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1. INTRODUCTION

An interesting connection between some particular Bergman-type space of analytic
functions [5] and quantum mechanics was uncovered by V . Bargmann and I. Segal in
the 1960s [1, 18]. The model of the Fock space [9] as an L2-space of entire functions
developed by Bargmann [1] provides a convenient and precise methods for studying
free Bose fields. On these spaces, which we denote by Bn and which contain functions
on Cn, the Fock boson creation operators are represented as multiplications by linear
functions of independent complex variables zj , j = 1, . . . , n. In [1] Bargmann defines a
Hilbert space Bn of all complex holomorphic functions on Cn, square integrable with
respect to the Gaussian measure. Toeplitz operators on these spaces appeared very
useful in describing certain physical observables [1, 3, 4, 11, 12, 15]. Bargmann defines
in [2] a Hilbert space B∞ of all complex holomorphic functions on l2 such, that its
bases is an amalganation of all bases of Bn over all natural “n”. B∞ was suggested as
a convenient functional model for implementing the ideas of Fock, Dirac, Friedrichs,
Cook and Segal [6, 8, 18, 19]. An attempt to extend Berger–Coburn’s program [3, 4]
for infinitely many variables (degrees of freedom) proposed by Janas and Rudol in
[13, 14], met serious difficulties. One would like to have an appropriate Gaussian
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measure µ on l2 such, that space B∞ can be regarded as a space of all complex
holomorphic and square integrable functions on l2. But for such a measure we have
µ(l2) = 0. Trying to overcome this problem the authors have considered B∞ as the
closure in L2(m) of the set of all continuous on E− complex polynomials, where m

is a measure on E− given by Milnos–Sozonov Theorem [16]. Here E− is a Fréchet
space from the triple of complex spaces E+ ⊂ l2 ⊂ E− with continuous inclusions
such, that E+ = (E−)∗ and for φ ∈ E+, z ∈ l2 we have φ(z) =< z, φ >l2 . The main
disadvantage of this “measure–theoretic” model of B∞ is the non-existence of non-
zero compact Toeplitz operators in spite of the situation for the Toeplitz operators
on Bn [13].

In [14] Janas and Rudol studied an inductive model of B∞ and they obtained
there more encouraging results for Toeplitz operators. In [2] Bargmann defined the
generalized creation and annihilation operators in a direction a ∈ l2 and he pointed
out that these operators correspond to those introduced by Friedrichs [8]1). In this
paper it is shown that the generalized creation and annihilation operators in a
direction a = (a1, a2, . . .) ∈ l2 are inductive limits of the creation and annihilation
operator dealing in Bn in direction (a1, . . . , an) ∈ Cn. This provides yet another
motivation to using the inductive model of B∞ to develop the ideas of Fock, Dirac
and others in the case of infinitely many degrees of freedom.

2. THE BARGMANN’S HILBERT SPACES

In this Section we recall Bargmann’s definition of the Hilbert space B∞ and some
properties of this space useful in the next parts of this paper.

We denote by T the set of all sequences of nonnegative integers with only a finite
number of nonzero entries. In the sequel the set Zn

+(resp.Cn) will be interpreted as
a subset of the set T(resp.l2), where l2 denotes the set of all square-summable,
complex sequences and Cn(resp.Zn

+) denotes the cartesian product of n- copies of
the complex number field C (resp. of the set of all nonnegative integers Z+). For
z := (z1, . . . , zn, zn+1, . . .) ∈ l2 and α := (α1, . . . , αn, 0, . . .) ∈ T, we use following
standard notation

‖z‖2 :=
∞∑

i=1

|zi|2, zα = zα1
1 · . . . · zαn

n , α! = α1! · . . . · αn!,

α + β := (α1 + β1, . . . , αn + βn . . .) , |α| =
∞∑

i=1

αi, eα(z) =
zα

√
α!

.

Now we recall Bargmann’s definition of his Hilbert space B∞ of an infinite order
[2]. Denote by l2(T) the set of all square-summable sequences indexed by the set T.

