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Abstract. We consider an operator PN : Lp(I) → Sn(∆N ), such that PNf = f for
f ∈ Sn(∆N ), where Sn(∆N ) is the space of splines of degree n with repect to a given
partition ∆N of the interval I. This operator is defined by means of a system of step
functions biorthogonal to B-splines. Then we use this operator to approximation to the
solution of the Fredholm integral equation of the second kind. Convergence rates for the
aproximation of the solution of this equation are given.
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1. INTRODUCTION

The purpose of the paper is to give some application of biorthogonal spline systems
defined earlier by the author in [15] to the Fredholm integral equation of the second
kind.
Let ∆ be a given partition of the interval I = [a, b] and let {Nj} be a system of

normalized B-splines of degree n with respect to ∆. We constructed a system of step
functions {λj} biorthogonal to the system {Nj} such that suppλj ⊂ suppNj in [15].
Then we defined the following operator: PN : Lp(I) → Sn(∆N ), such that PNf = f

for f ∈ Sn(∆N ), where Sn(∆N ) is the space of splines of degree n with repect to a
given partition ∆N of the interval I.

PN,f (x) =
∑

j

(f, λj)Nj(x), f ∈ L2(I), (1)
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where (f, g) =
b∫

a

f(t) g(t) dt and we estimated the difference f − Pf with respect to

the modulus of smoothness of the function f in the space Lp(I), 1 ≤ p ≤ ∞.
Consider the Fredholm integral equation of the second kind

y(x) = f(x) + λ

b∫
a

K(x, t) y(t) dt, (2)

where f ∈ C(I), K ∈ C(I2) and λ ∈ R.
We may find basic facts on integral equations and main methods for finding the

solutions of them in [1, 2, 9, 11]. A method of application of interpolating splines
is given in [12]. Our method of approximation of the solution of the equation (2) is
based on three methods of finding the solutions of integral equations: a change the
kernel K by the degenerated kernel PK , the method of the Bubnov–Galerkin and
the method of iteration (cf. [1, 2, 9]).
We assume that

λmax
x∈I

b∫
a

|K(x, t)| dt = � < 1.

Then we approximate the function f by the operators of the form (1) and the kernel
K by the operators of the form

PN,K(x, t) =
∑
i,j

(K,λiλj)Ni(x)Nj(t),

where (K,λi λj) =
∫
I2

K(x, t)λi(x)λj(t) dx dt. For any ε > 0 we can find an operator

PN,K (see [15] and also [13, 14]) such that

|PN,K(x, t) − P (x, t)| < ε for (x, t) ∈ I2

and

λmax
x∈I

b∫
a

|PN,K(x, t)| dt < 1.

Then we solve the following integral equation with the degenerate kernel PN,K :

y(x) = PN,f + λ

b∫
a

PN,K(x, t) y(t) dt.

The solution of this equation is a spline. We find it using the method of iteration
and we give the recurrence formula for it in the case of equidistant partitions.
At the end of the paper we consider the order of approximation of the solution

of the equation (2) in the space Wn
p (I) for 1 ≤ p ≤ ∞.

It seems that the simplicity and good properties of approximation of the algo-
rithm may have some applications.
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2. A SYSTEM OF STEP FUNCTIONS BIORTHOGONAL
TO B-SPLINES AND APPROXIMATION BY SPLINES

For the simplicity we confine to the equidistant partitions of the interval I = [a, b].
Let

∆N = {a = t−n = . . . = t0 < t1 < . . . < tN = . . . = tN+n = b} , (3)

where tj = a + j hN , hN = b−a
N , j = 1, . . . , N . Setting xk

+ := (max{0, x})k, the
B-spline of degree n with respect to ∆N is defined as follows: (see [8] or [4, 5, 6, 7])

Mi,n(s) = Mi,n(xi, . . . , xi+n+1; s) = [xi, . . . , xi+n+1 : (x− s)n
+],

where [xi, . . . , xi+n+1 : f ] is the (n + 1)th order divided difference of f at
xi, . . . , xi+n+1. The normalize B-spline Ni,n is defined as follows

Ni,n(x) =
xi+n+1 − xi

n + 1
Mi,n(x).

Further we need the following properties of B-splines:

suppMi,n+1 = suppNi,n+1 = [xi, xi+n+1], Ni,n+1 ∈ Cn−1(I),∫
I

Mi,n+1(x) dx = 1,

N−1∑
i=−n

Ni,n+1(x) = 1 for x ∈ I,

Ni,n+1(x) ≥ 0 for x ∈ I.

