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Abstract. We consider the Fourier first initial-boundary value problem for an infinite sys-
tem of semilinear parabolic differential-functional equations of reaction-diffusion-convection
type of the form

F i[zi](t, x) = f i(t, x, z), i ∈ S,

where

F i := Dt − Li, Li :=

mX

j,k=1

ai
jk(t, x)D2

xjxk
+

mX

j=1

bi
j(t, x)Dxj

in a bounded cylindrical domain (0, T ] × G := D ⊂ R
m+1. The right-hand sides of the

system are Volterra type functionals of the unknown function z. In the paper, we give
methods of the construction of the monotone iterative sequences converging to the unique
classical solution of the problem considered in partially ordered Banach spaces with various
convergence rates of iterations. We also give remarks on monotone iterative methods in
connection with numerical methods, remarks on methods for the construction of lower
and upper solutions and remarks concerning the possibility of extending these methods to
more general parabolic equations. All monotone iterative methods are based on differential
inequalities and, in this paper, we use the theorem on weak partial differential-functional
inequalities for infinite systems of parabolic equations, the comparison theorem and the
maximum principle. A part of the paper is based on the results of our previous papers.
These results generalize the results obtained by several authors in numerous papers for
finite systems of semilinear parabolic differential equations to encompass the case of infinite
systems of semilinear parabolic differential-functional equations. The monotone iterative
schemes can be used for the computation of numerical solutions.
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INTRODUCTION

1. Let us consider an infinite weakly coupled1) system of semilinear parabolic
differential-functional equations of reaction–diffusion-convection type of the form

F i[zi](t, x) = f i(t, x, z), i ∈ S, (0.1)

where:

F i := Dt − Li, Li :=
m∑

j,k=1

aijk(t, x)D2
xjxk

+
m∑
j=1

bij(t, x)Dxj

1) This means that every equation contains all unknown functions and spatial derivatives of only
one unknown function. The strong coupling of a system means that all spatial derivatives
up to a given order appear in all equations.
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x = (x1, . . . , xm), (t, x) ∈ (0, T ] × G := D, T < ∞, G ⊂ R
m and G is an open

bounded domain with the boundary ∂G ∈ C2+α(0 < α < 1), Dt = ∂
∂t , Dxj = ∂

∂xj
,

D2
xjxk

= ∂2

∂xj∂xk
(j, k = 1, . . . ,m), S is an arbitrary set of indices (finite or infinite),

z stands for the mapping

z : S ×D → R, (i, t, x) 	→ z(i, t, x) := zi(t, x),

composed of unknown functions zi, the right-hand sides f i of the system are func-
tionals of z and we assume that they are the Volterra type.

Let B(S) be the real Banach space of mappings

w : S → R, i 	→ w(i) := wi,

with the finite norm
‖w‖B(S) := sup

{∣∣wi
∣∣ : i ∈ S

}
,

where we use the symbol |·| to denote the absolute value of a real number.
Obviously, for a finite S with r elements, there is B(S) = R

r and for an infinite
countable S we admit S = N and there is B(N) = l∞(N) := l∞, where N is the
set of natural numbers and l∞ is the Banach space of all real bounded sequences
w = {wi}i∈N = (w1, w2, . . .) with the finite norm

‖w‖l∞ := sup
{∣∣wi

∣∣ : i ∈ N
}
.

Denote by CS(D) the real Banach space of mappings

w : D → B(S), (t, x) 	→ w(t, x)

and
w(t, x) : S → R, i 	→ wi(t, x),

where the functions wi are continuous in D, i.e., wi ∈ C(D), i ∈ S, with the finite
norm

‖w‖0 := sup
{∣∣wi

∣∣
0

: i ∈ S
}
,

where ∣∣wi
∣∣
0

:= sup
{∣∣wi(t, x)

∣∣ : (t, x) ∈ D
}

is the norm in C(D).
If S is a finite set with r elements, then we have Cr(D).
For w ∈ CS(D) and a fixed t, 0 ≤ t ≤ T , we define

‖w‖0,t := sup
{∣∣wi(t, x)

∣∣ : 0 ≤ t ≤ t, x ∈ G, i ∈ S
}
.

Let
f i : D × CS(D) → R, (t, x, s) 	→ f i(t, x, s), i ∈ S.

The notation f i(t, x, z) means that functions f i are functionals of the function
z. In order to distinguish the function-type dependence from the functional-type
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dependence of the right-hand sides of the system on the unknown function z, we will
write the system (0.1) in the following form

F i[zi](t, x) = f i(t, x, z(t, x), z), i ∈ S, (0.2)

which will be useful in our further considerations.
A mapping w ∈ CS(D) will be called regular in D if wi, i ∈ S, have continuous

derivatives Dtw
i, Dxj

wi, D2
xjxk

wi in D for j, k = 1, . . . ,m, i.e., w ∈ Creg
S (D) :=

CS(D) ∩ C1,2
S (D).

For system (0.1), we consider the following Fourier first initial-boundary value
problem: Find the regular solution (classical solution) z of system (0.1) in D fulfilling
the initial-boundary condition

z(t, x) = φ(t, x) for (t, x) ∈ Γ, (0.3)

where D0 := {(t, x) : t = 0, x ∈ G}, σ := (0, T ]×∂G is the lateral surface, Γ := D0∪σ
is the parabolic boundary of domain D, and D := D ∪ Γ.

We will write the initial-boundary condition (0.3) in the another form too, as
the initial condition

z(0, x) = φ0(x) for x ∈ G (0.4)

and the boundary condition

z(t, x) = ψ(t, x) for (t, x) ∈ σ (0.5)

with the compatibility conditions of order2)
[
α
2

]
+ 1, i.e.,

ψ(0, x) = φ0(x), F i[ψi](0, x) = f i(0, x, ψ), i ∈ S, for x ∈ ∂G. (0.6)

2. The successive approximation method is among basic and simplest methods for
proving existence theorems for certain types of differential equations. Numerous
versions of this method are well known, using different constructions of a sequence
of successive approximations and different ways of proving the convergence. The
variants of the successive approximation method and its modifications have been
treated by T. Ważewski [125,126] and his followers (cp. W. Mlak and C. Olech [74],
A. Pelczar [86]).

In this paper, to prove the existence and uniqueness of a solution of this problem,
we apply various monotone iterative methods in Banach spaces partially ordered by
positive cones. Applying the method of upper and lower solutions requires assuming
the monotonicity of the right-hand sides of the system, i.e., the reaction functions
f i(t, x, y, s), i ∈ S, with respect to the argument y and to the functional argument s.
We also assume the existence of a pair of a lower and an upper solution of the problem

2) For a definition see O.A. Ladyżenskaja et al. ( [57], p. 319), G. S. Ladde et al. ( [56], pp.
138–139). For a positive real number β, by [β] we denote the greatest integer not exceeding β.
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considered. These assumptions are not typical of existence theorems, but monotone
iterative methods are constructive in nature and we obtain the constructive existence
theorems. The successive terms of the approximation sequences are defined as the
solutions of linear systems of differential equations. These sequences are monotonously
convergent to the solution searched for. A basic assumption on f i(t, x, y, s), i ∈ S, is
also the left-hand side Lipschitz condition. The right-hand side Lipschitz condition is
only used to ensure the uniqueness of solution. We assume that the reaction functions
f i(t, x, s), i ∈ S, are Volterra functionals with respect to the argument s (satisfy the
Volterra condition). This means that the value of these functions depends on the
past history of the modelling process.

The plan of the paper is as follows. In Chapter I, we introduce the notations, de-
finitions, assumptions and auxiliary theorems: on the existence and uniqueness of the
solutions of linear parabolic equations and on weak parabolic differential-functional
inequalities for infinite systems. A part of Chapter II is based on the results contained
in our previous papers [16–28, 30] in which we consider the finite and infinite sys-
tems of differential and differential-functional equations, which the right-hand sides
depends on z(t, ·), and its generalizations. These results also generalize the outcomes
obtained by several authors for finite systems of parabolic equations to the case of
infinite systems of parabolic differential-functional equations. To examine the exi-
stence of a solution of the problem considered, six monotone iterative methods have
been successivelly used. In the method of direct iteration, Chaplygin method and
its modifications, the successive terms of the approximation sequences are defined
as solutions of linear equations of the parabolic type. We also present two diffe-
rent variants of a monotone iterative method in which we apply the important idea
of a pseudo-linearization of nonlinear problems as introduced by T. Ważewski (the
successive terms of approximation sequences are defined as solutions of semilinear
differential equations of the parabolic type). We also present the monotone method
of direct iterations in unbounded spatial domains, when functions considered satisfy
some growth condition. These monotone iterative schemes can be used to the com-
putation of numerical solutions, when differential equations are replaced by suitable
finite difference equations. In Chapter III, we give remarks on the monotone itera-
tive methods in connection with the application of numerical methods to solve the
problem considered, remarks on the methods of the construction of upper and lower
solutions and remarks concerning the possibility of extending these methods to more
general equations.

