) i,

where ); ,, is defined for the partition (3) (see [15]).
Further we need the following

Theorem 2.2 (see [15] and also [6, 7, 13, 14]). There exist constants C ., depending
only on k, n and p such that for 1 <p <oco, feW (I),0<k<r<n+1,k<n

Hf(k) - Pf(\f}HL (I < Craph® Wﬁﬂkr(f(r)’hzv) fork=0,...,r, r=0,...,n+1,
where hy = %52 and
jas i (n+1
W) (f,6) = sup Z(—w( i )f(:c+ih) , 1<p<
0<h<s |50 Lp([a,b—nh])

is the (n + 1) modulus of smoothness of the function f in the space L,(I).

3. NUMERICAL SOLUTION OF THE FREDHOLM INTEGRAL EQUATION
OF THE SECOND KIND

Let An be the partition of the interval I = [a,b] defined by (3). Consider the
following integral equation:

b
y(@) = Py s(2) + A / Puv i (a0, ) (1) dt, (5)

a

where Py ¢ is defined by (4) and

N—-1 N-1

Py(z,t)= Y > / K(&T)ANi(&) Ay (1) dedr | Ny (x) Njn(t).

t=—nj=-—n

Now Ap,; is defined as follows: Let A?V:{xi}i]:r_z, T p=...=x_1 =0, xp =k,
k}:O,...,N,JUN+1:...:.rN_;,_n:N.
1
E)\o(%) fori=0,...,N —n,
1
Ani(z) = Ekl(m;}f") fori=-n,...,—1,
1
7 i,N(XJ‘;L_x) fori=N-n+1,...,N—1,

where )\; is defined for the partition A’y by means of Theorem 1 (see [15]).
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Let for every t € I K(-,t) € W (I) and for every z € I K(x,-) € W} (I), where
K(-,t) denotes the function K (z,t) of z at fixed t. Since Pn k(7,t) = PN, Py (.., (),
then by Theorem 2 we obtain

1K () = Paacl@ Dl o <

S HK(I,t) - PNvK('7t)(m>||Lp(I) + ||PN,K(7t)(x) - PNvK(I7t)||Lp(I) S

Oxk otk
for k=0,...,r

o o
< Crp W5 0%, ( K, hN> + Chnp W5 0%, ( K, hN>

where
oF oF
~(p) K — (p) K(-
Wy <8xk ,h) Sup Wiy (axk (,t),h),
. ok ok
o4 (g 0) =y o (G 1),
Let

b
Q:)\sup/\K(x,tﬂdt <1 for p=o0o,
xzel

q 1
? q

b/ b
0=A / /\K(m,tﬂp dr | dt for 1<p< oo, (6)
b

0= Asup / |K(z,t)] de <1 for p=1
tel
and gy denotes the above quantities for the kernel Ky (z,t).
Hence there exists Ny such that for N > Ny
1+

QN<Q()=T<1. (7

The kernel Py g is degenerated and because of (7) the solution of the integral
equation (5) is a spline of degree m with respect to the partition Ay. Denote it
by sn.

We have the following

Theorem 3.1. Let for every t € I, K(-.t) € Wj(I) and for every x € I, K(z,-) €
€ Wi (I) and o satisfies (6). Then there exist constants Ak np and B, depending
only on k, n and p such that

CRC

Y Ly(I) —
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< A W F W)y h)+

r—k - "
+ B | Py llo 1l oo iy " @, (W K, hN) ,

where y and sy are the solutions of the equations (2) and (5) respectively and
1,1

Lyl

P q

Proof. Let p =00 and N > Ny. Applying the operator Py to the solution y of the
equation (2) we obtain

b
Pry(2) = Pa.s(z) + A / Prvseony (2) y(t) dt.