Theorem 2.1 (cf. [4, 7]). Let 1
p + 1

q = 1, λi ∈ Lq(I) = L∗
p(I), i = −n, . . . , N − 1.

Then for any integer j = −n, . . . , N − 1 λi(Nj,n+1) = δi,j if and only if λi = Dn+1f

for some f such that f |∆N
= ψ+

i,n+1|∆N
, where

ψ+
i,n+1(x) = (x− ti+1)+ · (x− ti+2) · . . . · (x− ti+n)/n!

Using this theorem we construct a system of step functions {λi}N−1
i=−n biorthonor-

mal to the system of B-splines {Nj,n}N−1
j=−n as in [15] such that suppλi ⊂ [ti+k, ti+k+1]

for i = −k,−k+1, . . . , N−k−1 with n = 2k or n = 2k+1 and for i = −n, . . . ,−k−1
or i = N − k, . . . , N − 1 suppλi ⊂ [t0, t1] or suppλi ⊂ [tN−1, tN ] respectively.
Let suppλi ⊂ [tm, tm+1] and λi =

∑n
j=0 Ai,j χ[τj ,τj+1)(x), where τj = tm + jh

for j = 0, . . . , n, h = (tm+1 − tm)/(n + 1) and χ[τj ,τj+1) is the characteristic function
of the interval [τj , τj+1). To obtain the function λi it suffices to solve the following
Cramer system of n + 1 equations with n + 1 unknowns Ai,j

tm+1∫
tm

λi(x)Nj,n(x) dx = δi,j , j = m− n, . . . ,m.

On Some Application of Biorthogonal Spline Systems to Integral Equations 151



Example 2.1. Let ∆N = {ti}N+1
i=−1, t−1 = 0, tj = j for j = 0, . . . , N and tN+1 = N .

Then for n = 1

Ni,1(x) =




x− i for i < x ≤ i + 1,
i + 2 − x for i + 1 < x ≤ i + 2, i = 0, . . . , N − 2,
0 otherwise,

N−1,1(x) =

{
1 − x for 0 < x ≤ 1,
0 otherwise,

NN−1,1(x) =

{
x−N + 1 for N − 1 < x ≤ N ,

0 otherwise,

λi(x) =



−1 for i < x ≤ i + 1

2 , i = 0, ..., N − 1,
3 for i + 1

2 < x ≤ i + 1,
0 otherwise,

λ−1(x) =




3 for 0 < x ≤ 1
2 ,

−1 for 1
2 < x ≤ 1,

0 otherwise.

For the partition (3) we have

N−1,h(x) = N−1,1

(
x− t0

h

)
, Ni,h(x) = N0,1

(
x− ti

h

)
, i = 0, . . . , N − 2, h =

b− a

N
,

NN−1,h(x) =

{
N0,1

(
x−tN−1

h

)
for tN−1 < x ≤ tN ,

0 otherwise

and

λ−1,h(x) = h−1λ−1

(
x− t0

h

)
, λi,h(x) = h−1λ0

(
x− ti

h

)
, i = 0, . . . , N − 2,

λN−1,h(x) =

{
h−1λ0

(
x−t0

h

)
for tN−1 < x ≤ tN ,

0 otherwise.

Example 2.2. Let ∆N = {ti}N+1
i=−1, t−2 = t−1 = 0, tj = j for j = 0, . . . , N and

tN+1 = tN+2 = N . Then for n = 2

Ni,2(x) =




(x−i)2

2 for i < x ≤ i + 1,
−(x− i)2 + 3(x− i) − 3

2 for i + 1 < x ≤ i + 3, i = 0, . . . , N − 3,
0 otherwise,

N−1,2(x) =




2x− 3
2 x2 for 0 < x ≤ 1,

(2−x)2

2 for 1 < x ≤ 2,
0 otherwise,
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N−2,2(x) =