The proofs of theorems are based on Szarski’s results concerning the weak
partial differential-functional inequalities for infinite systems of parabolic equations,
the comparison theorem and the maximum principle ( [116,117] and cp. B. Kraśnicka
[50]) (for finite systems cp. J. Szarski [111–115]). The maximum principle plays a
fundamental role in the construction of monotone approximation sequences. This
role is reflected in the so-called positivity lemma, which directly follows from the
maximum principle.
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The uniqueness of solutions of problems considered is guaranteed by the Lip-
schitz condition and follows directly from Szarski’s uniqueness criterion [116] (cp.
B. Kraśnicka [50] and cp. D. Jaruszewska-Walczak [42]).

3. The following examples of Volterra functionals have been considered in papers by
H. Bellout [13], K. Nickel [77,78], R. Redlinger [102,103], B. Rzepecki [105]:

f1(t, x, z) =

t∫
0

m(t− τ) K(z(τ, x)) dτ, f2(t, x, z) =

t∫
0

K(t, τ, x, z(τ, x)) dτ,

f3(t, x, z) =

t∫
0

∫
G

K(t, τ, x, ξ, z(τ, ξ)) dτ dξ,

f4(t, x, z) = z(θt, x) with 0 ≤ θ ≤ 1, f5(t, x, z) = z(t− τ, x) with τ > 0.

Equations including such functionals need to be considered in appropriately
chosen domains. For instance, the example including z(t− τ, x) leads to an equation
with retarded argument and such equations require a modified domain of initial
condition (0.4).

Other examples are (see D. Wrzosek [127,128])

f1
6 (t, x, z) = −z1(t, x)

∞∑
k=1

a1
kz

k(t, x) +
∞∑
k=1

b1kz
1+k(t, x),

f i6(t, x, z) =
1
2

i−1∑
k=1

ai−kk zi−k(t, x)zk(t, x)− zi(t, x)
∞∑
k=1

aikz
k(t, x)+

+
∞∑
k=1

bikz
i+k(t, x)− 1

2
zi(t, x)

i−1∑
k=1

bi−kk for i = 2, 3 . . . ,

(0.7)

and (see M. Lachowicz and D. Wrzosek [55])

f1
7 (t, x, z) = −z1(t, x)

∞∑
k=1

∫
G

a1
k(x, ξ)z

k(t, ξ)dξ +
∞∑
k=1

∫
G

B1
k(x, ξ)z

1+k(t, ξ)dξ,

f i7(t, x, z) =
1
2

i−1∑
k=1

∫
G×G

Ai−k
k (x, ξ, η)zi−k(t, ξ)zk(t, η)dξdη−

− zi(t, x)
∞∑
k=1

∫
G

aik(x, ξ)z
k(t, ξ)dξ+

+
∞∑
k=1

∫
G

Bi
k(x, ξ)z

i+k(t, ξ)dξ − 1
2
zi(t, x)

i−1∑
k=1

bi−kk (x) for i = 2, 3, . . .

(0.8)

34 Stanisław Brzychczy



where
∫
G

Ai
k(x, ξ, η)dx = aik(ξ, η) and

∫
G

Bi
k(x, ξ)dx = bik(ξ), are the nonnegative co-

efficients of coagulation aik and fragmentation bik rates, and f i6, f i7 are Volterra
functionals.

The theory presented herein, that is thatof monotone iterative methods, covers
some of these examples only, namely the examples of f1, f2 and f3. The theory
presented does not cover the examples of f4 and f5; the same applies to the examples
of f i6, f i7. Systems with right-hand sides of this type are, however, considered in the
literature, and other methods are required to solve them. In the case of examples f i6,
f i7, the truncation method, applied by the authors quoted, may be used.

Lemma 2.1 may be used to verify which of the aforemetioned examples are
covered by the theory.

4. Infinite systems of ordinary differential equations, integro-differential equations
and differential-functional equations are natural generalizations of finite systems of
these equations and we note that these infinite systems play a special role in the
mathematical modelling of numerous difficult real-world problems.

Infinite systems of ordinary differential equations can be used to solve some
problems for parabolic and hyperbolic equations on the method of lines (see H. Lesz-
czyński [62, 63], Z. Kamont and S. Zacharek [43], Z. Kamont [44]). In this method,
space variables only are discretized, leading to an infinite countable system of nonli-
near ordinary differential equations.

An infinite system of differential equations was originally introduced by M. Smo-
luchowski [109] (1917) as a model for coagulation of colloids moving according to
a Brownian motion. Some infinite countable systems of reaction-diffusion equations
have been considered by D. Wrzosek with Ph. Bénilan, M. Lachowicz and Ph. Lau-
rençot in numerous recently published papers [14, 55, 61, 127–129] as the discrete
coagulation-fragmentation models with diffusion. To solve these infinite countable
systems the authors apply the truncation method.

Continuous coagulation-fragmentation models may be expressed in terms of
infinite uncountable systems of semilinear integro-differential parabolic equations of
the reaction-diffusion type (cp. H. Amann [3]).

Infinite countable systems of ordinary differential equations, systems of integral
and functional-integral equations have been studied in recently papers by J. Banaś
with M. Lecko and K. Sadarangani [6–9] on help of the technique of measures of
non-compactness.
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CHAPTER 1. PRELIMINARIES

1.1. NOTATIONS, DEFINITIONS AND ASSUMPTIONS

1.1.1. Notations

The notation w denotes that w is regarded as an element of the set of admissible
functions, while w(t, x) means the value of this function w at the point (t, x). However,
sometimes, to stress the dependence of function w on the variables t and x, we will
write w = w(t, x) and hope that this will not raise the reader’s doubts.

For any η, y ∈ B(S) and for every fixed i ∈ S, let [η, y]i denote an element of
B(S) with the description (cp. J. Chandra et al. [35])

[η, y]i :=

{
yj for all j �= i, j ∈ S,

ηi for j = i.

In the case of an infinite countable set of indices S = N, i.e. for η, y ∈ l∞(N), there
is

[η, y]i := (y1, y2, . . . , yi−1, ηi, yi+1, . . .).

For y, ỹ ∈ B(S) and for every fixed i ∈ S, we write

y
(i)

≤ ỹ ⇐⇒
{
yj ≤ ỹj for all j �= i, j ∈ S,

yi = ỹi for j = i

and

y ≤
(i)
ỹ ⇐⇒

{
yj = ỹj for all j �= i, j ∈ S,

yi ≤ ỹi for j = i.

For s, s̃ ∈ CS(D) and for every fixed t, 0 ≤ t ≤ T , we write

s
(t)

≤ s̃⇐⇒ si(t, x) ≤ s̃i(t, x) for 0 ≤ t ≤ t, x ∈ G, i ∈ S

and
s

(t)
= s̃⇐⇒ si(t, x) = s̃i(t, x) for 0 ≤ t ≤ t, x ∈ G, i ∈ S.

If t ≥ T , then we simply write s ≤ s̃ instead of s
(t)

≤ s̃.

1.1.2. The Hölder spaces

We give some fundamental information on the Hölder spaces (see A. Friedman [41]
pp. 2 and 61–63).

Definition 1.1. A real function h = h(x) defined on a bounded closed set A ⊂ R
m

is said to be Hölder continuous with exponent α (0 < α < 1) in A if there exists a
constant H > 0 such that

|h(x)− h(x′)| ≤ H‖x− x′‖α for all x, x′ ∈ A,
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where ‖x‖ =

(
m∑
j=1

x2
j

) 1
2

. The smallest H = H(h) for which this inequality holds is

called the Hölder coefficient.

If α = 1, then we say that h = h(x) is Lipschitz continuous in A.
If A is an open set then h is locally Hölder continuous with exponent α in A if

this inequality holds in every bounded closed subset B ⊂ A, where H may depend
on B. If H is independed of B, then we say that h is uniformly Hölder continuous
in A.

If the function h depends also on a parameter λ, i.e., h = h(x, λ), and if the
Hölder coefficient H is independent of λ, then we say that h is Hölder continuous in
x, uniformly with respect to λ.

