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NUMERICAL APPROXIMATIONS OF DIFFERENCE
FUNCTIONAL EQUATIONS AND APPLICATIONS

Abstract. We give a theorem on the error estimate of approximate solutions for difference
functional equations of the Volterra type. We apply this general result in the investigation
of the stability of difference schemes generated by nonlinear first order partial differential
functional equations and by parabolic problems. We show that all known results on diffe-
rence methods for initial or initial boundary value problems can be obtained as particular
cases of this general and simple result.

We assume that the right hand sides of equations satisfy nonlinear estimates of the
Perron type with respect to functional variables.
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1. INTRODUCTION

Difference methods for nonlinear first order partial functional differential equations
and for nonlinear parabolic problems were considered by may authors and under
various assumptions. It is easy to construct an explicit Euler’s type difference method
which satisfies the consistency conditions on all sufficiently regular solutions of the
above problems. The main task in these investigations is to find a finite difference
scheme which is stable. The method of difference inequalities and simple theorems
on recurrent inequalities are used in the investigations of the stability of nonlinear
difference or functional difference equations.

It is not our aim to show a full review of papers concerning difference methods
for partial functional differential equations. We mention only those which contain
such reviews. They are [1, 4, 5, 7, 8]. The monograph [3] contains an exposition of
the numerical methods for nonlinear hyperbolic functional differential problems.
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In the paper we present a general method for the investigation of the stability of
difference or functional difference problems generated by initial or initial boundary
value problems for nonlinear first order partial functional differential equations and
for parabolic problems. We prove a simple theorem on the error estimates of approxi-
mate solutions for difference functional equations of the Volterra type with unknown
function of several variables. The error of an approximate solution is estimated by
a solution of an initial problem for a nonlinear difference equation. We will apply
this general and simple idea in the investigation of the stability of difference schemes
generated by various problems.

It is essential fact in our considerations that the right hand sides of functio-
nal differential equations satisfy the nonlinear estimates of the Perron type with
respect to unknown functions. They are identic with assumptions which guarantee
the uniqueness of classical solution of initial or initial boundary value problems.

We use in the paper these general ideas for finite difference equations which
were introduced in [2, 6].

All problems considered in the paper have the following property: the unknown
function is the functional variable in equations. The partial derivatives appear in a
classical sense.

2. DIFFERENCE FUNCTIONAL EQUATIONS

For any two sets X and Y we denote by F(X,Y") the class of all functions defined on
X and taking values in Y. We will denote by N and Z the sets of natural numbers and
integers respectively. We will use vectorial inequalities with the understanding that
the same inequalities hold between their corresponding components. For =, y € R™,
x = (1,...,Zn)y Y = (Y1,...,Yn) We write z oy = (x1y1,...,Tpys) and |jz| =
= |z1|+ ...+ |zn|. Let ap € Ry, Ry =[0,+00), and a > 0 be given. Write

Y =1[0,a] x R® and g = [—ag,0] x R™.

We define a mesh on Xy U X in the following way. Suppose that (hg,h') = h, b/ =
= (h1,...,hy,), stand for steps of the mesh. For (r,m) € Z'™™ where m =
= (ma,...,my) we define nodal points as follows:

t" =rhy, 2™ =moh!, 2™ = (:vgml), . ,xf{”")) .

We assume that there is Ky € Z such that Kghg = ag. Let K € N be defined by
the relations Kho < a < (K + 1)hg. We will denote by H C R} the set of all steps
h = (hg, ') of the meshes. We assume that there is a sequence

{h(k)}:io’ he e H,

such that klim h(¥) = 0. In the paper we formulate further assumptions on H. For
—00

h € H we put
Ry = {(t(T)7x(m)): (r,m) € ZH"}
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and
Yor=ToNR™, B, =S NRT

We assume that Ej, 0gEy C Xy, Fo.n C Y., are given sets where h € H. Write
Qn = Eg, UELRUQE)

and
Qpi =N ([—ao,t(“} x R”) , 0<i<K.

For a function z: Q, — R and for a point (t(),z(™) € Q, we put z("™ =
= 2(t™,2(™)) and

l2llnr = mas {0 - (19, 207) € Q... .
Set
B, = {(t“),x(m)) € Ey: (10D 2(m) ¢ Eh}
and
Jp, = {t@: ogrgK}, J;’L:Jh\{x(K)}.
For a function a: J, — R we write a(”) = a(t(), 0 <r < K.

Assumption H [Q]. Suppose that the sets Egp, En, OoEn, h € H, satisfy the
conditions:

1) En #0, Eo.p # 0 and E, N Oy Ey = 0,
2) if (t0+) (MY e By and 0 <r < K — 1 then (t0),2(™) € Ey,,
3) the set Qy, is bounded.

Suppose that F: E, x F(Q,,R) — R is a given operator. For (¢t 2™ 2) ¢
€ B} x F(Q,R) we write

Ful2]m) = B (£0, 20 2).

