PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Monotone iterative methods for infinite systems of reaction-diffusion-convection equations with functional dependence

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider the Fourier first initial-boundary value problem for an infinite system of semilinear parabolic differential-functional equations of reaction-diffusion-convection type of the form [formula] where [formula] in a bounded cylindrical domain (0, T] x G := D rcup Rm+1. The right-hand sides of the system are Volterra type functionals of the unknown function z. In the paper, we give methods of the construction of the monotone iterative sequences converging to the unique classical solution of the problem considered in partially ordered Banach spaces with various convergence rates of iterations. We also give remarks on monotone iterative methods in connection with numerical methods, remarks on methods for the construction of lower and upper solutions and remarks concerning the possibility of extending these methods to more general parabolic equations. All monotone iterative methods are based on differential inequalities and, in this paper, we use the theorem on weak partial differential-functional inequalities for infinite systems of parabolic equations, the comparison theorem and the maximum principle. A part of the paper is based on the results of our previous papers. These results generalize the results obtained by several authors in numerous papers for finite systems of semilinear parabolic differential equations to encompass the case of infinite systems of semilinear parabolic differential-functional equations. The monotone iterative schemes can be used for the computation of numerical solutions.
Rocznik
Strony
29--99
Opis fizyczny
Bibliogr. 133 poz.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Applied Mathematics, Department of Differential Equations, al. Mickiewicza 30, 30-059 Cracow, Poland, brzych@uci.agh.edu.pl
Bibliografia
  • [1] Amann H.: On the existence of positive solutions of nonlinear elliptic boundary value problems. Indiana Univ. Math. J. 21 (1971) 2, 125-146.
  • [2] Amann H.: Supersolutions, monotone iterations and stability. J. Differential Equations 21 (1976), 363-377.
  • [3] Amann H.: Coagulation-fragmentation processes. Arch. Ration. Mech. Anal. 151 (2000), 339-366.
  • [4] Appell J., Zabreiko P.P.: Nonlinear Superposition Opertors. Cambridge Tracts in Mathematics, vol. 95, Cambridge, Cambridge University Press 1990.
  • [5] Ball J. M., Carr J.: The discrete coagulation-fragmentation equations: existence, uniqueness and density conservation. J. Statist. Phys. 61 (1990) 1—2, 203—234.
  • [6] Banaś J., Lecko M.: An existence theorem for a class of infinite systems of integral equations. Math. Comput. Modelling 34 (2001) 5-6, 533-539.
  • [7] Banaś J., Lecko M.: Solvability of infinite systems of differential equations in Banach sequence space. J. Comput. Appl. Math. 137 (2001) 2, 363-375.
  • [8] Banaś J., Lecko M.: On solutions of an inifinite system of differential equations. Dynam. Systems Appl. 11 (2002) 2, 221-230.
  • [9] Banaś J., Sadarangani K.: Solutions of some functional-integral equations in Banach algebra. Math. Comp. Modelling 38 (2003), 245-250.
  • [10] Bange D.: A constructive existence theorem for a nonlinear parabolic equation. SIAM J. Math. Anal. 5 (1974) 1, 103-110.
  • [11] Bartłomiejczyk A., Leszczyński H.: Comparison principles for parabolic differential-functional initial-value problems. Nonlinear Anal. 57 (2004), 63— 84.
  • [12] Bellman R., Kalaba R.: Quasilinearization and Nonlinear Boundary Value Pro­blems. New York, Elsevier 1965.
  • [13] Bellout H.: Blow-up of solutions of parabolic equations with nonlinear memory. J. Differential Equations, 70 (1978), 42-68.
  • [14] Benilan Ph., Wrzosek D.: On an infinite system of reaction-diffusion equations. Adv. Math. Sci. Appl., Tokyo, 7 (1997) 1, 349-364.
  • [15] Besala P.: On solutions of Fourier's first problem for a system of non-linear parabolic equations in an unbounded domain. Ann. Polon. Math. 13 (1963), 247-265.
  • [16] Brzychczy S.: Chaplygin's method for a system of nonlinear second order partial differential equations of parabolic type in an unbounded domain. Ph.D. Disser­tation, Kraków, Jagiellonian University 1963 (Polish).