Definition 1.2. The real function h = h(t, x) defined on a bounded closed set D ⊂
R
m+1 is said to be Hölder continuous with respect to t and x with exponent α

(0 < α < 1) in D if there exists a constant H = H(h) > 0 such that

|h(t, x)− h(t′, x′)| ≤ H
(
|t− t′|

α
2 + ‖x− x′‖α

)
for all (t, x), (t′, x′) ∈ D.

Definition 1.3. The Hölder space Ck+α(D) (k = 0, 1, 2; 0 < α < 1) is the space of
continuous functions h in D whose all derivatives Dr

tDs
xh(t, x) such that 0 ≤ 2r+s ≤ k

exist and are Hölder continuous with exponent α (0 < α < 1) in D, with the finite
norm

|h|k+α := sup
P∈D

o≤2r+s≤k

|Dr
tDs

xh(P )|+ sup
P,P ′∈D
2r+s=k
P �=P ′

|Dr
tDs

xh(P )−Dr
tDs

xh(P ′)|
[d(P, P ′)]α

,

where d(P, P ′) = (|t− t′|+ ‖x− x′‖2) 1
2 is the parabolic distance of points P = (t, x),

P ′ = (t′, x′) in R
m+1.

In particular, we have:

|h|0+α = |h|0 +HD
α (h),

|h|0 = sup
P∈D

|h(P )| ,

HD
α (h) = sup

P,P ′∈D
P �=P ′

|h(P )− h(P ′)|
[d(P, P )]a

,

|h|1+α = |h|0+α +
m∑
j=1

∣∣Dxjh
∣∣
0+α

,

|h|2+α = |h|0+α +
m∑
j=1

∣∣Dxj
h
∣∣
0+α

+
m∑

j,k=1

∣∣∣D2
xjxk

h
∣∣∣
0+α

+ |Dth|0+α .
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HD
α (h) < ∞ if and only if h is uniformly Hölder continuous (with exponent α) in

D, and then HD
α (h) is the Hölder coefficient of h. It is well known, that the spaces

Ck+α(D), k = 0, 1, 2 are the Banach spaces.

Definition 1.4. By Ck+α,S(D) := Ck+α
S (D), we denote the Banach space of mappings

w = {wi}i∈S such that wi ∈ Ck+α(D) for all i ∈ S, with the finite norm

‖w‖k+α := sup
{∣∣wi

∣∣
k+α

: i ∈ S
}
.

Remark 1.1. If B(S) = R
r, i.e., S = {1, 2, . . . , r} then we will denote these spaces

by Cr(D) and C2+α
r (D), respectively.

Definition 1.5. The boundary norm ‖ · ‖Γk+α of a function φ ∈ Ck+α
S (Γ) is defined

as
‖φ‖Γk+α := inf

Φ
‖Φ‖k+α,

where the infimum is taken over the set of all possible extensions Φ of φ onto D, i.e.,
Φ(t, x) = φ(t, x) for each (t, x) ∈ Γ, such that Φ ∈ Ck+α

S (D).

1.1.3. Cones, norms and order

In this paper, we will consider Banach spaces with a partial order induced by a
positive cone. Therefore, we recall some definitions and properties regarding cones,
norms and order.

Definition 1.6. Let X be a real Banach space. A proper, closed, convex subset K
of X is said to be an order cone if λK ⊂ K for every λ ≥ 0, K ∪ K ⊂ K and
K ∩ (−K) = {0}, where 0 denotes the null element of the Banach space X .

Definition 1.7. The partial order “≤” in the Banach space X may be defined by
means of the order cone K in the following way:

u ≤ v ⇐⇒ v − u ∈ K.

Then X is called an ordered (a partially ordered) Banach space with cone K.

Definition 1.8. The order cone K induces the order relation “<” in the Banach
space X defined by

u < v ⇐⇒ v − u ∈
◦
K,

where intK :=
◦
K:= K − {0} denotes the interior of K and the elements of

◦
K are

called positive3).

3) More informations on cones and their properties can be found in the works by M.G. Krein
and M.A. Rutman [51], M.A. Krasnosel’skǐi [47, 48].

38 Stanisław Brzychczy



Remark 1.2. From this it follows that the inequality u(t, x) ≤ v(t, x) is to be under-
stood componentwise, i.e., ui(t, x) ≤ vi(t, x) for all i ∈ S.
Inequality u ≤ v is to be understood both componentwise and pointwise, i.e.,

ui(t, x) ≤ vi(t, x) for arbitrary (t, x) ∈ D and all i ∈ S.
Moreover, we accepted that the notation u < v means ui(t, x) < vi(t, x) for

arbitrary (t, x) ∈ D and all i ∈ S.

The partial order in the space B(S) is given by the positive cone

B+(S) :=
{
w : w = {wi}i∈S ∈ B(S), wi ≥ 0 for i ∈ S

}
in the following way

u ≤ v ⇐⇒ v − u ∈ B+(S).

Analogously, the partial order in the space CS(D) is defined by means of the
positive cone

C+
S (D) :=

{
w : w = {wi}i∈S ∈ CS(D), wi(t, x) ≥ 0 for (t, x) ∈ D and i ∈ S

}
in the following way n ≤ v ⇔ v − u ∈ C+

S (D).

Definition 1.9. The partial ordering in X induces a corresponding partial ordering
also in a subset W of X and if u, v ∈W with u ≤ v, then

〈u, v〉 := {s ∈W, u ≤ s ≤ v}

denotes the sector (or order interval, conical segment) formed by the ordered pair u
and v.

Definition 1.10. Let X and Y be partially ordered sets with the ordering given by
cones KX and KY , and denoted by “≤” in each set. A map T : X → Y is called
isotone (monotone increasing) if for each u, v ∈ X , u ≤ v implies T [u] ≤ T [v] and
strictly isotone if u < v implies T [u] < T [v].
Similarly, T is called antitone (monotone decreasing) if u ≤ v implies T [u] ≥

T [v]. Isotone or antitone maps are called monotone maps.

1.1.4. Fundamental assumptions

We assume that the operators F i, i ∈ S, are uniformly parabolic in D (the operators
Li, i ∈ S, are uniformly elliptic in D), i.e., there exists a constant µ > 0 such that

m∑
j,k=1

aijk(t, x)ξjξk ≥ µ
m∑
j=1

ξ2j , i ∈ S, (1.1)

hold for all ξ = (ξ1, . . . , ξm) ∈ R
m, (t, x) ∈ D.
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Assumption (Ha). We will assume that all the coefficients aijk = aijk(t, x), aijk =
= aikj and b

i
j = bij(t, x) (j, k = 1, . . . ,m, i ∈ S) of the operators Li are uniformly

Hölder continuous with respect to t and x in D with exponent α (0 < α < 1) and they
Hölder norms are uniformly bounded, i.e.,∣∣aijk∣∣0+α ≤ K1,

∣∣bij∣∣0+α ≤ K1,

where K1 is a positive constant.

We will assume that the functions

f i : D × B(S)× CS(D) → R, (t, x, y, s) 	→ f i(t, x, y, s), i ∈ S,

are continuous and satisfy the following assumptions:

Assumption (Hf ). Functions f i(t, x, y, s), i ∈ S, are uniformly Hölder continuous
with exponent α (0 < α < 1) with respect to t and x in D, and Hölder norms

∣∣f i∣∣
0+α

are uniformly bounded, i.e., f(·, ·, s) ∈ C0+α
S (D).

Assumption (W). Functions f i(t, x, y, s), i ∈ S, are increasing4) with respect to the
functional argument s, i.e., for arbitrary s, s̃ ∈ CS(D), there is

s ≤ s̃ =⇒ f i(t, x, y, s) ≤ f i(t, x, y, s̃) for (t, x) ∈ D, y ∈ B(S).

Assumption (W+). Functions f i(t, x, y, s), i ∈ S, are quasi-increasing with respect
to y (or satisfy condition (W+)), that is for arbitrary y, ỹ ∈ B(S) there is

y
(i)

≤ ỹ =⇒ f i(t, x, y, s) ≤ f i(t, x, ỹ, s) for (t, x) ∈ D, s ∈ CS(D).

Assumption (M). Functions f i(t, x, y, s), i ∈ S, satisfy the following monotonicity
condition (M) with respect to the functional argument s: for every fixed t, 0 ≤ t ≤ T

and for all functions s, s̃ ∈ CS(D) the following implication holds

s
(t)

≤ s̃ =⇒ f i(t, x, y, s) ≤ f i(t, x, y, s̃) for x ∈ G, y ∈ B(S).