The operator F}, is said to satisfy the Volterra condition if for each (¢, z("™) ¢ E}
and for z, z € F(Q,,R) such that z|g, , = Z|q, , we have Fj[z]"™) = F,[z]("™).
Note that the Volterra condition states that the value of Fj, at the point (t(’"), z(™), 2)
depends on ("), (™)) and on the restriction of z to the set . only.

Given ¢ € F(Eg.j U doER,R), we consider the functional difference equation

AL = By [£](m) 1)
with the initial boundary condition

2(rm) — @;;’m) on  FEypUOdyEy. (2)
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If F} satisfies the Volterra condition then there exists exactly one solution
up: 2 — R of problem (1), (2). Let Y, C F(©),,R) be a fixed subset. Suppose
that v Qp — R, y: J}, = Ry, agn € Ry are such elements that vy, € Y, and

‘U}(;»Jd,m) _ Fh[vh](r,m)‘ < ,y}(LT) on Ellz (3>
and
’ = ’ <aon on EgpUdEh. )

The function vy, satisfying the above relations is considered as an approximate solu-
tion of problem (1), (2). We give a theorem on the estimate of the difference between
the exact and approximate solutions of (1), (2). We look for approximate solutions
of (1), (2) in the space Y},

Assumption H [F},, 04]. Suppose that the operator Fj,: E; x F(Q,,R) = R, h€ H,
satisfies the Volterra condition and there is a function o: J; x Ry — Ry such that
op, is nondecreasing with respect to the second variable and the estimate

Fi[z] ™) — Fh[g](r’m)’ <op (tm, |z — 5||h.r)

is satisfied for (t™),z(™) € B}, z € F(Q,R), 2 € Yj,.
Theorem 2.1. Suppose that Assumptions H [Qp] and H [Fy, 0] are satisfied and:
1) ¢ € F(Ep.p, UOER,R) and up: QU — R is a solution of problem (1), (2);

2) the functions vp: Q — R, y,: J;, — Ry and the constant ogp € Ry satisfy
relations (3), (4) and v, € Yy,

3) the function By, : Jn — Ry is nondecreasing and it satisfies the recurrent inequality
B zon(t 37+, 0<r <K -1, (5)
and B > ag p.
Under these assumptions we have
lun, = vnllne < B, 0<r <K (6)

Proof. We prove the assertion (6) by induction. It follows from the initial boundary
estimate (4) that inequality (6) is satisfied for » = 0. Suppose that ||up —vp|ln.i < B}(f)
with fixed i, 0 <i < K — 1, and (t¢+1), 2(™) € E),. Then we have

(i4+1,m) (i4+1,m)
Up ~ U

< ‘Fh[uh](i,m) — B, [vh](i,m)’ + ‘Fh[uh](i,m) 7 U;Li—'rl,m)

< o (19, Jun = vnlni) + 957 < B0,

We conclude from the above estimate and from (4) that |Jup — vp|lpir1 < ﬁ(lﬂ .
Hence, the proof is completed by induction. O
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Remark 2.1. Suppose that:

1) there is L > 0 such that
Uh(tap) = (1 + LhO)p, (t,p) € Jf/z X R+;

2) there is 4y € Ry such that 'y}(f) < hoyp for0 <r < K —1.

Then Assumption H [F},, 03] states that Fy, satisfies the Lipschitz condition with
respect to the functional variable and 1+ Lhg is the Lipschitz constant. In this case
we have the estimates

. 14 Lhg)" — 1
llun — vl < (14 Lho)" co.p +%¥ <

7 S

Lal —1
% for 0<r<K.

<expl|La] aop +n
The above example is important in applications.

3. INITIAL PROBLEMS FOR FIRST ORDER PARTIAL FUNCTIONAL
DIFFERENTIAL EQUATIONS

For any two metric spaces X and Y we denote by C'(X,Y) the class of all continuous
functions from X into Y. Let E be the Haar pyramid

E={(t,x) eR"™:t€(0,a], —b+Mt<z<b— Mt}

where a > 0, b = (b1,...,b,) € R", M = (My,...,M,) € R} and b > Ma. Write
Ey = [—ag,0] x [=b,b], @ = EU Ey and suppose that f: F x C(Q,R) x R — R,
@: Ey — R are given functions. We consider the Cauchy problem
Oz(t,x) = f(t,z,2,0,2(t,x)) (7)
z(t,x) = o(t,z) on FEjy. (8)
Write Q; = QN ([—ap, t] x R™), 0 < ¢ < a. The maximum norm in the space C (€, R)
is denoted by || - ||+~ We assume that f satisfies the following Volterra condition: if
(t,z,q) € EXR" 2,z € C(Q,R) and z|g, = Z|q, then f(t,z,z2,q9) = f(t,z,Z,q).
Now we formulate a class of difference equations corresponding to (7), (8). Let
us denote by H the set of all h = (hg, h’) satisfying the conditions:
(i) there are Ky € Z and (Ny,...,N,) € N" such that Kohg = ap and N o h/' = b;

(ii) h' < Mhg and there is ¢g > 0 such that hihj_1 <o for1<i,j<n.
Let K € N be the constant defined in Section 1. For h € H we put

Eon=EnR*" E,=EnR™, 0E,=10
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and
E;L = {(t(r),x(m)> € Ey: (t(T—H),(E(m)) S Eh} s Qn = EgpUE),.