  • [17] Brzychczy S.: Extension of Chaplygin's method to the system of nonlinear pa­rabolic equations in an unboundaed domain. Bull. Acad. Polon. Sci., Serie sci. math., astr. et phys. 13 (1965), 27-30.
  • [18] Brzychczy S.: Application of Chapligin's method for solution of Fourier's first problem for a certain system of nonlinear parabolic equations in an unboun­ded domain. Zeszyty Naukowe AGH, Matemat.-fizyka-chemia 2 (1969), 9-21 (Polish).
  • [19] Brzychczy S., Kapturkiewicz W., Węglowski Z.: On application of certain dif­ference schemes for determination of temperature distribution in the complex system: casting-metal mould. Zeszyty Naukowe AGH, Metalurgia i Odlewnictwo 60 (1974), 65-72 (Polish).
  • [20] Brzychczy S.: Approximate iterative method and the existence of solutions of non-linear parabolic differential-functional equations. Ann. Polon. Math. 42 (1983), 37-43.
  • [21] Brzychczy S.: Chaplygin's method for a system of nonlinear parabolic differential-functional equations. Differ. Uravn. 22 (1986) 4, 705-708 (Russian).
  • [22] Brzychczy S.: Existence of solution for nonlinear systems of differential-functional equations of parabolic type in an arbitrary domain. Ann. Polon. Math. 47 (1987), 309-317.
  • [23] Brzychczy S.: An estimate for the rate of convergence of successive Chaplygin approximations for a parabolic system of functional-differential equations. Differ. Uravn. 25 (1989) 6, 1050-1052 (Russian).
  • [24] Brzychczy S.: On a certain approximate method for nonlinear system of differential-functional equations of parabolic type. Opuscula Math. 15 (1995), 45-50.
  • [25] Brzychczy S.: Monotone Iterative Methods for Nonlinear Parabolic and Elliptic Differential-Functional Equations. Dissertations Monographies, Vol. 20, Kra­ków, Wyd. AGH 1995.
  • [26] Brzychczy S.: Existence of solutions and monotone iterative method for infinite systems of parabolic differential-functional equations. Ann. Polon. Math. 72 (1999) 1, 15-24.
  • [27] Brzychczy S.: Chaplygin's method for infinite systems of parabolic differential-functional equations. Univ. Iagel. Acta Math. 38 (2000), 153-162.
  • [28] Brzychczy S.: Some variant of iteration method for infinite systems of parabolic differential-functional equations. Opuscula Math. 20 (2000), 41-50.
  • [29] Brzychczy S., Janus J.: Monotone iterative method for nonlinear hyperbolic differential-functional equations. Univ. Iagel. Acta Math. 39 (2000), 141-152.
  • [30] Brzychczy S.: Existence and uniqueness of solutions of infinite systems of semi-linear parabolic differential- functional equations in arbitrary domains in ordered Banach spaces. Math. Comp. Modelling 36 (2002), 1183-1192.
  • [31] Brzychczy S.: Infinite systems of strong parabolic differential-functional inequ­alities. Univ. Iagel. Acta Math. 42 (2004).
  • [32] Bychowska A.: Quasilinearization methods for nonlinear parabolic equations with functional dependence. Georgian Math. J. 9 (2002) 3, 431-448.
  • [33] Carl S., Heikkila S.: Discontinuous reaction-diffusion equations under discon­tinuous and nonlocal flux conditions. Math. Comput. Modelling, 32 (2000), 1333-1344.
  • [34] Carslow H. S., Jaeger J.C.: Conduction of Heat in Solids. 2nd ed., Oxford, 1959.
  • [35] Chandra J., Lakshmikantham V., Leela S.: A monotone method for infinite systems of nonlinear boundary value problems. Arch. Ration. Mech. Anal. 68 (1978) 2, 179-190.
  • [36] Chaplygin S.A.: A New Method of Approximate Integration of Differential Equations. Moscow-Leningrad, 1950 (Russian).
  • [37] Deimling K.: Ordinary Differential Equations in Banach Spaces. Lecture Notes in Mathematics, vol. 596, Berlin, Springer-Verlag 1977.
  • [38] DiBenedetto E.: Partial Differential Equations. Boston, Birkhauser 1995.
  • [39] Diekmann O., Temme N.M. (Eds): Nonlinear Diffusion Problems. 2nd ed., Amsterdam, MC Syllabus 28, Mathematisch Centrum 1982.