Assumption (L). Functions f i(t, x, y, s), i ∈ S, fulfill the Lipschitz condition with
respect to y and s, if for arbitrary y, ỹ ∈ B(S) and s, s̃ ∈ CS(D) the inequality∣∣f i(t, x, y, s)− f i(t, x, ỹ, s̃)

∣∣ ≤ L1‖y − ỹ‖B(S) + L2‖s− s̃‖0 for (t, x) ∈ D

holds, where L1, L2 are positive constants.

4) Monotonicity of function is understood in the weak sense, i.e., a function h = h(x) is increasing
or strictly increasing if x1 < x2 implies h(x1) ≤ h(x2) or h(x1) < h(x2), respectively (cp.
W. Walter [123]).
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Assumption (Ll). Functions f i(t, x, y, s), i ∈ S, fulfil the left-hand side Lipschitz
condition (resp. right-hand side Lipschitz condition) with respect to y, that is for
arbitrary y, ỹ ∈ B(S) the inequality

−L1‖y − ỹ‖B(S) ≤ f i(t, x, y, s)− f i(t, x, ỹ, s̃) for (t, x) ∈ D, s ∈ CS(D)

(resp. f i(t, x, y, s)− f i(t, x, ỹ, s̃) ≤ L1‖y − ỹ‖B(S))

hold, where L1 is a positive constant.

Assumption (Li
l). Function f

i(t, x, y, s) for every fixed i ∈ S, satisfies the left-hand
side generalized Lipschitz condition with respect to yi (cp. C.V. Pao [81], pp. 148,
153 and [83], pp. 22, 384, 385) if there exist bounded functions li = li(t, x) ≥ 0 in D
such that for y, ỹ ∈ B(S), y ≤ ỹ, the following inequality

−li(t, x)(ỹi − yi) ≤ f i(t, x, ỹ, s)− f i(t, x, y, s) for (t, x) ∈ D, s ∈ CS(D)

holds.

Assumption (V). Functions f i(t, x, y, s), i ∈ S, satisfy the Volterra condition (are
Volterra functionals) with respect to the functional argument s, i.e., for arbitrary
(t, x) ∈ D, y ∈ B(S) and for all functions s, s̃ ∈ CS(D) such that sj(t, x) = s̃j(t, x)
for 0 ≤ t ≤ t, j ∈ S, there is f i(t, x, y, s) = f i(t, x, y, s̃), or shortly

s
(t)
= s̃ =⇒ f i(t, x, y, s) = f i(t, x, y, s̃).

Assumption (L∗). Functions f i(t, x, y, s), i ∈ S, fulfil the following L∗-condition
(or the so-called Lipschitz–Volterra condition) with respect to the functional argument
s if for arbitrary s, s̃ ∈ CS(D) the inequality∣∣f i(t, x, y, s)− f i(t, x, y, s̃)

∣∣ ≤ L3‖s− s̃‖0,t for (t, x) ∈ D, y ∈ B(S)

holds, where L3 is a positive constant.

Assumption (K). We will assume that there exist functions ki = ki(t, x) > 0, i ∈ S,
defined in D, satisfying the assumption (Ha) with the constant K1 > 0, and such that
the function

f ik(t, x, y, s) := f i(t, x, y, s) + ki(t, x)yi, for arbitrary fixed i, i ∈ S,

is increasing with respect to the variable yi. Then we will say that f i(t, x, y, s), i ∈ S

are semi-increasing with respect to y.

Assumption (Kκ). We will assume that there exist a constant κ such that each
function

f iκ(t, x, y, s) := f i(t, x, y, s) + κyi

is increasing with respect to the variable yi for i ∈ S.
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Remark 1.3. From condition (Lil) it follows that the function

f il (t, x, y, s) := f i(t, x, y, s) + li(t, x)yi

is increasing with respect to the variable yi, for i ∈ S. If li = li(t, x), i ∈ S, fullfil
the assumption (Ha), then this means that the functions f i(i ∈ S) fulfil the condition
(K) with ki(t, x) = li(t, x), i ∈ S.
If f i(t, x, y, s), i ∈ S, are increasing in y, then the condition (Lil) is satisfied with

li ≡ 0.
If condition (K) holds and sup

S×D

∣∣ki(t, x)
∣∣ < ∞, then condition (Kκ) holds with

κ ≥ sup
S×D

∣∣ki(t, x)
∣∣, too.

Moreover, we will assume that:

Assumption (Hφ). φ ∈ C2+α
S (Γ), where 0 < α < 1.

If initial-boundary condition (0.3) is of form (0.4), (0.5), i.e.,

φ(t, x) =

{
φ0(x) for t = 0, x ∈ G,

ψ(t, x) for (t, x) ∈ σ

and compatibility conditions (0.6) hold, then we will assume that

Assumption (H∗
φ). φ0 ∈ C2+α

S (G), ψ ∈ C2+α
S (σ), where 0 < α < 1.

Remark 1.4. If φ ∈ C2+α
S (Γ) and the boundary ∂G ∈ C2+α, then without loss of

generality we can consider the homogeneous initial-boundary condition

z(t, x) = 0 for (t, x) ∈ Γ (1.2)

for system (0.2).
Indeed, if φ(t, x) �≡ 0 on Γ, φ ∈ C2+α

S (Γ) and ∂G ∈ C2+α, then there exists a
function Φ ∈ C2+α

S (D) such that

Φ(t, x) = φ(t, x) for each (t, x) ∈ Γ.

Let Φ be a certain given extension of φ onto D and z be a solution of problem
(0.2), (0.3) in D, z ∈ C2+α

S (D). It is routine to see that the function

∗
z (t, x) = z(t, x)− Φ(t, x)

satisfies the following homogeneous problem
F i[

∗
z
i
](t, x) =

∗
f
i

(t, x,
∗
z (t, x),

∗
z) i ∈ S, for (t, x) ∈ D,

∗
z (t, x) = 0 for (t, x) ∈ Γ,
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where

∗
f
i

(t, x,
∗
z (t, x),

∗
z) := f i

(
t, x,

∗
z (t, x) + Φ(t, x),

∗
z +Φ

)
−F i[Φi](t, x).

Obviously, the functions
∗
f
i

have the same property as the functions f i. Accor-
dingly, in what follows, we can confine ourselves to considering homogeneous problem
(0.2), (1.2) in D only.

1.1.5. Interrelations between conditions

Now we prove some relations between monotonicity conditions, Lipschitz conditions
and the Volterra condition (cp. S. Brzychczy and J. Janus [29]):

P1 : (M) =⇒ (W ),

P2 : (M) and (L) =⇒ (L∗),

P3 : (V ) and (L) ⇐⇒ (L∗),

P4 : (V ) and (W ) ⇐⇒ (M).

Proof of P1. If the functions f i(t, x, y, s), i ∈ S, satisfy condition (M) then f i are
increasing with respect to s. Indeed, since

s
(T )

≤ s̃⇐⇒ s(t, x) ≤ s̃(t, x) for each t, 0 ≤ t ≤ T, x ∈ G,

then from condition (M) it follows that

f i(t, x, y, s) ≤ f i(t, x, y, s̃), i ∈ S, for each t, 0 ≤ t ≤ T, x ∈ G.

Therefore, f i are increasing with respect to s.
The reverse implication is not true. Let for example f i(t, x, y, s) = s(T, x). For

every t0, 0 < t0 < T , there exist functions s, s̃ ∈ CS(D) such that s
(t0)

≤ s̃ and
s(T, x) > s̃(T, x). Hence

f i(t, x, y, s) = s(T, x) > s̃(T, x) = f i(t, x, y, s̃),

so f i does not fulfil condition (M).

Proof of P2. When f i, i ∈ S, satisfy the Lipschitz condition (L) and monotonicity
condition (M) then the condition (L∗) holds. Indeed, from condition (M) it follows
that f i(t, x, y, s) = f i(t, x, y, s̃), i ∈ S, whenever s(t, x) = s̃(t, x) for 0 ≤ t ≤ t, i.e.,
the condition (V ) holds.

For any function s ∈ CS(D) we define a new function s(t) ∈ CS(D) as follows

s(t)(τ, x) := s(min(τ, t), x) =

{
s(τ, x) for 0 < τ ≤ t, x ∈ G,

s(t, x) for 0 < t ≤ τ ≤ T , x ∈ G.
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By virtue of (V ) and (L), there is∣∣f i(t, x, y, s)− f i(t, x, y, s̃)
∣∣ =

∣∣∣f i(t, x, y, s(t))− f i(t, x, y, s̃(t))
∣∣∣ ≤

≤ L‖s(t) − s̃(t)‖0 = L‖s− s̃‖0,t.