Write e¢; = (0,...,0,1,0,...,0) € R” with 1 standing on the i-th place, 1 < i < n.
Suppose that z: Q;, — R and (t(,2(™)) € E;. We define the difference operators &y
and 0 = (d1,...,0,) in the following way:

1
Sozm™ = — {z(”l’m) - Az(r’m)} ; 9)
ho
where
1 n
(rm) _ _— (rym+e;) (r,m—e;)
Az(rm) — 2n;{z7“m i) 4 p(rm e,}
and

5]_2(7“,m) — L [Z(r,vrz+ej) _ Z('r',m—ej)} , 1< ] <n. (10)
j
Approximate solutions of (7), (8) are functions defined on 2. Moreover, because
equation (7) contains the functional variable z which is an element of the space
C(92,R), we need an interpolating operator Ty, : F(Q;,,R) — C(Q,R).
Assumption H [T},]. Suppose that the operator Ty, : F(Q,R) — C(Q,R) satisfies the
conditions:

1) for z,z € F(Q,R) we have

[Th[2] = Th[z]|

i <z =2llhr 0<7 <K
2) for each function z: Q — R which is of class C' there is C € Ry such that
Iz = Tulzn]lls < ClIBll, 0<t<a,
where zy, is the restriction of z to the set Qp and ||h|| = ho + ||W]].

Remark 3.1. Condition 1) of Assumption H [T}] states that T, satisfies the Lip-
schitz condition with a constant L = 1 and that it satisfies the Volterra condition.
Assumption 2) implies that the function z is approzimated by Ty|zy] and the error of
this approzimation is estimated by C(||h).

An example of T, satisfying Assumption H [T},] can be found in [3], Chapter III.
We will approximate classical solutions of (7), (8) by means of solutions of the
difference functional equation

602(“7") =f (t("),x(m),Th[z},éz("’m)) (11)

with the initial condition

Z(T’m):SDg’m) on FEoyy (12)

where ¢ : Epp, — R is a given function.
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Problem (11), (12) is called the Lax scheme for (7), (8).
Assumption H [f,o]. Suppose that the function f: E x C(Q,R) x R* — R of the
variables (t,x,2,q), ¢ = (q1,---,qn), 18 continuous and satisfies the Volterra condition
and there is o: [0,a] x Ry — Ry such that:

1) o is continuous and it is nondecreasing with respect to both variables;
2) for each € € Ry the mazimal solution w(-,e) of the Cauchy problem
W(t) =o(t,w(t)) +e, w(0)=c¢,

is defined on [0,a] and w(t,0) =0 for ¢ € [0,a];

3) the estimate
[f(t,2,2,0) = f(t,2,2,q)| < ot ||z — Z[|s)
is satisfied on E x C(},R) x R™.

Theorem 3.1. Suppose that Assumptions H [T},], H [f, o] are satisfied and:

1) the partial derivatives
(a(hfv e '7aqn,f) - aqf
exist on E x C(Q,R) x R™ and 0, f(t,x, 2, -) € C(R",R™) and

1 A
=210, f(hwz g 20, 1<i<n, (13)
n i

where (t,z,z,q) € Ex C(Q,R) xR" and h € H;
2) v: Q — R is a solution of (7), (8) and v is of class C*;
3) up: Qp — R is a solution of (11), (12) and there is ag: H — Ry such that

) — < o) on Eop and  lim ag(h) = 0.

—0

Then there is a: H — R such that

lon —upllpr < a(h) for 0<r<K and }llir%a(h) =0.
Proof. Consider the operator Fj,: Ej x F(Q;,R) — R defined by
Fplz]"™ = Az(0m) 4 pg f (t(r),x(m),Th[z},éz(r’m)) .

Then uy, satisfies (1), (2) and there is v: H — R, such that

’U}(LTJer) —F, [vh](r,m)‘ < hofy(h) on E;L and }ILII’I%) ’)/(h) = 0.
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Write Y}, = F(Qp, R). Tt follows from Assumptions H [T}] and H [f, o] and from (13)
that

[Fulz)™ = R0 <
< |AG =20 + ko [£(7,20, Ty[2], 020) — £, 20, T, [2],850) || +

+ ho ’f(t(r), z(m)’ Tz, 52(r,m)) _ f(t(r)’ x(m)7 Th|2], 62(T,m)) <

(¢ buse)]-

+ ;Zn: U(z — z)(rm=ed) (; — ;:’aqif(Q))] +

+ hoor (10, Tile] — Tilel oo

where € E' x C(£2,R) x R” is an intermediate point. The result is

)Fh[z](r,m) _ Fh[f](r’m)