Hence
b
(@) = Pacyl@) = [ Proselast)low(t) = y(o)) e
’ b
2 [ Praet) = P @) u(e) d
and by (7)

Isv = yllea < sy — Pyyllea + 1Pyy — yllea) <
b

< oollsn = yllea + A / |Pn,k(#,t) = Py iy (@)| ly(8)] dt + || Pxy — yllom-

Using the properties of B-splines we obtain

b
/ | Py (2,t) — Py k(0 (@) [y(t)| dt =

b | N_q b
= [1X 1 [ [Prcien® = K] Awal€)de { Nino)| (o) dt <

b
<I1Pwlcon e sup / | Pa ey (t) — K (£,1)] dt.

a

Hence by Theorem 2.2 we obtain

sy —yllem < 1PNy — yllewm +

“1-00
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b
I1Pxlea lvllca su / |y s (2.1) — Py ()] dt <
Te

Jr
1— 00
A
= 10%Oo N w1 (Y Ay )+
— 00

A o
+ T I1Pn ey 1yllew) Comn,oo My @nti1—r (

Now using the Markov inequality and Theorem 2.2 we obtain
s = ¥'llea) < llsv = Py ylew + 1Pyy = yllem) <

b
0
< Asup /7PN,K($7t)[5N(t) —y()|dt| +
zel oz

0 0
x| [ | Pus(e) = 5P @) a0 dt) + 1P, = e <

< sup | [ Pt sw(0) - (o) dt| +
N zel

b
MA
" / [P (@, 8) = P (@)] y(t) de | +

M

b
PRy =l < G sup [ 1Pwscla ] dt s = vlloqy+
N zel

b
M A
+ 32 [ Prsea,t) — Py o @] @1t + 1P, e <

S MQOAO,n,oo hqjﬂ\;l WnJrlfr(y(r); hN)+

—1 ~ 0
+ M Bo,n,0o ”yHC’(I) hN 1Wn-&-l—r (({%TK, hN) <

S Cl,n,oo h;‘\]_l wn+1—7'(y(T) hN))

where M = M (n) is a constant depending only on n taken from the Markov inequality
and Ao n,c0, Bon,co and Cp p oo are taken from Theorem 2.2.

The remaining inequalities we prove similarly.

The proof for p # oo is analogous. O
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The solution of the equation (5) we may obtain using the method of iteration.
We proceed as follows: Let

N—-1 N—-1 N-1
Py j(z) = ¢ Nj(x), Pnx(zt)= Y > aijNi(z) N(t),
Jj=—n 1=—n j=—n

dis = [ Nifa) Nyo) do

and we put
b

SN’m+1(l‘) = PN’f(l‘) + A / PN’K(LL',t) SN’m(t) dt, (8)

where sy, is a spline of the m*" step of iteration.
Putting

N-1
SNm(z) = Z bi.m Ni(x)
k=—n

in (8) and comparing the coefficients by at Nj we obtain

N-1 N-1
bk’m+1:Ck+AZ ak,iz bjmdij, m=12,..., k=-n,...,N -1 (9)

i=—n j=-n

Remark 3.1. We can also use this method for the numerical solution of the Voltera
integral equation of the second kind

y(x) = f(z) + )\/ Ko(z,t) y(t)dt.

Let D ={(z,t): a <z <b, a<t<x. Putting

K(z,1) = Ko(z,t) for (x,t) € D,
7 0 for (z,t) ¢ D,

we obtain the Fredholm integral equation (2). Now supp Py x C Dy = {(z,t): a <
<z <b a<t<minlx+ (n+1)hy,b|}, where hy = (b—a)/N. If the first condition
from (6) is satisfied, then we may solve this equation as above. Unfortunately the
function sy m+1 from the recurrence relations (8) is not a spline of degree m with
respect to the partition Ay. Hence we cannot apply (9).

If o > 1, then we are looking the solution of the equation (5) in the following

form
oo

y(@) =) Nor(a), (10)

k=0
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where
Tn

bo(x) = Pu.x(z), dpsi(z) = / P (. £) i (1) dt.

a

where x,, = min[z + (n + 1)hy, 0], £ =0,1,... As in [3, 11] we may prove that

NeMF| Py tllonb — a+ k(n + 1)hy]
i ()] < O :

k=1,2,..., where M = sup |Pnx(z,t)|. Hence for N > (b — a)M Xe the series

(z,t)€DN
(10) is convergent uniformly to the solution of the equation (5) on the interval [a, b].
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