  • [40] Fife P.C.: Mathematical Aspects of Reacting and Diffusing Systems. Lecture Notes in Biomathematics, vol. 38, New York, Springer-Verlag 1979.
  • [41] Friedman A.: Partial Differential Equations of Parabolic Type. Englewood Cliffs, New Jersey, Prentice-Hall 1964.
  • [42] Jaruszewska-Walczak D.: Comparison theorem for infinite systems of parabolic functional-differential equations. Ann. Polon. Math. 77 (2001) 3, 261-270.
  • [43] Kamont Z., Zacharek S.:: The line method for parabolic differential-functional equations with initail boundary condition of the Dirichlet type. Att. Sem. Mat. Fis. Univ. Modena 35 (1987), 240-262.
  • [44] Kamont Z.: Hyperbolic Functional Differential Inequalities and Applications. Dordrecht, Kluwer Academic Publishers 1999.
  • [45] Kamont Z., Kozieł S.: Differential difference inequalities generated by infinite systems of quasilinear parabolic functional differential equations. Funct. Differ. Equ. 10 (2003), 215-238.
  • [46] Kamont Z.: Infinite systems of hyperbolic functional differential equations. Ukrain. Mat. Zh. 55 (2003) 12, 1678-1696.
  • [47] Krasnosel'skii M.A.: Topological Methods in the Theory of Nonlinear Inte­gral Equations. Moscow, Gostehizdat, 1956 (Russian). English translation, New York, Pergamon Press 1964.
  • [48] Krasnosel'skii M. A.: Positive Solutions of Operator Equations. Moscow, Goste­hizdat, 1962 (Russian). English translation, Noordhoff, Groningen, 1964.
  • [49] Kraśnicka B.: On some properties of solutions to a mixed problem for an infinite system of parabolic differential-functional equations in an unbounded domain. Demonstratio Math. 15 (1982) 1, 229-240.
  • [50] Kraśnicka B.: On some properties of solutions to the first Fourier problem for infinite system of parabolic differential-functional equations in an arbitrary domain. Univ. Iagel. Acta Math. 26 (1987), 67-74.
  • [51] Krein M. G., Rutman M. A.: Linear operators for which a cone in a Banach space is invariant. Uspekhi Mat. Nauk, 3 1 (23), (1948), 3-85 (Russian).
  • [52] Krzyżański M.: Evaluations des solutions de Vequation aux derivees partielles du type parabolique, determinees dans un domaine non bornee. Ann. Polon. Math. 4 (1957) 1, 93-97.
  • [53] Krzyżański M.: Certain inequalites relatives aux solutions de l'equation parabo­lique lineaire normale. Bull. Acad. Polon. Sci., Ser. sci. math. astr. et phys. 7 (1959), 131-135.
  • [54] Kusano T.: On the first boundary problem for quasilinear systems of parabolic differential equations in non-cylindrical domains. Funkcial. Ekvac. 7 (1965), 103-118.
  • [55] Lachowicz M., Wrzosek D.: A nonlocal coagulation-fragmentation model. Appl. Math. 27 (2000) 1, 45-66.
  • [56] Ladde G. S., Lakshmikantham V., Vatsala A. S.: Monotone Iterative Techniques for Nonlinear Differential Equations. Boston, Pitman Advanced Publishing Program 1985.
  • [57] Ladyżenskaja O. A., Solonnikov V. A., N.Ural'ceva T.: Linear and Quasi-linear Equations of Parabolic Type. Moscow, Nauka, 1967 (Russian). Translation of Mathematical Monographs, vol. 23, Amer. Math. Soc., Providence, RI, 1968.
  • [58] Lakshmikantham V., Leela S.: Differential and Integral Inequalities. vol. 1, 2, New York, 1969.
  • [59] Lakshmikantham V., Drici Z.: Positivity and boundedness of solutions of impul­sive reaction-diffusion equations. J. Comput. Appl. Math. 88 (1998), 175-184.
  • [60] Lakshmikantham V.: An extension of the method of quasilinearization. J. Optim. Theory Appl. 82 (1994), 315-321.