1) The detailed proof of these facts can be found in [22].
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For any sequence (f) := (fα)α∈T ∈ l2(T) we define the function f : l2 −→ C as
follows:

f(z) :=
∑
α∈T

fαeα(z), z ∈ l2 (1)

This definition is correct [21] and the correspondence (f) → f is linear injection and
we may denote its image by B∞. Namely

B∞ := {f : (f) ∈ l2(T)}.
On B∞ we transfer the Hilbert space structure from l2(T) defining

〈f, g〉∞ df
= 〈(f), (g)〉l2(T ).

Then the map l2(T ) 
 (f) −→ f ∈ B∞ is isometric and in consequence (B∞, 〈·, ·〉∞),
is a Hilbert space. The set {eα : α ∈ T} is an orthonormal basis of B∞ [21]. All
functions from B∞ are entire as functions from l2 to C, [21]. B∞ is a Hilbert space
with reproducing kernel

K(w, z) := exp〈w, z〉 for w, z ∈ l2 (2)

and the following reproducing formula is fulfilled:

f(z) = 〈f,K(·, z)〉, f ∈ B∞. (3)

For the others properties of the Hilbert space B∞ we refer the readers in [20, 21, 22,
23]. Concepts related to infinite-dimensional holomorphy can be found in [7].

3. GENERALIZED CREATION AND ANNIHILATION OPERATORS IN Bn, B∞

In this Section we recall the definitions and fundamental properties of generalized
creation and annihilation operators in the direction a ∈ l2 [21] as follows:

D(A+
a ) := {f ∈ B∞ : 〈·, a〉f(·) ∈ B∞} (4)

D(A−
a ) := {f ∈ B∞ :

(
z −→ d

dλ
f(z + λa)

∣∣∣∣
λ=0

)
∈ B∞} (5)

(A+
a f)z := 〈z, a〉f(z), f ∈ D(A+

a ), z ∈ l2 (6)

(A−
a f)z :=

d

dλ
f(z + λa)|λ=0 , f ∈ D(A−

a ), z ∈ l2. (7)

Using the orthonormal basis {eβ : β ∈ T} and the coefficients fβ of (f), we obtain
the following characterizations:

f ∈ D(A+
a ) if and only if

∑
β∈T

∣∣∣∣ ∑
i∈N

fβ−δi
ai ·

√
βi

∣∣∣∣2 < ∞
where δi = (0, . . . , 0, 1, 0, 0, . . .) ∈ T and a = (a1, a2, . . .)
and fβ−δi

:= 0 if βi = 0.

If f ∈ D(A+
a ), then A+

a f =
∑

β∈T

( ∑
i∈N

fβ−δiai

√
βi

)
eβ .




(8)
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f ∈ D(A−
a ) if and only if

∑
β∈T

∣∣∣∣ ∑
i∈N

fβ+σiai

√
βi + 1

∣∣∣∣2 < ∞

If f ∈ D(A−
a ), then A−

a f =
∑

β∈T

( ∑
i∈N

fβ+σi
ai ·

√
bi + 1

)
eβ .


 (9)

For other properties of the generalized creation and annihilation operators we refer
the readers to [21] and [23].
These are natural extensions of the analogously defined creation and annihilation

operators A+
a , A−

a in the direction a ∈ Cn. On has replace B∞ by Bn, l2 by Cn

in (4)–(7). Also (8), (9) are the corresponding characterizations in terms of the
coefficients in Bn.
We are using the same symbols A+

a , A
−
a in both cases (n < ∞ and n = ∞) to

avoid additional subscripts, but their distinction can be made by checking to which
of spaces Cn (resp. l2) does their directional vector „a” belong.
At the end of this section let us note, that using the same method as in the

proof of Lemma 6 in [21], it is not difficult to show that

LIN{eα : α ∈ T} is a core of A−
a . (10)

4. GENERALIZED CREATION AND ANNIHILATION OPERATORS IN B∞
AS INDUCTIVE LIMITS

Let us recall the notion of inductive limit of Hilbert spaces. Suppose we are given a
sequence of Hilbert spaces Hk, k ∈ N. We say that Hilbert space H is an inductive
limit of the Hk if there are isometries γl

k : Hk → Hl(k ≤ l) and γk : Hk → H such
that the following conditions are satisfied:

(i) γk
k is the identity on Hk,

(ii) γm
k = γm

l ◦ γl
k if k ≤ l ≤ m,

(iii) γk = γl ◦ γl
k if k ≤ l,

(iv) H =
∞∨

k=1

γkHk (the closed linear span of
⋃

γkHk).