{
(x− 1)2 for 0 < x ≤ 1,
0 otherwise,

NN−2,2(x) = N−1,2(N − x) =




1
2 (x−N)(3N − 4 − x) for N − 2 < x ≤ N − 1,
(x−N−2)2

2 for N − 1 < x ≤ N ,

0 otherwise,

NN−1,2(x) = N−2,2(N − x) =

{
(x−N − 1)2 for N − 1 < x ≤ N ,

0 otherwise,

λi(x) =




− 7
2 for i + 1 < x ≤ i + 4

3 ,

10 for i + 4
3 ≤ i + 5

3 , i = −1, 0, . . . , N − 2,
− 7

2 for i + 5
3 < x ≤ i + 2,

0 otherwise,

λ−2(x) =




11
2 for 0 < x ≤ 1

3 ,

− 7
2 for 1

3 < x ≤ 2
3 ,

1 for 2
3 < x ≤ 1,

0 otherwise,

λN−1(x) = λ−2(N − x) =




1 for N − 1 < x ≤ N − 2
3 ,

− 7
2 for N − 2

3 < x ≤ N − 1
3 ,

11
2 for N − 1

3 < x ≤ N ,

0 otherwise.

For the partition (3) we have

N−2,h(x) = N−2,2

(
x− t0

h

)
, Ni,h(x) = N0,2

(
x− ti

h

)
,

i = −1, 0, . . . , N − 2, h =
b− a

N
,

NN−2,h(x) = N−1,2

(
tN − x

h

)
, NN−1,h(x) = N−2,2

(
tN − x

h

)

and

λi,h(x) = h−1λ0

(
x− ti

h

)
, i = −1, 0, . . . , N − 2,

λ−2,h(x) = h−1λ−2

(
x− t0

h

)
, λN−1,h(x) = h−1λ−2

(
tN − x

h

)
.

We may write the operator (1) in the form

PN (x) = PN,f (x) =
N−1∑
j=−n

(λj , f)Nj,n(x) (4)
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and for the norm of the operator PN : Lp(I) −→ Lp(I), for 1 ≤ p ≤ ∞ we have the
estimate

‖PN‖Lp(I) ≤
N−1∑
i=−n

b∫
a

|λi,n(t)| dt,

where λi,n is defined for the partition (3) (see [15]).
Further we need the following

Theorem 2.2 (see [15] and also [6, 7, 13, 14]). There exist constants Ck,n,p depending
only on k, n and p such that for 1 ≤ p ≤ ∞, f ∈ W r

p (I), 0 ≤ k ≤ r ≤ n + 1, k ≤ n∥∥∥f (k) − P
(k)
N,f

∥∥∥
Lp(I)

≤ Ck,n,p hr−k
N ω

(p)
n+1−r(f

(r), hN ) for k = 0, . . . , r, r = 0, . . . , n + 1,

where hN = b−a
N and

ω
(p)
n+1(f, δ) = sup

0<h≤δ

∥∥∥∥∥
n+1∑
i=0

(−1)i

(
n + 1

i

)
f(x + ih)

∥∥∥∥∥
Lp([a,b−nh])

, 1 ≤ p ≤ ∞

is the (n + 1)th modulus of smoothness of the function f in the space Lp(I).

3. NUMERICAL SOLUTION OF THE FREDHOLM INTEGRAL EQUATION
OF THE SECOND KIND

Let ∆N be the partition of the interval I = [a, b] defined by (3). Consider the
following integral equation:

y(x) = PN,f (x) + λ

b∫
a

PN,K(x, t) y(t) dt, (5)

where PN,f is defined by (4) and

PN,K(x, t) =
N−1∑
i=−n

N−1∑
j=−n


∫

I2

K(ξ, τ)λN,i(ξ)λN,j(τ) dξdτ


 Ni,n(x)Nj,n(t).

Now λN,i is defined as follows: Let ∆′
N = {xi}N+n

i=−n, x−n = . . . = x−1 = 0, xk = k,
k = 0, . . . , N , xN+1 = . . . = xN+n = N .

λN,i(x) =




1
h
λ0

(
x−xi

h

)
for i = 0, . . . , N − n,

1
h
λi

(
x−x0

h

)
for i = −n, . . . ,−1,

1
h
λi−N

(
XN−x

h

)
for i = N − n + 1, . . . , N − 1,

where λi is defined for the partition ∆′
N by means of Theorem 1 (see [15]).
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Let for every t ∈ I K(·, t) ∈ W r
p (I) and for every x ∈ I K(x, ·) ∈ W r

p (I), where
K(·, t) denotes the function K(x, t) of x at fixed t. Since PN,K(x, t) = PN,PN,K(·,t)(x),
then by Theorem 2 we obtain

‖K(x, t) − PN,K(x, t)‖Lp(I) ≤
≤ ∥∥K(x, t) − PN,K(·,t)(x)

