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RECOVERING A PART OF POTENTIAL
BY PARTIAL INFORMATION

ON SPECTRA OF BOUNDARY PROBLEMS

Abstract. Under additional conditions uniqueness of the solution is proved for the
following problem. Given 1) the spectrum of the Dirichlet problem for the Sturm–Liouville
equation on [0, a] with real potential q(x) ∈ L2(0, a), 2) a certain part of the spectrum of
the Dirichlet problem for the same equation on [a

3
, a] and 3) the potential on [0, a

3
]. The

aim is to find the potential on [a
3
, a].
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1. INTRODUCTION

The first result on uniquiness of the potential of the Sturm–Liouville equation produ-
cing the prescribed spectrum of a corresponding boundary problem was obtained in
[1]. In this paper it was shown that if the spectrum of the problem with the Neumann
boundary conditions coincides with the set {k2} where k ∈ {0} ∪ N, then q(x) a.e.= 0.
In [2] it was proved that in most cases two spectra of corresponding boundary pro-
blems uniquely determine the potential. Leaving aside the history of other aspects of
Sturm–Liouville inverse theory (see [3]–[5]) we should mention that important step
was done in [6] where it was shown that the spectrum of one boundary problem
on [0, a] and the potential no [0, a

2 ] uniquely determine the potential on [a
2 , a]. It

was shown in [7], that a half of the spectrum of a boundary problem (for example
Dirichlet boundary problem) on [0, a] and the potential on [0, 3

4a] uniquely determine
the potential on [ 34a, a]. In [8] the authors showed that the spectrum of a boundary
problem (for example Dirichlet problem), a half of the spectrum of another boundary

Opuscula Mathematica • Vol. 25 • No. 1 • 2005

131



problem (for example, Dirichlet–Neumann one) and the potential on [0, a
4 ] uniquely

determine the potential on [a
4 , a].

Three spectral problems were considered in [9], [10], where it was proved that
the spectra of three Dirichlet boundary problems on the intervals [0, a], [0, a

2 ] and
[a
2 , a] generated by the same potential uniquely determine the potential if these three
spectra do not intersect.
In the present paper the potential is supposed to be known on the interval [0, a

3 ]
as well as the spectrum of the Dirichlet problem on the wlole interval [0, a] and a
certain part of the spectrum of the Dirichlet problem on [a

3 , a]. It is proven that
under some additional conditions these data uniquely determine the potential on
[0, a].

2. MAIN RESULT

Let us consider the following Sturm–Liouville problems with the Dirichlet boundary
conditions and common real potential q(x) ∈ L2(0, a).

y′′ + λ2y − q(x)y = 0, (1)

y(0) = y(a) = 0, (2)

y′′ + λ2y − q(x)y = 0,

y(0) = y
(a

3

)
= 0, (3)

y′′ + λ2y − q(x)y = 0,

y(0) = y′
(a

3

)
= 0, (4)

y′′ + λ2y − q(x)y = 0,

y
(a

3

)
= y(a) = 0. (5)

We denote by {λk}∞−∞,k �=0 the spectrum of problem (1), (2), by {νk}∞−∞,k �=0 the

spectrum of (1), (3), by {µk}∞−∞,k �=0 the spectrum of (1), (4) and by {ν(1)
k }∞−∞,k �=0

the spectrum of (1), (5). For the sake of simplicity we assume q(x) to be positive
almost everywhere on [0, a]. Then the four above mentioned spectra are real. It is
well known that the eigenvalues of these spectra are simple. We enumerate them such
that λ−k = −λk, λk+1 > λk for all k ∈ N and so on for each sequence of eigenvalues.
In the sequel we suppose the following condition to be satisfied:

Condition 2.1. {λk}∞−∞,k �=0 ∩{νk}∞−∞,k �=0 = ∅ and {λk}∞−∞,k �=0 ∩{ν(1)
k }∞−∞,k �=0 = ∅.