  • [61] Laurencot Ph., Wrzosek D.: Fragmentation-diffusion model. Existence of solu­tions and their assymptotic behaviour. Proc. Roy. Soc. Edinburg Sect. A, 128 (1998), 759-774.
  • [62] Leszczyński H.: On the method of lines for a heat equation with functional dependence. Ann. Polon. Math., 69 1 (1998), 61-74.
  • [63] Leszczyński H.: Parabolic Equations with Functional Dependence at Derivatives. Gdańsk, Univ. of Gdańsk Publisher 1998.
  • [64] Leszczyński H.: Maximum principle and Chaplygin method for parabolic differential-functional systems. Univ. Iagel. Acta. Math. 37 (1999), 283-300.
  • [65] Leung A.: Systems of Nonlinear Partial Differential Equations, Applications to Biology and Engineering. Dordrecht, Kluwer Academic Publishers 1989.
  • [66] Liz E.: Monotone iterative techniques in ordered Banach spaces. Nonlinear Anal. 30 (1977) 8, 5179-5190.
  • [67] Liz E., Nieto J.J.: An abstract monotone iterative method and applications. Dynam. Systems Appl. 7 (1998), 365-376.
  • [68] Logan J.D.: An Introduction to Nonlinear Partial Differential Equations. New York, Wiley 1994.
  • [69] Lusin N.N.: On the Chaplygin method of integration. Collected Papers, vol. 3, 146-167, Moscow, 1953 (Russian).
  • [70] Łojczyk-Królikiewicz I.: Differential-functional inequalities of parabolic and el­liptic type in bounded domain. Zesz. Nauk. Pol. Śląskiej, Ser. matem.-fiz. 68 (1993), 121-133.
  • [71] Malec M.: Sur une methode des differences finies pour une equation non lineaire differentielle fonctionnelle aux derivees mixtes. Ann. Polon. Math. 36 (1979), 1-10.
  • [72] Mikhlin S. G., Smolickii H. L.: Approximate Methods of Differential and Integral Equations. Moscow, Nauka 1965 (Russian).
  • [73] Mlak W.: Parabolic differential inequalities and Chaplighin's method. Ann. Po­lon. Math. 8 (1960), 139-153.
  • [74] Mlak W., Olech C.: Integration of infinite systems of differential inequalities. Ann. Polon. Math. 13 (1963), 105-112.
  • [75] Mysovskikh I. P.: Application of Chaplygin's method to the Dirichlet problem for elliptic equations of a special type. Dokl. Akad. Nauk SSSR 99 (1954) 1, 13-15 (Russian).
  • [76] Nakhushev A. M., Borisov V. N.: Boundary value problems for loaded parabolic equations and their applications to the prediction of ground water level. Differ. Uravn. 13 (1977) 1, 105-110 (Russian).
  • [77] Nickel K.: Das Lemma von Max Muller-Nagumo-Westphal fur stark gekoppelte Systeme parabolischer Functional-Differentialgleichungen. Math. Z. 161 (1978), 221-234.
  • [78] Nickel K.: Bounds for the set of solutions of functional-differential equations. Ann. Polon. Math. 42 (1983), 241-257.
  • [79] Nowotarska M.: Remark on the Chaplygin method for parabolic equations in unbounded domains. Zesz. Nauk. UJ, Prace Matem. 17 (1975), 115-117.
  • [80] Pao C.V.: Successive approximations of some nonlinear initial-boundary value problems. SIAM J. Math. Anal. 5 (1974), 91-102.
  • [81] Pao C. V.: Positive solutions of a nonlinear boundary-value problem of parabolic type. J. Differential Equations 22 (1976), 145-163.
  • [82] Pao C. V.: Mathematical Aspect of Reacting and Diffusing Systems. New York, Springer-Verlag 1979.
  • [83] Pao C. V.: Nonlinear Parabolic and Elliptic Equations. New York, Plenum Press 1992.
  • [84] Pao C.V.: Reaction diffusion equations with nonlocal boundary and nonlocal initial conditions. J. Math. Anal. Appl. 195 (1995), 702-718.
  • [85] Pao C. V.: Assymptotic behavior of solutions of reaction-diffusion equations with nonlocal boundary conditions. J. Comput. Appl. Math. 88 (1998), 225-238.
  • [86] Pelczar A.: On the method of successive approximations. Wiadom. Mat. 20 (1976), 80-84, Polish Mathematical Society Symposium in Memory of T.Ważewski (Polish).