∥∥
Lp(I)

+
∥∥PN,K(·,t)(x) − PN,K(x, t)

∥∥
Lp(I)

≤

≤ Ck,n,p hk
N ω̃

(p)
n+1−k

(
∂k

∂ xk
K,hN

)
+ Ck,n,p hk

N ω̃
(p)
n+1−k

(
∂k

∂ tk
K,hN

)
for k = 0, . . . , r,

where

ω̃(p)
m

(
∂k

∂ xk
K,h

)
= sup

t∈I
ω(p)

m

(
∂k

∂ xk
K(·, t), h

)
,

ω̃(p)
m

(
∂k

∂ tk
K,h

)
= sup

x∈I
ω(p)

m

(
∂k

∂ tk
K(x, ·), h

)
.

Let

� = λ sup
x∈I

b∫
a

|K(x, t)| dt < 1 for p = ∞,

� = λ




b∫
a


 b∫

a

|K(x, t)|p dx




q
p

dt




1
q

for 1 < p < ∞, (6)

� = λ sup
t∈I

b∫
a

|K(x, t)| dx < 1 for p = 1

and �N denotes the above quantities for the kernel KN (x, t).
Hence there exists N0 such that for N > N0

�N < �0 =
1 + �

2
< 1. (7)

The kernel PN,K is degenerated and because of (7) the solution of the integral
equation (5) is a spline of degree n with respect to the partition ∆N . Denote it
by sN .
We have the following

Theorem 3.1. Let for every t ∈ I, K(·.t) ∈ W r
p (I) and for every x ∈ I, K(x, ·) ∈

∈ W r
p (I) and � satisfies (6). Then there exist constants Ak,n,p and Bk,n,p depending

only on k, n and p such that∥∥∥s(k)
N − y(k)

∥∥∥
Lp(I)

≤
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≤ Ak,n,p hr−k
N ω

(p)
n+1−r (y(r), hN )+

+ Bk,n,p ‖PN‖C(I)‖y‖Lp(I) h
r−k
N ω̃

(q)
n+1−r

(
∂r

∂ tr
K,hN

)
,

where y and sN are the solutions of the equations (2) and (5) respectively and
1
p + 1

q = 1.

Proof. Let p = ∞ and N > N0. Applying the operator PN to the solution y of the
equation (2) we obtain

PN,y(x) = PN,f (x) + λ

b∫
a

PN,K(·,t)(x) y(t) dt.

Hence

sN (x) − PN,y(x) = λ

b∫
a

PN,K(x, t) [sN (t) − y(t)] dt+

+ λ

b∫
a

[PN,K(x, t) − PN,K(·,t)(x)] y(t) dt

and by (7)

‖sN − y‖C(I) ≤ ‖sN − PN,y‖C(I) + ‖PN,y − y‖C(I) ≤

≤ �0 ‖sN − y‖C(I) + λ

b∫
a

∣∣PN,K(x, t) − PN,K(·,t)(x)
∣∣ |y(t)| dt + ‖PN,y − y‖C(I).

Using the properties of B-splines we obtain

b∫
a

∣∣PN,K(x, t) − PN,K(·,t)(x)
∣∣ |y(t)| dt =

=

b∫
a

∣∣∣∣∣∣
N−1∑
i=−n




b∫
a

[
PN,K(ξ,·)(t) −K(ξ, t)

]
λN,i(ξ) dξ


 Ni,n(x)

∣∣∣∣∣∣ |y(t)| dt ≤

≤ ‖PN‖C(I) ‖y‖C(I) sup
ξ∈I

b∫
a

∣∣PN,K(ξ,·)(t) −K(ξ, t)
∣∣ dt.

Hence by Theorem 2.2 we obtain

‖sN − y‖C(I) ≤ 1
1 − �0

‖PN,y − y‖C(I) +
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+
λ

1 − �0
‖PN‖C(I) ‖y‖C(I) sup

x∈I

b∫
a

∣∣PN,K(x, t) − PN,K(·,t)(x)
∣∣ dt ≤

≤ A0,n,∞
1 − �0

hr
N ωn+1−r(y(r), hN )+

+
λ

1 − �0
‖PN‖C(I) ‖y‖C(I) C0,n,∞ hr

N ω̃n+1−r

(
∂r

∂ tr
K,hN

)
.