Let us denote by s(λ, x) the solution of equation (1) which satisfies the conditions
s(λ, 0) = s′(λ, 0)−1 = 0, by s1(λ, x) the solution of (1) which satisfies the conditions

s1

(
λ,

a

3

)
= s′1

(
λ,

a

3

)
− 1 = 0 (6)
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and by c1 (λ, x) the solution of (1) which satisfies the conditions

c1

(
λ,

a

3

)
− 1 = c′1

(
λ,

a

3

)
= 0. (7)

It is easy to check up that

s(λ, a) = s′
(
λ,

a

3

)
s1(λ, a) + s

(
λ,

a

3

)
c1(λ, a). (8)

Relation (8) implies that if ν(1)
k = νp for some k and p then νp = λs for some s.

That means that Condition 1 implies {νk}∞−∞,k �=0 ∩ {ν(1)
k }∞−∞,k �=0 = ∅.

The spectrum {λk}∞−∞,k �=0 possesses the following asymptotics (see [11])

λk =
k→∞

πk

a
+

B0

k
+

αk

k
, (9)

where

B0 =
1
2π

a∫
0

q(x)dx, {αk}∞−∞,k �=0 ∈ l2.

Applying the same results of [11] to the subintervals
[
0, a

3

]
and

[
a
3 , a

]
we obtain

νk =
k→∞

3πk

a
+

B

k
+

βk

k
, (10)

and

ν
(1)
k =

k→∞
3πk

2a
+

B1

k
+

β
(1)
k

k
, (11)

where

B =
1
2π

a
3∫

0

q(x)dx, {βk}∞−∞,k �=0 ∈ l2,

B1 =
1
2π

a∫
a
3

q(x)dx, {β(1)
k }∞−∞,k �=0 ∈ l2.

We call fitting any subsequence
{
ν

(1)
kp

}∞

−∞,p �=0
such that ν

(1)
k−p

= −ν
(1)
k−p
,

ν
(1)
kp

=
p→∞

3π
2a

(2p − 1) +
B1

2p − 1
+

βp

p
, (12)

where {βp}∞−∞,k �=0 ∈ l2 and
{
ν

(1)
kp

}∞

−∞,p �=0
∩ {νk}∞−∞,k �=0 = ∅.
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Theorem 2.1. Let the following data be given:

1) the spectrum {λk}∞−∞,k �=0;

2) the real potential q(x) ∈ L2

(
0, a

3

)
on the interval

[
0, a

3

]
(almost everywhere);

3) any fitting subsequence
{
ν

(1)
kp

}∞

−∞,p �=0
.

Then these data uniquely determine the potential q(x) almost everywhere on [0, a].

Proof. Knowing q(x) on
[
0, a

3

]
we can find s(λ, x) and s′(λ, x) on

[
0, a

3

]
solving

equation (1) with the conditions s(λ, 0) = s′(λ, 0) − 1 = 0. Therefore, we can find
s
(
λ, a

3

)
and s′

(
λ, a

3

)
. Then we find the set {νk}∞−∞,p �=0 of zeros of s

(
λ, a

3

)
and the

set of values s′
(
νk,

a
3

)
.

Let us consider the union {ζk}∞−∞ = {νk}∞−∞,k �=0 ∪
{
ν

(1)
kp

}∞

−∞,p �=0
∪ {ζ0}. Here

we have set ζ0 = 0 and changed the enumeration to have ζ−k = −ζk and ζk < ζk+1

for all k. Due to (10) and (12) we obtain

ζk =
k→∞

3π
2a

k + O(
1
k

). (13)

The following definition is due to [14]:

Definition 2.1. An entire function ω (λ) of exponential type σ > 0 is said to be a
function of sine-type if:

1) all the zeros of ω (λ) lie in a strip |Imλ| < h < ∞;
2) for some h1 and all λ ∈ {λ : Imλ = h1} the following inequalities hold: 0 < m ≤

≤ |ω (λ)| ≤ M < ∞;
3) the type of ω (λ) in the lower half-plane coincides with that in the upper half-plane.