Let us consider a sequence of closable operators Ln defined on dense domain
Dn ⊂ Hn, with densely defined adjoints L∗

n with domain D∗
n. Janas in [10] proved

the following statement:

Statement J. Let the following conditions be fulfilled:

γn+1
n Dn ⊂ Dn+1 and γn+1

n D∗
n ⊂ D∗

n+1, n ∈ N, (11)

for any ε > 0 there exists n0(ε) ∈ N such that for every m > n ≥ n0(ε) and any
φ ∈ Dn, ψ ∈ D∗

n we have the inequalities

‖(Lmγm
n − γm

n Ln)φ‖ ≤ ε(‖φ‖ + ‖Lmγm
n φ‖ + ‖Lnφ‖) (12)
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and
‖(L∗

mγm
n − γm

n L∗
n)ψ‖ ≤ ε(‖ψ‖ + ‖L∗

mγm
n ψ‖ + ‖Lnψ‖). (13)

Then for any n ∈ N, φn ∈ Dn, ψn ∈ D∗
n there exist the following limits

lim
m→∞ γmLmγm

n φn and lim
m→∞ γmL∗

mγm
n ψn (14)

Consequently, on the domains D∞ :=
⋃

n∈N

γnDn, D∗
∞ :=

⋃
n∈N

γnD∗
n on can define

operators

L∞φ := lim
m→∞ γmLnγm

n φn for φn = γ−1
n φ, φ ∈ D∞ and

A∞φ := lim
m→∞ γmL∗

mγm
n ψn for ψn = γ−1

n ψ,ψ ∈ D∗
∞

(15)

These operators turn out to be closable, densely defined and satisfying A∞ ⊂ L∗
∞.

It is not difficult to show that Bn = Bk ⊗ Bl, where n = k + l, and that B∞ is
an inductive limit of Bk with γn

mφ := φ⊗1n−m, γnψ := ψ⊗1, where 1n−m ∈ Bn−m,
1 ∈ B and 1n−m(z) = 1 for all z ∈ Cn−m and 1(z) = 1 for all z ∈ l2.
Let next Pk : l2 → Ck denote the projections onto the first k coordinates:

Pk(z1, z2, . . .) := (z1, . . . , zk).
Now we show that the operators A+

a and A−
a are inductive limits of the families

of operators {A+
(Pka) : k ∈ N} and {A−

(Pka) : k ∈ N} respectively, where a ∈ l2. Let

in the sequel: a ∈ l2, Lk := A+
(Pka), L

∗
k := A−

(Pka), Dk = D(A+
(Pka)), D

∗
k = D(A−

(Pka)),
Hk := Bk, H := B∞ and γn

m, γn are defined as above.

Theorem 4.1. The following conditions are fulfilled:

γn+1
n Dn ⊂ Dn+1, n ∈ N, (16)

γn+1
n D∗

n ⊂ D∗
n+1, n ∈ N, (17)

L∞ = A+
a , (18)

A∞ = A−
a = L∗

∞, (19)

where A∞, L∞ are defined as in Statement J and A∞, L∞ denote the closures of A∞
and L∞ resp.

Proof. To verify (16), let us take φ ∈ Dn.
Then φ(z) =

∑
β∈Zn

+

φβ
zβ√
β!
and

γm
n φ(z) = φ ⊕ 1(z) =

∑
β∈Zn

+

φβ
zβ

√
β!

.

From the other side we have:

γm
n φ(z) =

∑
α∈Zm

+

(γm
n φ)α

zα

√
α!
because of γm

n φ ∈ Hm.
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So it must be 
 (γm

n φ)(α1,...,αn,0,...,0) = φ(α1,...,αn)

and
(γm

n φ)α = 0 if α2
n+1 + . . . + α2

m > 0.
(20)

Now with help of the above property we obtain:

∑
α∈Zn+1

+

∣∣∣∣∣∣
n+1∑
j=1

(γn+1
n φ)α−δj aj

√
αj

∣∣∣∣∣∣
2

=

=
∑

α∈Z
n+1
+

αn+1=0

∣∣∣∣∣∣
n∑

j=1

(γn+1
n φ)α−δj

∣∣∣∣∣∣ aj
√

αj
2 +

∑
α∈Z

n+1
+

αn+1 =1

∣∣(γn+1
n φ)α−δj an+1

∣∣2 =

=
∑

β∈Zn
+

∣∣∣∣∣∣
n∑

j=1

φβ−δj
aj

√
βj

∣∣∣∣∣∣
2

+
∑

β∈Zn
+

|φβan+1|2 ≤

≤
∑

β∈Zn
+

∣∣∣∣∣∣
n∑

j=1

φβ−δj
aj

√
βj

∣∣∣∣∣∣
2

+


 ∑

β∈Zn
+

∣∣φ2
β

∣∣

 · |an+1|2 =

=
∑

β∈Zn
+

∣∣∣∣∣∣
n∑

j=1

φβ−δj
aj

√
βj

∣∣∣∣∣∣
2

+ |φ|2 |an+1| .

From this and the condition (8) we have: jn+1
n (Dn) ⊂ Dn+1. This finishes the proof

of (16). Similarly, we have for ψ ∈ D∗
n, n ∈ N the equalities:

∑
α∈Zn+1

+

∣∣∣∣∣
n+1∑
i=1

(
γn+1

n ψ
)
α+δi

ai

√
αi + 1

∣∣∣∣∣
2

=
∑

α∈Z
n+1
+

αn+1=0

∣∣∣∣∣
n∑

i=1

(
γn+1

n ψ
)
α+δi

ai

√
αi + 1

∣∣∣∣∣
2

=

=
∑

β∈Zn
+

∣∣∣∣∣
n∑

i=1

ψβ+δi
ai

√
βi + 1

∣∣∣∣∣
2

.

So from the above and the condition (9) it follows that the statement (17) is true,
too.
Our proof of (18) and (19) will be based on Statement J , whose assumption

(11) has just been verified. Now we show that the assumption (12) is also true. Let
φ ∈ Dn, n, m ∈ N, n ≤ m. Then from the conditions (20) and (8) we obtain:

‖Lmγm
n φ − γm

n Lnφ‖2 =

=

∥∥∥∥∥∥
∑

α∈Zm
+

[
m∑

i=1

(γm
n ψ)α−δi

ai
√

αi

]
eα −


 ∑

β∈Zn
+

[
n∑

i=1

ψβ−δi
ai

√
βi

]
eβ


 ⊗ 1m−n

∥∥∥∥∥∥
2

=
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=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

∑
α∈Zm

+
αn+1=...=αm=0

[
n∑

i=1

(γm
n ψ)α−δi

ai
√

αi

]
eα

︸ ︷︷ ︸
(1)

+

+
m∑

j=n+1

∑
α ∈ Zm

+

α2
n+1 + . . . + α2

m = 1
αj = 1

[
(γm

n ψ)α−δj
aj

]
eα

︸ ︷︷ ︸
(2)

−

−
∑

β∈Zn
+

[
n∑

i=1

ψβ−δi
ai

√
βi

]
eβ

︸ ︷︷ ︸
(3)

∥∥∥∥∥∥∥∥∥∥∥∥

2

=

=

∥∥∥∥∥∥
m∑

j=n+1

∑
β∈Zn

+

(φβaj) ein(β)+δj

∥∥∥∥∥∥
2

=
m∑

j=n+1

∑
β∈Zn

+

|φβ |2 |aj |2 = ‖φ‖2 ·
m∑

j=n+1

|aj |2 ,

where the expressions (1) and (3) cancel and in(β) := (β1, . . . , βn, 0, . . . , 0) ∈ Zm
+ .

But a ∈ l2, so for any ε > 0 there exists n0(ε) such that for every m > n ≥ n0(ε)
m∑

j=n+1

|aj |2 < ε2 and as consequence we obtain:

‖(Lmγm
n − γm

n Ln)φ‖ < ε · ‖φ‖ φ ∈ Dn.