<12 = 2l + koo (67,112 = 2ln.r)
on E} x F(Qy,R). Let ny,: Jp, — Ry be the solution of the difference problem

0D = oo (10,00) + hoy(h), 0 <K -1,
77(0) = ag(h).
It follows from Theorem 2.1 that
lon = wnllnr <77, 0<r <K
Consider the Cauchy problem
W) =0 (tw®) +y(h), w(0)=ay(h), (14)

and its maximal solution w(-,h): [0,a] — R;. It follows easily that %irr%) w(t,h) =0

uniformly on [0,a] and that the function w( -, h) satisfies the recurrent inequality
W (N“), h) > w (N% h) Y hoo (t(r),w(t(r), h)) Fhoy(h), 0<r<K—1.
We thus get n,(f) <w (t(r)7 h) for 0 < r < K and consequently
lon — upllpr <w (t(r),h) <w(a,h) for 0<r<K.

This completes the proof. O
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Now we consider functional difference problem (11), (12) with §y and § =
= (d1,...,0,) defined in the following way:

1

Sozmm) = — {Z(m,m) _ Z(r,m)} , (15)
0
1

§;2(mm) = e {z(r’m“"') — z(r’m)} for 1 <1< ko, (16)
1

5iz(r,m) — W [Z(r,m) _ Z(T,M7ei):| for ko+1<i<n, (17)

where 0 < kg < n is fixed and (t(r),x(’”)) € E;. If ko =0 then 52(r™) is defined by
(17), if kg = n then §2("™) is given by (16).

Numerical scheme (11), (12) with Jp and ¢ defined by (15), (17) is called the
Euler method for (7), (8).
Theorem 3.2. Suppose that Assumptions H [T},], H [f, o] are satisfied and:

1) the partial derivatives
(a(hf?" '78qnf) = 8qf
exist on E x C(,R) x R™ and d,f(t,x,z, -) € C(R",R"™) and

aq'if(t7x7zaq)20 fO?” ISZ.S/Q(%
aqq',f(t7xvzaq)§0 fOT K/0+1§’[:Sn,

where (t,x,z,q) € E x C(Q,R) x R";
2) the estimate

n

1
1 —hozﬁ\aqif(t,w,z,q)) >0

i=1""
is satisfied for (t,x,z,q) € Ex C(2,R) x R™ and h € H;
3) v: Q — R is a solution of (7), (8) and v is of class C';

4) up: Qp — R is a solution of (11), (12) with &y and & defined by (15)—(17)
and there is ag: H — Ry such that ‘@(T»m) —soif’m)‘ < ag(h) on Ej and
1imh_,0 (675} (h) = 0.

Then there is a: H — Ry such that

lon — upllpnr < alh) for 0<r<K and lima(h)=0,

—0

where vy, is the restriction of v to the set Qy,.

The proof of the above theorem is similar to the proof of Theorem 3.1. Details
are omitted.
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4. INITIAL PROBLEMS
FOR QUASILINEAR FUNCTIONAL DIFFERENTIAL PROBLEMS

Let E, Ey, Q, Ey, Eg.n, 2, and H be the sets defined in Section 3. Assume that

fEXC(QvR)_)Rn f:(flv"'afn)v
g: ExC(Q,R)—=R, ¢:Ey—R

are given functions. We consider the quasilinear functional differential; equation

Oz(t,x) = Z filt,x, 2) Oy, 2(t, ) + g(t, x, 2) (18)

i=1

with the initial condition
z(t,x) = o(t,x) on Ep. (19)

The functions f and g is said to satisfy the Volterra condition if for each (t,z) € E
and for z,z € C(Q,R) such that z|g, = Z|q, we have f(t,z,2z) = f(t,x,Z) and
g(t,z,z) = g(t,x, 2).

The results given in Section 3 for nonlinear functional differential problems are
not applicable to quasilinear equation (18). We prove that there is a class of difference
methods of the Euler type for (18), (19) which is convergent.

Suppose that the interpolation operator Ty : F(Qp,R) — C(Q,R) is given. We
consider the difference functional equation

6OZ(r,m) — z’”: fi (t(r), x(m)’ Ty, [Z]) 5iz(r,m) +g (t(r), Ji(m), T} [Z]) (20)

=1

with the initial condition

20 = o™ on Eqp, (21)
where ¢y, : Ep, — R is a given function. The operator g is defined by (15) and the
operators (d1,...,0,) = ¢ are calculated in the following way

1

6;2(m™) = 7 [Z(T’"H'e'i) - z(T’m)] it f; (t(r)m(m),Th[z]) >0, (22)
i
1

;2™ = 7 [z(r’m) - Z(T’mfei)} it f; (t(r)x(m),Th[z]) < 0. (23)

It is easily seen that if f and g satisfy the Volterra condition and Assumption H
[Ty] is satisfied then for each h € H there exists exactly one solution up: Qp — R of
problem (20), (21) with Jp and ¢ given by (15) and (22), (23).
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Assumption H [f, g, 0]. Suppose that:
1) the functions
fTExCER)—=R" and g: ExCQ,R)—R
are continuous and they satisfy the Volterra condition;
2) there is 0: [0,a] x Ry — Ry such that:

(i) o is continuous and it is nondecreasing with respect to both variables;

(i) for each ¢ > 1 and € € Ry the mazimal solution of the Cauchy problem
W'(t)=co(t,wlt)+e w(0)=c¢, (24)

is defined on [0,a] and the function &(t) = 0 for t € [0,a] is the mazimal
solution of (24) for e = 0;

(iil) the estimates
1t 2, 2) = f(t 2, 2) || < o (i, ]lz = Z[e)
lg(t, @, 2) —g(t, 2, 2)| < o (t |2 = 2])
are satisfied on E x C(Q,R).
Theorem 4.1. Suppose that Assumptions H [T},] and H [f,g,0] are satisfied and:
1) for h € H we have

n 1
1—hozﬁ|fi(t,x,z)| >0 on ExC(Q,R);
1 1

2) up: Qp — R is a solution of problem (20), (21) with ég and § given by (15), (22),
(23) and there is ag: H — Ry such that

‘(pg’m) - w(r’m)’ <ag(h) on Epp and }llli% ag(h) = 0;

3) v: EgUE — R is a solution of (18), (19) and v is of class C*.

Then there is a: H — R such that

lon — upllpr < a(h) for 0<r<K and lima(h)=0. (25)

—0

Proof. We apply Theorem 2.1 to prove (25). Consider the operator Fj: Ej x
xF (Qp,R) — R defined by

Fyle] ) = 20 kg 37 £ (100,200, T3 [2]) 6,20 + hog (#0), 200, T3 2])

i=1
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Then wy, satisfies (1), (2) and there is v: H — R, such that
o T — Fuoa] ™| < hoy(h) on By,
and limp_,0y(h) = 0. Let C be such a constant that
0,,0(t,2)| <C, (t,z)e B, 1<i<n.
We will denote by Y}, the class of all functions z: £2;, — R such that
’ciiz“”»m)‘ <C for (t(”,x(m)) €eE, 1<i<n.
Suppose that z € F (Qp,,R) and z € Y},. We prove that
‘Fh[zww - Fh[z}“vm)\ <z = Zlpr + (1 +C)o (t(”, |z — zuh,T) (26)
where (¢t x(™) € E} . Write
JJ(:’m) ={i:1<i<n and f; (t(r),x(m)Th[z]) >0,
Jrm =1\ .

Then we have

1
Fy[e]™m™ — Fy[2)™) = (z — 2)"™) |1—hg > i (t(r),x(m),Th[z])—&-
ieg (™ !
1
= f (4(0) . (m)
tho 3 o fi (1.2 T ) | +
iegmm™
1
= f (4(0) (M) _ z\(rom+te;)
tho > o fi (402 1) (2 - 2
ieg(mm
1
_ = f () (m) _ z\(rm—e;)
ho Z)hifl(t , T ,Th[z])(z Z) +
ieJtmm

- (7). (m) _ £ () .(m) 5 z(r,m)
Jrh();[fz(t , T ,Th[z]) fl(t , T ,Th[z]>]5lz +

+ ho [g (t(T),x(m),Th[zD -9 (t(r),x(m),Th[E])} .

The above relations and Assumption H [T),[ and H [f, g,0] imply (26). It follows
from Theorem 2.1 that

o — unllnr. <5, 0<r <K,
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where 7y, : J;, — R4 is a solution of the problem

T =n) 4 ho(1+ C)o(t”, ")) + hoy(h), 0<r<K -1,
77(0) = Oéo(h)~

Consider the Cauchy problem
W (t) = (L4 C)o(t,w(t) +(h), w(0) = ao(h),

and its maximal solution w( -, h): [0,a] — R.. It follows easily that lim;,_ow(t,h) =0
uniformly on [0, a] and n,(f) < w(t,h) for 0 < r < K, and consequently

lon — unlln, <wt™,h) <w(a,h) for 0<r<K.
This proves the theorem.
5. MIXED PROBLEMS FOR NONLINEAR PARABOLIC EQUATIONS
Write
E =[0,a] x (=b,b), Eg=[—ap,0] x [-b,], (27)
OFE =10,a] x ([-b,0]\ (=b,0)), Q=FEyUFEUOE, (28)

where a > 0, ap € Ry, b= (by1,...,b,) € R" and b; > 0 for 1 < i < n. Let My xn
denote the class of all n x n real matrices. Set Z = E x C(2,R) x M,,«,,) and suppose

—_

that f: 2 — R and ¢: Eyg U §yF are given functions. We consider the nonlinear
functional differential equation