Proof of P3. The fact that in condition (L∗) there is ‖s−s̃‖0,t means that for functions
s, s̃ ∈ CS(D), such that, s(t, x) = s̃(t, x) for 0 ≤ t ≤ t, there is f i(t, x, y, s) =
= f i(t, x, y, s̃), i ∈ S, i.e., the functions f i are functionals in s taking same values.
Therefore, the functions f i satisfy Volterra conditions (V ), i.e., the functions f i are
functionals in s of the Volterra type. Moreover, if f i, i ∈ S, satisfy condition (L∗),
then Lipschitz condition (L) holds, because ‖s− ‖̃0,t ≤ ‖s− s̃‖0.

The reverse implication is obvious.

Proof of P4. The functions f i, i ∈ S, satisfy Volterra condition (V ) and are increasing
with respect to s if and only if f i, i ∈ S, satisfy condition (M). Indeed, for every

fixed t, 0 ≤ t ≤ T and for any functions s, s̃ such that s
(t)

≤ s̃ we define s(t) and s̃(t)

as in the proof of P2.
Obviously s(t) ≤ s̃(t) for each t, 0 ≤ t ≤ T . By virtue of (V ) and the fact that

f i, i ∈ S, are increasing we obtain

f i(t, x, y, s) = f i(t, x, y, s(t)) ≤ f i(t, x, y, s̃(t)) = f i(t, x, y, s̃),

thus condition (M) holds.
The reverse implication follows from the proofs of P1 and P2.

1.1.6. Upper and lower solutions

Definition 1.11. Functions u, v ∈ Creg
S (D) satisfying the infinite systems of inequ-

alities {
F i[ui](t, x) ≤ f i(t, x, u(t, x), u), i ∈ S for (t, x) ∈ D,

u(t, x) ≤ φ(t, x) for (t, x) ∈ Γ,
(1.3)

{
F i[vi](t, x) ≥ f i(t, x, v(t, x), v), i ∈ S for (t, x) ∈ D,

v(t, x) ≥ φ(t, x) for (t, x) ∈ Γ
(1.4)

are called, respectively, a lower and an upper solution of problem (0.2), (0.3) in D.

Note that some authors call lower and upper solutions lower and upper functions,
sub- and super-solutions or sub- and super-functions, respectively.

In this paper we will always adopt the following fundamental assumption:

Assumption A. We assume that there exists at least one pair u0 and v0 of a lower
and an upper solution of problem (0.2), (0.3) in D5), and u0, v0 ∈ C0+α

S (D).

5) More information on the existence of lower and upper solutions can be found in Section 3.2.
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Definition 1.12. A pair of a lower and an upper solution u and v of problem (0.2),
(0.3) in D, is called an ordered pair (or: coupled lower and upper solution), if u ≤ v

in D.

We notice that the inequality u0 ≤ v0 does not follow directly from inequalities
(1.3) and (1.4). Therefore, we will adopt the following assumption:

Assumption A0. We assume that there exists at least one ordered pair u0 and v0 of
a lower and an upper solution of problem (0.2), (0.3) in D, and u0, v0 ∈ C0+α

S (D).

Definition 1.13. For an ordered pair of a lower and an upper solution u0 and v0
of problem (0.2), (0.3) in D, we define the sector (or order interval) 〈u0, v0〉 in the
space CS(D) as the following functional interval formed by u0 and v0:

〈u0, v0〉 :=
{
w ∈ CS(D) : u0(t, x) ≤ w(t, x) ≤ v0(t, x) for (t, x) ∈ D

}
. (1.5)

We define the interval 〈m,M〉 in the space B(S) as follows

〈m,M〉 :=
{
y ∈ B(S) : m ≤ y ≤M

}
,

where

mi = inf
D
ui0(t, x), m = {mi}i∈S

M
i
= sup

D

vi0(t, x), M = {M i}i∈S .

Finally we define the sets

K∗ :=
{
(t, x, s) : (t, x) ∈ D, s ∈ 〈u0, v0〉

}
, (1.6)

K :=
{
(t, x, y, s) : (t, x) ∈ D, y ∈ 〈m,M〉, s ∈ 〈u0, v0〉

}
. (1.7)

Remark 1.5. Instead of Assumption A, one may use stronger Assumption A0. If
Assumption A0 holds, then we define the set K (or K∗) by (1.7) and the other
assumptions on the functions f i may be weakened to hold locally only in the set K
(or K∗). Therefore, all our theorems will be true locally only within the sector 〈u0, v0〉
formed by u0 and v0.

1.2. AUXILIARY THEOREMS AND LEMMAS

1.2.1. Theorem on the existence and uniqueness of solution of linear parabolic
initial-boundary value problem in Hölder spaces

Let us consider the following linear parabolic initial-boundary value problem

F i
c[u

i](t, x) = gi(t, x), i ∈ S for (t, x) ∈ D,

u(0, x) = φ0(x) for x ∈ G,

u(t, x) = ψ(t, x) for (t, x) ∈ σ,

(1.8)
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with the compatibility conditions (0.6), where

F i
c := Dt − Lic,

Lic :=
m∑

j,k=1

aijk(t, x)D2
xjxk

+
m∑
j=1

bij(t, x)Dxj
+ ci(t, x)I, i ∈ S,

I is the identity operator and the operators F i
c, i ∈ S, are uniformly parabolic in D.

From the theorems on the existence and uniqueness of solutions of the Fourier
first initial-boundary value problems for linear parabolic equations in Hölder spaces
(see A. Friedman [41], Th. 6 and 7, p. 65 and O. A. Ladyženskaja, V. A. Solonnikov
and N. N. Ural’ceva [57], pp. 317–321), we directly infer the following theorem.

Theorem 1.1. Let us consider linear parabolic initial-boundary value problem (1.8)
and assume that:

1◦ all the coefficients aijk, b
i
j and c

i (j, k = 1, . . . , n, i ∈ S) of the operators Lic,
i ∈ S, fulfil assumption (Ha);

2◦ the functions gi, i ∈ S, are uniformly Hölder continuous with respect to t and x
in D, and g = {gi}i∈S ∈ C0+α

S (D);

3◦ φ0 ∈ C2+α
S (G) and ψ ∈ C2+α

S (σ);

4◦ the boundary ∂G ∈ C2+α.

Then problem (1.8) has the unique solution u and u ∈ C2+α
S (D).

Furthermore, there exists a constant C > 0 depending only on the constants µ,
K1, α and on the geometry of the domain D, such that the following a priori estimate
of the (2 + α)-type holds

‖u‖2+α ≤ C
(
‖g‖0+α + ‖φ0‖G2+α + ‖ψ‖σ2+α

)
. (1.9)

Proof. Observe that system (1.8) has the following property: in the i-th equation, only
one unknown function with index i appears. Therefore, system (1.8) is a collection
of individual independent equations. Applying the above mentioned theorems, we
immediately obtain the estimates

∣∣ui∣∣
2+α

≤ Ci

(∣∣gi∣∣
0+α

+
∣∣φi0∣∣G2+α +

∣∣ψi∣∣σ
2+α

)
, i ∈ S, (1.10)

in which the constants Ci > 0 do not depend on gi, φi0 and ψi.
From these theorems it follows that constants Ci depend only on the constants

µ, K1, α and on the geometry of the domain D and Ci are uniformly bounded for
all i ∈ S. Therefore, there exists a constant C > 0 such that Ci ≤ C, for all i ∈ S (C
is independent of both the index i and the functions gi, φi0 and ψi). Hence, by the
definition of the norms in C0+α

S (D) and C2+α
S (D), we obtain estimate (1.10).
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1.2.2. Theorem on weak parabolic inequalities

Let us consider an infinite system of semilinear parabolic differential-functional equ-
ations of the form

F i
c[z

i](t, x) = f i(t, x, z(t, x), z), i ∈ S, (1.11)

where

F i
c := Dt − Lic,

Lic :=
m∑

j,k=1

aijk(t, x)D2
xjxk

+
m∑
j=1

bij(t, x)Dxj

and (t, x) ∈ (0, T ] ×G := D, T < ∞, G ⊂ R
m, G is an open bounded domain with

the boundary ∂G ∈ C2+α(0 < α < 1), and S is a finite or an infinite set of indices.
Directly from Szarski’s theorem on weak parabolic differential-functional inequ-

alities for infinite systems [117], there follows:

Theorem 1.2. Comparison principle. We assume that:

1◦ the functions f i(t, x, y, s), i ∈ S, are defined for (t, x, y, s) ∈ D × B(S)× CS(D)
and the operators F i, i ∈ S, are uniformly parabolic in D;

2◦ the functions f i(t, x, y, s), i ∈ S, satisfy conditions (W+), (L) with respect to y
(precisely: satisfy the right-hand side Lipschitz conditions), and conditions (W ),
(L) and (V ) with respect to s;

3◦ the functions u, v ∈ C
reg
S (D) fulfil the following infinite systems of inequalities:

F i[ui](t, x) ≤ f i(t, x, u(t, x), u),

F i[vi](t, x) ≥ f i(t, x, v(t, x), v), i ∈ S, for (t, x) ∈ D, and

4◦ u(t, x) ≤ v(t, x) for (t, x) ∈ Γ.