Thus, using Corollary after Lemma 4 in [12] we conclude that {ζk}∞−∞,k �=0 is the
set of zeros of a sine-type function. This function can be given as

ϕ(λ) =
n→∞

n∏
−n,k �=0

C

(
1 − λ

ζk

)
. (14)

Now our aim is to construct s1(λ, a). We know the part
{
ν

(1)
p

}∞

−∞,p �=0
of the set of

zeros of this function. From (8) we obtain

s1(νk, a) =
s(νk, a)

s′
(
νk,

a
3

) (15)

We have already shown how to find all the values s′
(
νk,

a
3

)
. Now we find (see [11])

s(λ, a) = a
∞∏

k=1

( a

πk

)2 (
λ2

k − λ2
)
.
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Using this we find s1(νk, a) for all k via (15). Also we know from [11] that

s1(λ, a) =
sin 2

3λa

λ
− πB1

λ2
cos

2
3
λa +

ψ(λ)
λ2

, (16)

where ψ(λ) ∈ L 2
3 a (La stands for the set of entire functions of exponential type ≤ a

which belong to L2(−∞,∞) for real λ). Using (15) and (16) we obtain

ψ(νk) = ν2
k

(
s(νk, a)

s′
(
νk,

a
3

) − 1
νk

sin
2
3
νka +

πB1

ν2
k

cos
2
3
νka

)
.

According to Lemma 1.4.3 in [11] {ψ(νk)}∞−∞,k �=0 ∈ l2.

Let us associate ap = 0 with every ζk = ν
(1)
kp
and with ζ0. Each ζk which does

not coinside with any of ν(1)
kp
coinside with one of νk. Let it be νk1 , then we associate

ak1 = ψ(νk1) with this ζk. Thus we obtain the sequence {ak}∞−∞ ∈ l2. From the other
hand {ζk} is the set of zeros fo a sine-type function ϕ(λ) defined by (14). Solving
the interpolation problem we obtain

ψ(λ) = ϕ(λ)
∞∑
−∞

ak

ϕ′(λ)|λ=ζk
(λ − ζk)

. (17)

This Lagrange series converges uniformly on any compact of complex plane and in
the norm of L2(−∞,∞) for real λ (see [13]). Here ψ(λ) ∈ L 2

3 a. Substituting obtained
ψ(λ) into (16) we find s1(λ, a). Using (8) we find c1(λ, a):

c1(λ, a) =
s(λ, a) − s′

(
λ, a

3

)
s1(λ, a)

s
(
λ, a

3

) .

Now knowing s1(λ, a) and c1(λ, a) we construct the potential q(x) via the procedure
presented in [11] which we describe below.
First of all we introduce the function

e(λ) = e−iλa (c(λ, a) + iλs(λ, a))

which is so-called Jost function of the prolonged Sturm–Liouville problem on the
semiaxis

y′′ + λ2y − q̃(x)y = 0,

yj(λ, 0) = 0,

where

q̃(x) a.e.=
{

q(x), if x ∈ [0, 2
3a]

0, if x ∈ ( 2
3a,∞).
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For the sake of simplicity let µ2
1 > 0 (otherwise we may shift). Then the Jost

function e(λ) has no zeros in the closed lower half-plane. Introduce so-called “S-ma-
trix”

S(λ) =
e(λ)

e(−λ)

and the function

F (x) =
1
2π

∞∫
−∞

(1 − S(λ)) eiλxdλ.

The Marchenko integral equation

K(x, t) + F (x + t) +

∞∫
x

K(x, s)F (s + t)ds = 0

possesses unique solution Kj(x, t), and the potential

q̃(x) = −2
dK(x, x)

dx
(18)

is real and belongs to L2(0,∞) and q̃j(x) = 0 for x ∈ ( 2
3a,∞). The shift q(x + a

3 )
of the projection g(x) of q̃(x) onto the interval [0, 2

3a] gives the unknown part of
the potential we are looking for. Now the uniqueness of the procedure of recovering
follows from the uniqueness of the recovering procedure in [11]. Theorem is proved.
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