Oz(t,x) = f(t,x,2,0,2(t,x), Oz 2(t, x)) (29)

with the initial boundary condition

z(t,x) = (t,x) on EyUE, (30)
where
022 = (0412, 0z, 2), Oppz = [&Jﬂjz]ij:l L
Set
Q= QN ([~ao,f] xR"), 0<t<a.
The maximum norm in the space C (€, R) is denoted by || - ||;. The function f: Z - R

is said to satisfy the Volterra condition if for each (t,z,q,s) € E X R™ x M, x, and
for z,z € C(Q,R) such that z|q, = Z|q, we have f(t,z,2,q,8) = f(t,z,Z,q,s). Let
us denote by H the set of all h = (hg, h') satisfying the conditions:

(i) there are Ky € Z and (Ny,...,N,) = N € N” such that Koho = ap and
Noh' =b;

(ii) there is ¢y > 0 such that hihj_1 <cgfor1<i, j<n.
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Let K € N be the constant defined in Section 2. For h € H we put
EonNR™ By = ENRGT,
QFEn = ENRY", Q) = Fo,UE,UE),

and
Ej = {(t(r),z(m)) cFk,:0< rgKfl}.
Write
U={(i4,): 1<i,j <ji#j}
and suppose that we have defined the sets U,.,U_ C U such that Uy UU_ = U,

U, NU_ = (in particular, it may happen that U, = 0 or U_ = ). We assume that
(i,j) € Uy when (j,7) € Uy. Let 2: @ D Rand 0<r < K, —N <m < N. Set

61_+Z(r,m) — hl [z(r,m—i-ei) _ Z(r,m)] , (31>

1
5;Z(r,m) — hi |:Z(T,m) _ Z(r,m—ei):| , (32)

i
where 1 < ¢ <n. We apply the difference operators

80, 0= (61,...,8,), 6@ =[],

Jli,j=1,...;.n
given by

1

Sz P — " Srtlm) _ Z(nm)} , (33)
1 -

82" = 3 SFzmm) 4 5{2(””)} for i=1,...,n, (34)

8,21 = 5;"5;2(””) for i=1,...,n, (35)
Lr — (r,m — r,m T

b2 = 2 [5787 20 5765 20m] for (ig) €U (36)
Lr —s— (r,m .

2 = 2 [0 0720 4 6767 >] for (i,j) € Uy. (37)

Suppose that the interpolating operator T}, : F(€,,R) — C(Q,R) is given. We consi-
der the difference functional equation

Sz = f (r(r),x(m),Th[Z],6z(r’m),5(2)z(r’m)> (38)
with the initial boundary condition
2(mm) — gag’m) on FEypUOdyEn, (39)

where ¢: FEgp U O0gE, — R is a given function. Suppose that f and T} satisfy
the Volterra condition. Then it is evident that there exists exactly one solution
up: Qp, — R of problem (38), (39).
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We prove that under natural assumptions on given function the numerical me-
thod (38), (39) is convergent.

Assumption H [o, f,9f]. Suppose that:

1) the function f: Z — R of the variables (t,x,z,q,$) is continuous and satisfies
the Volterra condition;

2) there is 0: [0,a] x Ry — R such that:

(i) o is continuous and it is nondecreasing with respect to both variables,

(ii) for each € > 0 the mazimal solution of the Cauchy problem
W(t)=o(t,w(t) +e, w0) =¢ (40)

is defined on [0,a] and the function &(t) = 0 for t € [0,a] is the mazimal
solution of (40) fore =0,

(iii) the estimate
|f(t,x,z,q,s) - f(t,l‘,Z q,s )‘ < U(t ||Z - ZH )
18 satisfied on =;
3) the partial derivatives
(8q1f;--- qnf) = 8qf7 [83'ijf}i,j:1,.‘.,n = 85f
exist on = and

6qf(t,x,z, ) e C(Rn X MnXTMRn)? 3sf(t,x,z, ) E O(Rn X MnxnaMan);

4) the matriz Osf is symmetric and for P = (t,z,z,q,8) € 2, h € H we have

aSsz(P)ZO fOT’ (ivj)€U+7
aSLJf(P)SO fOT (iaj)EU*7

1 1
i=1

(i,jeu
and
h;
0., f(P) = 5 10, f(P) Z ., £(P)] 2 0.
J;ﬁz

where 1 < ¢ < n.
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Theorem 5.1. Suppose that Assumption H [T} is satisfied with Q given by (27),
(28) and:

1) assumption H [o, f,0f] holds;

2) up: Qp — R, h € H, is a solution of (38), (39) and there is ag: H — Ry such
that

go(r’m) — <p§f’m) <ag(h) on EppUOwE, and limp_oap(h)=0
3) v: Q — R is a solution of (18), (19) and v(t, -) is of class C? and v(-,z) is of
class C*.

Then there is a: H — Ry such that

lon — upllpr < alh) for 0<r<K and lima(h)=0. (41)

h—0
where vy, 1s the restriction of v to the set Qy,.