Let now ψ ∈ D∗
n. Then from the conditions (20) and (9) we obtain:

‖(L∗
mγm

n − γm
n L∗

n)ψ‖2 =

=

∥∥∥∥∥∥
∑

α∈Zm
+

[
m∑

i=1

(γm
n ψ)α+δi

ai
√

αi+1

]
eα −


 ∑

β∈Zm
+

[
n∑

i=1

ψβ+δi
ai

√
βi+1

]
eβ


 ⊗ 1m−n

∥∥∥∥∥∥ =

=

∥∥∥∥∥∥∥∥
∑

α∈Zm
+

αn+1=...=αm=0

[
n∑

i=1

(γm
n ψ)α+δi

ai

√
αi + 1

]
eα −

∑
β∈Zn

+

[
n∑

i=1

ψβ+δi
ai

√
βi + 1

]
eβ

∥∥∥∥∥∥∥∥
2

=

= 0.
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So really, the assumption (12) is fulfilled. Now we can use Statement J and we obtain
that the conditions (14) and (15) are true in our situation described at the beginning
of Section 4. It is plain that γnDn ⊂ D(A+

a ) and γnD∗
n ⊂ D(A−

a ) for every n ∈ N.
So we have

D∞ ⊂ D(A+
a ) and D∗

∞ ⊂ D(A−
a ).

Next we note:

L∞φn(z) = lim
m→∞ γmLmγm

n φn(z) =

= lim
n→∞ (γm [〈·, Pma〉mγm

n φn(·)]) z =

= lim
m→∞ (〈·, Pma〉mγm

n φn(·) ⊗ 1) z =

= lim
m→∞〈Pmz, Pma〉mγm

n φn(Pmz) =

= 〈z, a〉γnφn(z), φn ∈ Dn, n ∈ N,

because of the facts, that Bn, B∞ are the Hilbert spaces with reproducing kernels
(so, the evaluation functions on these spaces are continuous) and the observations:

〈Pmz, Pma〉m −→ 〈z, a〉 and γm
n φn(Pmz) −→ γnφn(z) if m → ∞.

The above allows us to write: L∞ ⊂ A+
a .

Let M := LIN{eα : α ∈ T}. Then we have M ⊂ D∞ ∩ D∗
∞ and A∗

a|M ⊂ L∞ ⊂
⊂ L∞ ⊂ A+

a , where A+
a |M denotes a restriction of the operator A+

a to the linear
space M and L∞ denotes a closure of the operator L∞ (from the Statement J it
follows that L∞ is closable). But M is a core of A+

a [21]. So we have:

A+
a = A+

a |M ⊂ L∞ ⊂ A+
a

and at last L∞ = A+
a . This finishes the proof of the condition (18).

Similarly as above we obtain:

A∞ψn(z) = lim
m→∞ γmL∗

mψn(z) =

= lim
m→∞

d

dλ
γm

n ψn(Pmz + λPma)|λ=0 =

= lim
m→∞ γm

n

d

dλ
ψn(Pnz + λPna)|λ=0 = γn

d

dλ
ψn(Pnz + λPna)|λ=0 =

=
d

dλ
γnψn(z + λa)|λ=0 for ψn ∈ D∗

n and n ∈ N,

because of d
dλ [f(λ, ·) ⊗ g(·)] |λ=λ0 =

(
d

dλf(λ, ·)|λ=λ0

)⊗g(·) and the other same reasons
as by the calculation at the preceding page.
From this it immediately follows that

A−
a |M ⊂ A∞ ⊂ A∞ ⊂ A−

a .
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But M is core of A−
a (see the condition (10)). Thus

A−
a = A−

a |M ⊂ A∞ ⊂ A−
a

and finally A∞ = A−
a , which finishes the proof of (19) and of our all Theorem.

Janas in [10] showed that an inductive limit of normal operators is a normal
operator under assumption describing the behavior of bounded vectors of operators
from the inductive sequence. He obtained also hyponormality (cohyponormality) for
the decreasing sequence of appropriate tensor products of hyponormal (cohyponor-
mal) operators under some normalization assumption. In [21] it is shown that the
generalized creation operators A+

a are subnormal. Our Theorem shows us an example
of a sequence of comparatively simple subnormal operators, which has also subnor-
mal inductive limit, having minimal normal extensions on L2(un) such, that their
inductive limit, although subnormal, has no straightforward normal extension on
L2-space ([21], see also [17]).
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