Under these assumptions, there is

u(t, x) ≤ v(t, x) for (t, x) ∈ D.

Corollary 1.1. If u and v are a lower and an upper solution of problem (0.2), (0.3)
in D, respectively, z is a regular solution of this problem and assumptions (W ), (W+),
(L) and (V ) hold, then by the Theorem 1.2 there is

u(t, x) ≤ z(t, x) ≤ v(t, x) for (t, x) ∈ D. (1.12)

If the functions u0 and v0 are given by Assumption A and assumptions (W ),
(W+), (L), (V ) hold, then by (1.12) there holds

u0(t, x) ≤ v0(t, x) for (t, x) ∈ D. (1.13)

This means that u0 and v0 form an ordered pair. Therefore, Assumption A0

holds.
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As a corollary of the comparison principle for the finite systems (see J. Szarski
[113], p. 210) we obtain the maximum principle for finite systems (cp. M. H. Protter
and H. F. Weinberger [93], pp. 189–190, R. P. Sperb [110], pp. 20–24).

Theorem 1.3. Maximum principle. Let we consider the finite system of parabolic
differential-functional inequalities of the form

F i[zi](t, x) ≤ f i(t, x, z(t, x), z), i ∈ S in D, (1.14)

where the operators F i, i ∈ S, are uniformly parabolic in D and the functions
f i(t, x, y, s), i ∈ S, are defined for (t, x, y, s) ∈ D × B(S)× CS(D).
Assume that:

1◦ the functions f i(t, x, y, s), i ∈ S, satisfy conditions (W+), (L) with respect to y
(precisely: satisfy the right-hand side Lipschitz conditions), and conditions (W ),
(L) and (V ) with respect to s;

2◦ suppose u is a regular solution of (1.14) in D, satisfying inequalities

u(0, x) ≤ C for x ∈ G,

u(t, x) ≤ C for (t, x) ∈ σ,

where C = {Ci}i∈S = const.;

3◦ assume finally that

f i(t, x, C,C) ≤ 0, (i ∈ S), for (t, x) ∈ D.

Under these assumptions, there is

u(t, x) ≤ C, for (t, x) ∈ D.

In methods of upper and lower solutions for parabolic equations, the theorem
on weak inequalities and the maximum principle plays a fundamental role in the
construction of monotone approximation sequences. This role is reflected in the so-
called positivity lemma (cp. C.V. Pao [83], p. 54), which directly follows from the
maximum principle.

Lemma 1.1. Positivity lemma. Let u ∈ Creg
S (D) and the following inequalities

hold:

F i
c[u

i](t, x) ≥ 0, i ∈ S, for (t, x) ∈ D,

u(0, x) ≥ 0 for x ∈ G,

u(t, x) ≥ 0 for (t, x) ∈ σ.

Then
u(t, x) ≥ 0 for (t, x) ∈ D.

Remark 1.6. The comparison principle holds also in unbounded domains Ω ⊂ R
m+1

for functions w satisfying the estimate |w(t, x)| ≤MeKx2
in Ω for some constants M ,

K > 0. This theorem does not hold in unbounded domains unless a growth condition
holds (see example given by A. Tychonoff [120]).
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CHAPTER 2. FUNDAMENTAL MONOTONE ITERATIVE METHODS

2.1. METHOD OF DIRECT ITERATIONS

Let us consider infinite system of differential-functional equations (0.2) with the
homogeneous initial-boundary condition (1.2) in D, i.e., the problem{

F i[zi](t, x) = f i(t, x, z(t, x), z), i ∈ S for (t, x) ∈ D,

z(t, x) = 0 for (t, x) ∈ Γ.
(2.1)

The following theorem holds true.

Theorem 2.1. Let assumptions A and (Ha), (Hf ), (L), (W ), (W+), (V ) hold in
the set K. If we define the successive terms of the approximation sequences {un} and
{vn} as regular solutions in D of the following infinite systems of linear parabolic
differential equations

F i[uin](t, x) = f i(t, x, un−1(t, x), un−1), (2.2)

F i[vin](t, x) = f i(t, x, vn−1(t, x), vn−1), i ∈ S, (2.3)

for n = 1, 2, . . . in D with homogeneous initial-boundary condition (1.2), then:

1◦ {un}, {un} are well defined and un, vn ∈ C2+α
S (D) for n = 1, 2, . . .;

2◦ the inequalities

u0(t, x) ≤ un(t, x) ≤ un+1(t, x), n = 1, 2, . . . , (2.4)

hold for (t, x) ∈ D and the functions un(n = 1, 2, . . .) are lower solutions of
problem (2.1) in D, and analogously

vn+1(t, x) ≤ vn(t, x) ≤ v0(t, x), n = 1, 2, . . . , (2.5)

hold for (t, x) ∈ D and vn (n = 1, 2, . . .) are upper solutions of problem (2.1) in
D;

3◦ the inequalities
un(t, x) ≤ vn(t, x), n = 1, 2, . . . (2.6)

hold for (t, x) ∈ D;

4◦ the following estimate is true

vin(t, x)− uin(t, x) ≤ N0
[(L1 + L2)t]n

n!
, i ∈ S, n = 1, 2, . . . (2.7)

for (t, x) ∈ D, where N0 = ‖v0 − u0‖0 = const <∞;
5◦ lim

n→∞
[
vin(t, x)− uin(t, x)

]
= 0 uniformly in D, i ∈ S;

Monotone Iterative Methods for Infinite Systems . . . 49



6◦ the function
z = z(t, x) = lim

n→∞un(t, x)

is the unique regular solution of problem (2.1) within the sector 〈u0, v0〉, and
z ∈ C2+α

S (D).

Before going into the proof of the theorem, we will introduce the nonlinear
Nemytskǐi operator and prove some lemmas. Since the proofs are straightforward and
similar for the lower and upper solutions, we present proof for the upper solution
only. We recall that from Assumption A with (W ), (W+), (L) and (V ) there follows
Assumption A0 (by Corollary 1.1) and the other assumption on the functions f i may
by weakened to hold locally only in the set K (Remark 1.5).

Let β ∈ CS(D) be a sufficiently regular function. Denote by P the operator

P : β 	→ P[β] = γ,

where γ is the (supposedly unique) solution of the linear initial-boundary value
problem {

F i[γi](t, x) = f i(t, x, β(t, x), β), i ∈ S for (t, x) ∈ D,

γ(t, x) = 0 for (t, x) ∈ Γ.
(2.8)

The operator P is the composition of the nonlinear Nemytskǐi6) operator F =
= {Fi}i∈S generated by the functions f i(t, x, y, s), i ∈ S, and defined for any
β ∈ CS(D) as follows

F : β 	→ F[β] = δ,

where
Fi[β](t, x) := f i(t, x, β(t, x), β) = δi(t, x), i ∈ S, (2.9)

and the operator
G : δ 	→ G[δ] = γ,

where γ is the (supposedly unique) solution of the linear initial-boundary value
problem {

F i[γi](t, x) = δi(t, x), i ∈ S for (t, x) ∈ D,

γ(t, x) = 0 for (t, x) ∈ Γ.
(2.10)

Hence
P = G ◦ F.

Lemma 2.1. If β ∈ C0+α
S (D) and the function f = {f i}i∈S, generating the Nemytskǐi

operator F satisfies conditions (Hf ) and (L), then

F : C0+α
S (D) # β 	→ F[β] = δ ∈ C0+α

S (D).

6) The nonlinear Nemytskǐi operator plays an important role in the theory of nonlinear equations.
Extensive informations about it can be found in the books by M.A. Krasnosel’skǐi [47], M.M.
Vǎinberg [121] and the monograph by J. Appell and P.P. Zabrěiko [4].
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Proof. Because β ∈ C0+α
S (D), then

∣∣βi(t, x)− βi(t′, x′)
∣∣ ≤ H(β)

(
|t− t′|

α
2 + ‖x− x′‖α

)
for (t, x), (t′, x′) ∈ D and all i ∈ S, where H(β) > 0 is some constant independent
of index i.