Proof. We apply Theorem 2.1 to prove (41). Consider the operator Fj: Ej x
xF(Qp,R) — R defined by

Fpl2)mm™) = 2 g f (t(T),x(m),Th [2], 627, 5(2)2(’"’7")) .
Then uy, satisfies (1), (2) and there is v: H — R, such that
[o T = Byl < hoy(h) on B

and limp_ov(h) = 0. Write ¥}, = F(2,R). Suppose that z,z € F(Qu,R),
(t™, x(M) € EI . We prove that

‘Fh[z](’"’m) - Fh[z]@"vm)‘ <z = Zlpr + hoo (N), Iz — z||,”) . (42)

It follows from Assumption H [o, f,0f] that there is an intermediate point Q € =
such that

|[Fulz] ™™ = B[ < hoo (€7, 1 Tul2] = a2l ) +

(2= 2™ 4 ho > 04, F(Q)5i(z — 7)™ + ho Y s, F(Q)di(2 — 7)™
=1

ij=1
(43)
Write .
SOQ) = 1-2m0 Y 150, /@ +ho 3 - 10,4(@),
=1 7

(.pev
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and

i h h LS|
SPQ) = 550001 (Q) + 3505, Q) = ho Y 5106, F(Q)]

S9(Q) = 320, F(Q) + 1305, (@)~ ho Y o [0, Q)

where 1 < ¢ < n. It follows from (43) and from the definitions of the difference
operators that

B2 = B[ < hoor (100, 1T3le] = Tulellin ) + [SO (@)= — 2)7m) +

+ + +

> 52(@) e —2)rmred
i=1

PIERICICED
i=1

1
[ - (T7m+€i+ej)
tho Y g, @G- 2)
(4,5)€U+

—ho Z ﬁaﬂj f(Q) {‘(Z — 5)(7i’m+ei_ej)

(ijyev- —H

+ ’(Z _ Z)(r,mfeifej)

}_
b

+ ‘(Z _ 2)(7'7m_€i+5j)

(44)
It follows from condition 4) of Assumption H [o, f,df] that
SO@ =0 and $Y(@Q) >0, SYQ) =0 for 1<i<n

and

SOQ) + > 8@ + > sV Q)+
=1 =1

1 1
The D GOl @ —ho D G0, f(@) =1

(i,5)€UL (ijyeu. <Y
The above relations and (44) imply (42).
Denote by np,: J, — R4 the solution of the difference problem

Y =0 4 hoo (8, ) + hoy(h), 0<r< K —1,
77(0) = ag(h).
It follows from Theorem 2.1 that
lon = wnllnr <m”, 0<r <K

Consider the Cauchy problem (14) and its maximal solution w(-,h): [0,a] — R4. It
follows easily that

v — upllpr < w(t(r),h) <w(a,h) for 0<r<K,
].

and limy,_,ow(t, h) = 0 uniformly on [0, a]. This completes the proof. O



126 Zdzistaw Kamont

6. NEUMANN TYPE PROBLEMS
FOR PARABOLIC DIFFERENTIAL FUNCTIONAL EQUATIONS

Write
E =[0,a] x [-b,b], Ey=[—ap,0]x[-bb], Q=EUE

and

ok = [O,G] X ([_bv b] \ (—b, b))a
where a >0, ag € Ry, b= (by,...,b,) € R® and b; > 0 for 1 <i < n. Set
=E=Fx C(Q,R) x R™ X Myxn

and
O E; = {(t,l‘) € OE: x; = —bl} @] {(t,.’L‘) € OE: x; = bl},

where 1 < i < n. Suppose that
tE—-R, ¢ Eg—R, ¢:00F—R
are given functions. We consider the functional differential problem

Oz(t,x) = f(t,x,2,0,2(t,x), 0 2(t, x)),
z(t,x) = o(t,x) for (¢, z) € Ey,
and
Oz, 2(t,x) = (t,x) for (t,x) € pE;, 1<i<mn.

We assume that f satisfies the Volterra condition.

Now we formulate a difference problem corresponding to (47)—(49).

(45)

Let H be the set defined in Section 5 and K € N be such a constant that

Kho <a < (K +1)hg. For h € H we put

Eon=E N E,NRT™ 9oE, = ENR™,
B = {(tm,x(m)) c B, ogrgK—l}

and Q;, = Ey, U E,. Suppose that (™ € [—b,b] \ (—b,b). We will denote by I[m)]

the set of all Kk = (k1,...,k,) € Z™ such that:

(i) if —b; < 2™ < b; then r; = 0;
(ii) if Qj‘§mj) = b, then x; € {0,1}, if x;mj) = —b; then &, € {~1,0};

(iti) 1< ||+ ...+ |ra] < 2.
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Define the sets
Sp = {(t(r),x(m+")) :0<r <K, (t(’“),x(m)) € OgF);, and k€ I[m]} ,
So.n = {0} x {x("H'”): 2™ e [=b,b]\ (=b,b) and k€ I[m]}
and
Eon=EonUSon, En=EyUSy, Q=Eo,UE,

B, = {(t“‘%ﬂm)) € By ogrgK—l}.