Now using the Markov inequality and Theorem 2.2 we obtain

‖s′N − y′‖C(I) ≤ ‖s′N − P ′
N,y‖C(I) + ‖P ′

N,y − y‖C(I) ≤

≤ λ sup
x∈I

∣∣∣∣∣∣
b∫

a

∂

∂x
PN,K(x, t)[sN (t) − y(t)] dt

∣∣∣∣∣∣+

+ λ sup
x∈I

∣∣∣∣∣∣
∫
I

[
∂

∂x
PN,K(x, t) − ∂

∂x
PN,K(·,t)(x)

]
y(t) dt

∣∣∣∣∣∣+ ‖P ′
N,y − y′‖C(I) ≤

≤ M λ

hN
sup
x∈I

∣∣∣∣∣∣
b∫

a

PN,K(x, t) [sN (t) − y(t)] dt

∣∣∣∣∣∣+

+
M λ

hN

∣∣∣∣∣∣
b∫

a

[
PN,K(x, t) − PN,K(·,t)(x)

]
y(t) dt

∣∣∣∣∣∣+

+ ‖P ′
N,y − y′‖C(I) ≤ M λ

hN
sup
x∈I

b∫
a

|PN,K(x, t)| dt ‖sN − y‖C(I)+

+
M λ

hN

b∫
a

∣∣PN,K(x, t) − PN,K(·,t)(x)
∣∣ |y(t)| dt + ‖P ′

N,y − y′‖C(I) ≤

≤ M�0A0,n,∞ hr−1
N ωn+1−r(y(r), hN )+

+ MλB0,n,∞ ‖y‖C(I) h
r−1
N ω̃n+1−r

(
∂

∂tr
K,hN

)
≤

≤ C1,n,∞ hr−1
N ωn+1−r(y(r)hN ),

whereM = M(n) is a constant depending only on n taken from the Markov inequality
and A0,n,∞, B0,n,∞ and C0,n,∞ are taken from Theorem 2.2.

The remaining inequalities we prove similarly.

The proof for p 
= ∞ is analogous.
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The solution of the equation (5) we may obtain using the method of iteration.
We proceed as follows: Let

PN,f (x) =
N−1∑
j=−n

cj Nj(x), PN,K(x, t) =
N−1∑
i=−n

N−1∑
j=−n

ai,j Ni(x)Nj(t),

di,j =

b∫
a

Ni(x)Nj(x) dx

and we put

sN,m+1(x) = PN,f (x) + λ

b∫
a

PN,K(x, t) sN,m(t) dt, (8)

where sN,m is a spline of the mth step of iteration.
Putting

sN,m(x) =
N−1∑
k=−n

bk,m Nk(x)

in (8) and comparing the coefficients bk at Nk we obtain

bk,m+1 = ck + λ
N−1∑
i=−n

ak,i

N−1∑
j=−n

bj,m di,j , m = 1, 2, . . . , k = −n, . . . , N − 1. (9)

Remark 3.1. We can also use this method for the numerical solution of the Voltera
integral equation of the second kind

y(x) = f(x) + λ

x∫
a

K0(x, t) y(t) dt.

Let D = {(x, t) : a ≤ x ≤ b, a ≤ t ≤ x. Putting

K(x, t) =

{
K0(x, t) for (x, t) ∈ D,

0 for (x, t) /∈ D,

we obtain the Fredholm integral equation (2). Now suppPN,K ⊂ DN = {(x, t) : a ≤
≤ x ≤ b, a ≤ t ≤ min [x + (n + 1)hN , b]}, where hN = (b−a)/N . If the first condition
from (6) is satisfied, then we may solve this equation as above. Unfortunately the
function sN,m+1 from the recurrence relations (8) is not a spline of degree n with
respect to the partition ∆N . Hence we cannot apply (9).

If � ≥ 1, then we are looking the solution of the equation (5) in the following
form

y(x) =
∞∑

k=0

λkφk(x), (10)
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where

φ0(x) = PN,K(x), φk+1(x) =

xn∫
a

PN,K(x, t)φk(t) dt,

where xn = min[x + (n + 1)hN , b], k = 0, 1, . . . As in [3, 11] we may prove that

|φk(x)| < λkMk‖PN,f‖C(I)[b− a + k(n + 1)hN ]
k!

,

k = 1, 2, . . ., where M = sup
(x,t)∈DN

|PN,K(x, t)|. Hence for N > (b − a)Mλe the series

(10) is convergent uniformly to the solution of the equation (5) on the interval [a, b].
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