  • [87] Peszyńska M.: Analysis of an integro-differential equation arising from model­ling of flows with fading memory through fissured media. J. Partial Differential Equations 8 (1995), 159-173.
  • [88] Pliś A.: The problem of uniqueness for the solution of a system of partial differential equations. Bull. de l'Acad. Polon. des Sciences, Cl. III 11 (1954) 2, 55-57.
  • [89] Pliś A.: Non-uniqueness in Cauchy 's problem for differential equations of elliptic type. J. Math. Mechanics 9 (1960) 4, 557-569.
  • [90] Pogorzelski W.: Sur le systeme d'equations integrales a une infinite de fonctions inconnues. Ann. Polon. Math. 2 (1955), 106-117.
  • [91] Pogorzelski W.: Proprietes des integrals de Vequationparabolique normale. Ann. Polon. Math. 4 (1957), 61-92.
  • [92] Pogorzelski W.: Integral Equations and its Applications. Vol. 2, Warszawa, Polish Sci. Publ. PWN 1958 (Polish).
  • [93] Protter M. H., Weinberger H. F.: Maximum Principles in Differential Equations. New York, Springer-Verlag 1984.
  • [94] Pudełko A.: Existence and uniqueness of solutions Cauchy problem for nonlinear infinite systems of parabolic differential-functional equations. Univ. Iagel. Acta Math. 40 (2002), 49-56.
  • [95] Pudełko A.: Existence of solutions of the Cauchy problem for semilinear infinite systems of parabolic differential-functional equations. Univ. Iagel. Acta Math. 42 (2004).
  • [96] Rabczuk R.: Elementy Nierówności Różniczkowych. Warszawa, Polish Sci. Publ. PWN 1976 (Polish).
  • [97] Redheffer R., Walter W.: Existence theorems for strongly compled systems of partiual differential equations over Bernstein classes. Bull. Amer. Math. Soc. 82 6 (1976), 899-902.
  • [98] Redheffer R., Walter W.: Uniqueness, stability and error estimation for parabolic functional-differential equations, Complex Analysis and its Applications, 494-513, Moscow, Nauka 1978 (see also: Bericht 9, Univ. Karlsruhe, 1976).
  • [99] Redheffer R., Walter W.: Das Maximumprinzip in unbeschrankten Gebieten fur parabolische Ungleichungen mit Funktionalen. Math. Ann. 226 (1977), 155-170.
  • [100] Redheffer R., Walter W.: Comparision theorems for parabolic functional inequalities. Pacific J. Math. 82 (1979) 2, 447-470.
  • [101] Redheffer R., Walter W.: Stability of the null solution of parabolic functional inequalities. Trans. Amer. Math. Soc. 262 (1980) 1, 285-302.
  • [102] Redlinger R.: Existenzsatze fur semilineare parabolische Systeme mit Funktio­nalen. Ph. D. Dissertation, Karlsruhe, University of Karlsruhe 1982.
  • [103] Redlinger R.: Existence theorems for semilinear parabolic systems with functionals. Nonlinear Anal. 8 (1984) 6, 667-682.
  • [104] Rothe F.: Global Solutions of Reaction-Diffusion Systems. Lecture Notes in Mathematics, vol. 1072, Berlin, Springer-Verlag 1984.
  • [105] Rzepecki B.: On infinite systems of differential equations with derivated argu­ment. Part I, Ann. Poln. Math. 31 (1973), 159-169 and Part II, Ann. Poln. Math. 34 (1977), 251-264
  • [106] Sattinger D.H.: Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. J. 21 (1972) 11, 979-1000.
  • [107] Sattinger D.H.: A nonlinear parabolic system in the theory of combustion. Quart. Appl. Math. (1975), 47-61.
  • [108] Smoller J.: Shock Waves and Reaction-Diffusion Equations. New York, Springer-Verlag 1983.
  • [109] Smoluchowski M.: Versuch einer mathematischen Theorie der kolloiden Lósungen. Z. Phys. Chem. 92 (1917), 129-168.
  • [110] Sperb R. P.: Maximum Principle and Their Applications. New York, Academic Press 1981.