For a function z: Q;, — R we write

[[2]h.r = max{ Z(i’m)‘ : (t(i)7x(m)) e Qh and —Kyg<i< 7,} )

Suppose that U, U_, U, are the sets defined in Section 5. Let &g, ¢ and §(2) be the
difference operators defined by (31)—(37). Suppose that the interpolating operator
Th: F(Q,R) — C(Q,R) is given. We approximate classical solutions of (47)—(49)
with solutions of the difference functional equation

Sz = f (t<’“>, 2™ Ty[2], 6207, (5<2>z<’“’m>) (50)

with the initial boundary conditions

Z(r,m) _ S0517',7n) (51)

and
Z(rmAK) _ o (rm=k) — gq(rm) Z kih; for (t(r),x(m)> € OoFEy and k € I[m]. (52)
i=1

Suppose that f and T}, satisfy the Volterra condition. Then it is evident that there
exists exactly one solution uy,: €, — R of problem (50)—(52).

Now we prove that the numerical method (50)—(52) is convergent under natural
assumptions on given functions.

Theorem 6.1. Suppose that Assumption H [T}] is satisfied with Q given by (45) and:

1) Assumption H [o, f,0f] holds with E defined by (45), (46);

2) up: Qn — R, h € H, is a solution of (50)~(52) and there is ag: H — R such
that
@rm) — <p§:’m) <ag(h) on Epp and }llir% ag(h) = 0;

3) 1 € C(OoE,R) and there is a compact set D C R™™ such that Q C Int D and:
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(i) the function v: D — R is a solution of (47)—(49);
(i) v(-,x) is of class C and v(t, -) is of class C3;
4) there is ¢ > 0 such that ||h'||? < éhg.
Then there are eg > 0 and a: H — R such that for ||h|| < eg we have
[lon = unlly,, < a(h), 0<r<K, (53)

and lim a(h) = 0 where vy, is the restriction of v to the set Q.

—0

Proof. We apply Theorem 2.1 to prove the above statement.
Consider the operator Fj,: Ej, x F(Q),,R) — R defined by

Fil] ™™ = 2(m) 4 o f (t<r>7 2™ Ty [2], 520 5(2>Z<r,m>>

where (¢t 2(™) € B}, and

Fh[z](t,m+m) _ Z(r,mfn) + 21/)(T’m) anhl+

i=1

+ hOf (t(r)7 x(m—ﬂ)7 Th[z]7 6Z(r,m—ﬁ)’ 6(2)2(1",7n—n))

where ("), 20™) € 9yE), and k € I[m]. Let the function @y, FEyn — R be defined
by
S = o™ g (t(r)7x(M)) € Eyn

and N
¢§Lo,m+n) — Om=r) | 9y (O’x(m)> Z kil
i=1
where (™ € [~b,b] \ (=b,b) and & € I[m]. Then we have
uyﬂ’m) = Fj[un] ™™ for (t(r),x(m)> ek

and }
uﬁf’m):@g’m) on FEyy.

Write Y}, = F(Qh,R). Suppose that z,z € F(Qh,R) and (t(T'),:I:(m)) € E;L An easy
computation shows that

B[ = B[ < (12 = 2l + hoo (£, (12 = 2], -

Let €9 > 0 be such a constant that Q@ C D for ||h|| < go. It follows that there is
v: H — Ry such that for (¢, 2(™) € E} we have

[o+1m) B[] < hoy(h) (54)
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and }lbin%) v(h) = 0. Suppose that ("), (™) € 9yEj, and & € I[m]. Then we have

<

r+lmtr) B, [vh](r’"““”) +

o,

’U}(Lr+1.,m+l-c) . v2r+1,m—n) . 2,(/}(7‘-{-1,771) Z K/ihi
i=1

+ ’U(rJrl,mfn) _ Fh[vh](r,mfn)

We conclude from assumption 4) and from (54) that there is C' > 0 such that

‘U(T“”’”") — Fy[vn] "™ < Chov/ho + hoy(h). (55)

h

According to (54), (55), we have
o™ = Fufon] ™| < hoy(h) + Chov/ho

where (t(), 2(™) € E . Tt follows that there is &: H — R, such that

’(vh _ uh)“’m)‘ <ao(h) on FEon

and Htho 5[0 (h) =0.
Denote by 7y, : Ji, — R4 the solution of the difference problem

) = n™ 4 hoo (t(r),n(’”)> + ho (v(h) + C\/%) , 0<r<K-1,
7 = a(0).
It follows from Theorem 2.1 that
[[un = vnll,, <7, 0<r <K,
Consider the Cauchy problem
(1) = o (t,w(t) +v(h) + CVho,  w(0) = a(h),
and its maximal solution @(-,h): [0,a] — Ry. It follows easily that
[lun = vnll,, <7 <@t h) <G(a,h), 0<r <K,
and }LILI%) @(t, h) = 0 uniformly on [0, al.
This proves the theorem. O

Remark 6.1. [t is easy to see that all the results of the paper can be extended for
weakly coupled functional differential systems.

Remark 6.2. If we assume that
o(t,p) =Lp, (t,p)€[0,a] xRy,

then all the comparison difference problems can be solved and the errors of difference
methods can be estimated, see Remark 2.1.
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