From (Hf ) and (L) it follows that∣∣δi(t, x)− δi(t′, x′)
∣∣ =

∣∣Fi[β](t, x)− Fi[β](t′, x′)
∣∣ =

=
∣∣f i(t, x, β(t, x), β)− f i(t′, x′, β(t′, x′), β)

∣∣ ≤
≤

∣∣f i(t, x, β(t, x), β)− f i(t′, x′, β(t, x), β)
∣∣ +

+
∣∣f i(t′, x′, β(t, x), β)− f i(t′, x′, β(t′, x′), β)

∣∣ ≤
≤ H(f)

(
|t− t′|

α
2 + ‖x− x′‖α

)
+ L1‖β(t, x)− β(t′, x′)‖B(S) ≤

≤ H(f)
(
|t− t′|

α
2 + ‖x− x′‖α

)
+ L1H(β)

(
|t− t′|

α
2 + ‖x− x′‖α

)
≤

≤ H∗
(
|t− t′|

α
2 + |x− x′|α

)
where H∗ = H(f) + L1H(β) for all (t, x), (t′, x′) ∈ D, i ∈ S. Therefore, F[β] ∈
∈ C0+α

S (D).
From Theorem 1.1 and Lemma 2.1, the next lemma follows directly.

Lemma 2.2. If δ ∈ C0+α
S (D) and all the coefficients of the operators Li, i ∈ S,

satisfy condition (Ha), then problem (2.10) has the unique regular solution γ and
γ ∈ C2+α

S (D).

Corollary 2.1. From Lemmas 2.1 and 2.2 it follows that

P = G ◦ F : C0+α
S (D) # β 	→ P[β] = γ ∈ C2+α

S (D).

Lemma 2.3. Let all the assumptions of Lemmas 2.1 and 2.2 hold, β be an upper
solution and α be a lower solution of problem (2.1) in D, α, β ∈ 〈u0, v0〉 and conditions
(W ), (W+) hold. Then

α(t, x) ≤ P[β](t, x) ≤ β(t, x) in D (2.11)

and γ = P[β] is an upper solution of problem (2.1) in D , and analogously

α(t, x) ≤ P[α](t, x)) ≤ β(t, x) in D (2.12)

and η = P[α] is a lower solution of problem (2.1) in D.

Proof. If β is an upper solution, then by virtue of (1.4) there is

F i[βi](t, x) ≥ f i(t, x, β(t, x), β), i ∈ S, in D.
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From the definition (2.8) of the operator P it follows that

F i[γi](t, x) = f i(t, x, β(t, x), β), i ∈ S in D.

Therefore
F i[βi − γi](t, x) ≥ 0, i ∈ S, in D

and
β(t, x)− γ(t, x) = 0 on Γ.

Hence, by Lemma 1.1 there is

β(t, x)− γ(t, x) ≤ 0 in D

so
γ(t, x) = P[β](t, x) ≤ β(t, x) in D.

From (2.3), (2.8) and conditions (W ), (W+), we obtain

F i[γi](t, x)− f i(t, x, γ(t, x), γ) = f i(t, x, β(t, x), β)− f i(t, x, γ(t, x), γ) ≥ 0

in D, i ∈ S, and
γ(t, x) = 0 on Γ.

From Corollary 2.1 we infer that γ is a regular function and γ ∈ C2+α
S (D), so it is

an upper solution of problem (2.1) in D and from Corollary 1.1 there follows

α(t, x) ≤ P[β](t, x) ≤ β(t, x) in D.

Lemma 2.4. If all the assumptions of Lemma 2.3 hold, α, β ∈ 〈u0, v0〉 and α(t, x) ≤
β(t, x) in D, then

P[α](t, x) ≤ P[β](t, x) in D (2.13)

i.e., the operator P is isotone in the sector 〈u0, v0〉.

Proof. Let η = P[α] and γ = P[β], then by (2.8)

F i[ηi](t, x) = f i(t, x, α(t, x), α), i ∈ S, in D,

F i[γi](t, x) = f i(t, x, β(t, x), β), i ∈ S, in D,

and
η(t, x) = γ(t, x) = 0 on Γ.

By (W ), (W+), there is

F i[ηi − γi](t, x) = f i(t, x, β(t, x), β)− f i(t, x, α(t, x), α) ≥ 0 i ∈ S in D,

and
γ(t, x)− η(t, x) = 0 on Γ.
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By Lemma 1.1, there is

γ(t, x) ≥ η(t, x), in D, i.e., P[α](t, x) ≤ P[β](t, x) in D.

This means that the operator P is isotone in the sector 〈u0, v0〉.
From Corollary 2.1, Lemmas 2.3 and 2.4, the next corollary follows

Corollary 2.2. If all the assumptions of Lemma 2.3 hold and if α and β are a
lower and an upper solution of problem (2.1) in D, respectively, α, β ∈ 〈u0, v0〉, and
α(t, x) ≤ β(t, x) then

α(t, x) ≤ P[α](t, x) ≤ P[β](t, x) ≤ β(t, x) in D. (2.14)

This means that P[〈α, β〉] ⊂ 〈α, β〉.

Proof. Starting from the lower solution u0 and the upper solution v0, we define by
induction two sequences of functions {un} and {vn} as regular solutions of systems
(2.2) and (2.4). Therefore we have

u1 = P[u0], un = P[un−1],

v1 = P[v0], vn = P[vn−1] for n = 1, 2, . . . .

From Lemmas 2.1, 2.2 and 2.4 it follows that un and vn, for n = 1, 2, . . ., are well
defined and are the lower and the upper solutions of problem (2.1) in D, respectively.

Using mathematical induction, from Lemma 2.3, we obtain

un(t, x) ≤ P[un](t, x) = un+1(t, x), n = 1, 2, . . .

and

vn+1(t, x) = P[vn](t, x) ≤ vn(t, x), n = 1, 2, . . . , for (t, x) ∈ D.

Therefore, the inequalities (2.4) and (2.5) hold.

Analogously, using mathematical induction, from Lemma 2.4 and Assumption A0

we obtain inequalities (2.6), too.

Using mathematical induction, we will prove the inequalities

0 ≤ vin(t, x)− uin(t, x) := wi
n(t, x) ≤ N0

[(L1 + L2)t]n

n!
, i ∈ S, (2.15)

n = 1, 2, . . . for (t, x) ∈ D.

It is obvious that inequality (2.15) holds for w0. Let inequality (2.15) hold for
wn. The functions f i(t, x, y, s), i ∈ S, fulfil Lipschitz condition (L) with respect to y
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and s, and condition (V ). Therefore (see property P3, p. 43), f i fulfil L∗-condition.
By (2.2), (2.3) and (2.15), there is

F i[wi
n+1](t, x) = f i(t, x, vn(t, x), vn)− f i(t, x, un(t, x), un) ≤

≤ L1‖wn(t, x)‖B(S) + L2‖wn‖0,t.

By the definition of the norm ‖ · ‖0,t in the space CS(D) and by inequality (2.15),

‖wn‖0,t ≤
[(L1 + L2)t]n

n!

so we finally obtain

F i[wi
n+1] ≤ N0

(L1 + L2)n+1tn

n!
, i ∈ S, for (t, x) ∈ D, (2.16)

and
wn+1(t, x) = 0 for (t, x) ∈ Γ. (2.17)

Let us consider the comparison system of equations

F i[M i
n+1] = N0

(L1 + L2)n+1tn

n!
, i ∈ S, for (t, x) ∈ D, (2.18)

with the initial-boundary condition

Mn+1(t, x) ≥ 0 for (t, x) ∈ Γ. (2.19)

It is obvious that the functions

M i
n+1(t, x) = N0

[(L1 + L2)t]n+1

(n+ 1)!
, i ∈ S, for (t, x) ∈ D

are the regular solutions of the comparison problem (2.18), (2.19) in D.
Applying the theorem on weak differential inequalities of parabolic type (J. Szar-

ski [111], Th. 64.1, pp. 195) to systems (2.16), (2.17) and (2.18), (2.19), we obtain

wi
n+1(t, x) ≤M i

n+1(t, x) = N0
[(L1 + L2)t]n+1

(n+ 1)!
, i ∈ S, for (t, x) ∈ D,

so the induction step is proved and so is inequality (2.15).
As a direct conclusion from formula (2.15) we obtain

lim
n→∞[vin(t, x)− uin(t, x)] = 0 uniformly in D, i ∈ S. (2.20)

The sequences of functions {un(t, x)} and {vn(t, x)} are monotonous and boun-
ded, and (2.20) holds, so there exists a continuous function U = U(t, x) in D such
that

lim
n→∞uin(t, x) = U i(t, x) and lim

n→∞ vin(t, x) = U i(t, x) uniformly in D, i ∈ S. (2.21)
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Since functions f i, i ∈ S, are monotonous (conditions (W ), (W+)), from (2.4) it
follows that the functions f i(t, x, un−1(t, x), un−1), i ∈ S, are uniformly bounded in
D with respect to n. Hence we conclude by Theorem 1.1 that all the functions un ∈
∈ C2+α

S (D) for n = 1, 2, . . . satisfy the Hölder condition with a constant independent
of n. Hence U ∈ C0+α

S (D).
If we now consider the system of equations

F i[zi](t, x) = f i(t, x, U(t, x), U) := Fi[U ](t, x), i ∈ S, for (t, x) ∈ D, (2.22)

with initial-boundary condition (1.2), then by Lemma 2.1 there is Fi[U ] ∈ C0+α
S (D).