  • [111] Szarski J.: Differential Inequalities. Monografie Matematyczne, vol. 43, War­szawa, Polish Sci. Pub. PWN 1965.
  • [112] Szarski J.: Uniqueness of solutions of a mixed problem for parabolic differential-functional equations. Ann. Polon. Math. 28 (1973), 57-65.
  • [113] Szarski J.: Strong maximum principle for non-linear parabolic differential-functional inequalities. Ann. Polon. Math. 49 (1974), 207-214.
  • [114] Szarski J.: Strong maximum principle for nonlinear parabolic differential func­tional inequalities in arbitrary domains. Ann. Polon. Math. 31 (1975), 197—203.
  • [115] Szarski J.: Uniqueness of the solution to a mixed problem for parabolic functional-differential equations in arbitrary domains. Bull. Acad. Polon. Sci., Ser. sci. math., astr. et phys. 24 (1976) 10, 841-849.
  • [116] Szarski J.: Comparison theorem for infinite systems of parabolic differential-functional equations and strongly coupled infinite systems of parabolic equations. Bull. Acad. Polon. Sci., Serie sci. math. 27 (1979) 11-12, 739-846.
  • [117] Szarski J.: Infinite systems of parabolic differential-functional inequalities. Bull. Acad. Pol. Sci., Serie sci. math. 28 (1980) 9-10, 477-481.
  • [118] Tam K. K., Ng K. Y. K.: Construction of upper and lower solutions for flow past a non-uniformly heated plate. J. Math. Anal. Appl. 59 (1977), 531-549.
  • [119] Tam K.K.: Construcion of upper and lower solutions for a problem in combu­stion theory. J. Math. Anal. Appl. 69 (1979), 131-145.
  • [120] Tychonoff A.: Theoremes d'unicite pour I'equation de la chaleur. Matematiceskii Sbornik 42 (1935) 2, 199-216.
  • [121] Vainberg M. M.: Variational Methods for the Study of Nonlinear Operators. Mo­scow, Gostehizdat 1956 (Russian). English translation, San Francisco, Holden-Day 1964.
  • [122] Walter W.: Differential and Integral Inequalities. Berlin, Springer-Verlag 1970.
  • [123] Walter W.: Differential inequalities and maximum principles: theory, new me­thods and applications. Nonlinear Anal. 30 (1997) 8, 4695-4711.
  • [124] Walter W.: Nonlinear parabolic differential equations and inequalities. Discrete Contin. Dynam. Systems 8 (2002) 6, 451-468.
  • [125] Ważewski T.: Sur le probleme de Cauchy relatif a un system d'equations aux derwees partielles. Ann. Soc. Polon. Math. 15 (1936), 101-127.
  • [126] Ważewski T.: Sur une procede de prouver la convergence des approximations successives sans utilisation des series de comparaison. Bull. Acad. Polon. Sci., Serie sci. math., astr. et phys. 8 (1960) 1, 47-52.
  • [127] Wrzosek D.: Existence of solutions for the discrete coagulation-fragmentation model with diffusion. Topol. Methods Nonlinear Anal. 9 (1997), 279-296.
  • [128] Wrzosek D.: Mass-conserving solutions to the discrete coagulation-fragmentation model with diffusion. Nonlinear Anal. 49 (2002), 297-314.
  • [129] Wrzosek D.: Weak solutions to the Cauchy problem for the diffusive discrete coagulation-fragmentation system. J. Math. Anal. Appl. 289 (2004), 405-418.
  • [130] Wu J.: Theory and Applications of Partial Functional Differential Equations. Applied Mathematical Sciences, vol. 119, New York, Springer-Verlag 1996.
  • [131] Zeragia P. K.: Using Chaplygin's method for solving fundamental boundary value problems for nonlinear partial differential equations of parabolic type. Soobshch. Akad. Nauk GSSR 17 (1956) 2, 103-110 (Russian).
  • [132] Zeragia P. K.: Boundary value problems for certain nonlinear equations of pa­rabolic type. Trudy Tbil. Inst. Mat. Akad. Nauk GSSR 24 (1957), 195-221 (Russian).
  • [133] Zeragia P. K.: Chaplygin's method for some boundary value problems for a certain class of nonlinear equations of parabolic type. Proccedings of Tibilisi University A 6-7, (1973), 17-27 (Russian).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH4-0001-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.