Therefore, by virtue of Lemma 2.2 this problem has the unique regular solution z,
and z ∈ C2+α

S (D).
Let us now consider systems (2.2) and (2.22) together. Let us apply, to these

systems, J. Szarski’s theorem ( [111], Th. 51.1, pp. 147) on the continuous dependence
of the solution of the first problem on the initial-boundary values and on the right-
hand sides of systems. Since the functions f i, i ∈ S, satisfy the Lipschitz condition
(L), by (2.21), there is

lim
n→∞ f i(t, x, un(t, x), un) = f i(t, x, U(t, x), U) uniformly in D, i ∈ S.

Hence
lim
n→∞uin(t, x) = zi(t, x), i ∈ S. (2.23)

By virtue of (2.21) and (2.23),

z = z(t, x) = U(t, x) for (t, x) ∈ D

is the regular solution of problem (2.1) in D and z ∈ C2+α
S (D).

The uniqueness of the solution follows directly from J. Szarski’s uniqueness
criterion [116] (cp. B. Kraśnicka [50] and D. Jaruszewska-Walczak [42]). It also
follows directly from inequality (2.15). Because the assumptions of our theorem hold
only in the set K, then the uniqueness of a solution is ensured only with respect to
the given upper and lower solutions, and it does not rule out the existence of other
solutions outside the sector 〈u0, v0〉.

Thus the theorem is proved.

Remark 2.1. In the case of estimate (2.15) we say that the sequences of successive
approximations {un} and {vn} defined by (2.2) and (2.3) converge to the searched
solution z with the power speed.

Remark 2.2. The convergence of the method of direct iterations may also be derived
from the comparison theorem proved in J. Szarski’s monograph ([111], Th. 49.1,
p. 139). The comparison theorem allows us to prove that the sequences of direct
iterations {un} and {vn} are Cauchy sequences. Thus the monotonicity assumption
would not be required. However, this way we would not obtain estimate (2.7), which
we are going to use later one.
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From Theorem 1.2, as a particular case there follows the theorem on the existence
and uniqueness of a solution of the Fourier first problem for infinite system of
semilinear differential equations of parabolic type. This theorem is a generalization
of the well-known T. Kusano theorem ( [54], p. 113, Th. 2.1) to the case of infinite
system.

Theorem 2.2. Let us consider the first initial-boundary value problem for the infinite
system of semilinear parabolic differential equations of the form{

F i[zi](t, x) = gi(t, x, z(t, x)), i ∈ S, for (t, x) ∈ D,

z(t, x) = 0 for (t, x) ∈ Γ.
(2.24)

Let the following assumption be satisfied:

1◦ the operators F i, i ∈ S, are uniformly parabolic in D;

2◦ assumption A holds;

3◦ all the coefficients of the operators F i, i ∈ S, fulfil condition (Ha);

4◦ the functions gi(t, x, y), i ∈ S, are defined for (t, x, y) ∈ D × B(S), satisfy
assumptions (Hf ), Lipschitz condition (L) and condition (W ) with respect to y;

5◦ the above assumptions hold locally in the set K formed by u0 and v0.

Under these assumptions, problem (2.24) possesses the unique regular solution z
within the sector 〈u0, v0〉, and z ∈ C2+α

S (D).

2.2. CHAPLYGIN METHOD

We consider problem (2.1) in the domain D. To solve this problem, we now apply
another monotone iterative method, namely the Chaplygin method, in which we
use the linearization with respect to the nonfunctional argument y only. The main
difference between the Chaplygin method and the previous method of direct iteration
lies in the definitions of the approximation sequences. This method will require
stronger assumptions on the functions f i, i.e., the convexity assumption, but on the
other hand, the Chaplygin method yields sequences of successive approximations
converging to the solution searched for more quickly than the iterative sequences
{un} and {vn} constructed with the previous method, under the obvious assumption
that both iterative methods start from the same pair of a lower u0 and an upper v0
solution, whose existence we assume. This convergence rate is quadratic.

We assume that assumption A holds and the functions f i(t, x, y, s), i ∈ S, satisfy
conditions (Hf ), (L), (W ) and (V ) with respect to y and s in the set K.

We additionally assume that each function f i(t, x, y, s), i ∈ S, has the conti-
nuous derivatives Dyif i := ∂fi

∂yi := f iyi(t, x, y, s), i ∈ S which satisfy the following
assumptions:

(Hp) fulfil condition (Hf );

(Lp) satisfy the Lipschitz condition with respect to y and s;

(Wp) are increasing with respect to y and s.
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Theorem 2.3. Let assumptions A and (Ha), (Hf ), (Hp), (W ), (Wp), (L), (Lp), (V )
hold in the set K. Let us assume that the successive terms of approximation sequences
{ûn} and {v̂n} are defined as regular solutions in D of the following infinite systems
of linear parabolic differential equations

F i[ûin](t, x) = f i(t, x, ûn−1(t, x), ûn−1)+

+ f iyi(t, x, ûn−1(t, x), ûn−1) ·
[
ûin(t, x)− ûin−1(t, x)

]
,

(2.25)

F i[v̂in](t, x) = f i(t, x, v̂n−1(t, x), v̂n−1)+

+ f iyi(t, x, v̂n−1(t, x), v̂n−1) · [v̂in(t, x)− v̂in−1(t, x)], i ∈ S,
(2.26)

for n = 1, 2, . . . in D with homogeneous initial-boundary condition (1.2) and let
û0 = u0, v̂0 = v0.
Then:

1◦ {ûn}, {v̂n} are well defined and ûn, v̂n ∈ C2+α
S (D) for n = 1, 2, . . .;

2◦ the inequalities

u0(t.x) ≤ ûn(t, x) ≤ ûn+1(t, x) ≤ v̂n+1(t, x) ≤ v̂n(t, x) ≤ v0(t, x),

n = 1, 2, . . .
(2.27)

hold for (t, x) ∈ D, and the functions ûn and v̂n for n = 1, 2, . . ., are lower and
upper solutions of problem (2.1) in D, respectively;

3◦ the following inequalities

un(t, x) ≤ ûn(t, x) ≤ v̂n(t, x) ≤ vn(t, x), n = 1, 2, . . . , (2.28)

hold for (t, x) ∈ D, where the sequences {un} and {un} are defined by (2.2),
(2.3);

4◦ the following estimate

v̂in(t, x)− ûin(t, x) ≤ N0
[(L1 + L2)t]n

n!
, i ∈ S, n = 1, 2, . . . (2.29)

holds for (t, x) ∈ D, where N0 = ‖v0 − u0‖0 = const <∞;
5◦

lim
n→∞

[
v̂in(t, x)− ûin(t, x)

]
= 0 uniformly in D, i ∈ S;

6◦ the function
z = z(t, x) = lim

n→∞ ûn(t, x)

is the unique regular solution of problem (2.1) within the sector 〈u0, v0〉, and
z ∈ C2+α

S (D).
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Before we begin proving Theorem, we introduce the Nemytskǐi nonlinear opera-
tors and prove some lemmas.

Let β ∈ CS(D) be a sufficiently regular function. Let P̂ denote the operator

P̂ : β 	→ P̂[β] = γ,

where γ is the (supposedly unique) solution of the following problem



F i[γi](t, x) + f iyi(t, x, β(t, x), β) · γi(t, x) =
= f i(t, x, β(t, x), β) + f iyi(t, x, β(t, x), β) · βi(t, x), i ∈ S, for (t, x) ∈ D,

γ(t, x) = 0 for (t, x) ∈ Γ.
(2.30)

It is convenient to define two Nemytskǐi operators related to the functions f i(t, x, y, s)
and f iyi(t, x, y, s), i ∈ S, to examine them separately. They are: the operator C =
= {Ci}i∈S

C : β 	→ C[β] = η,

where

Ci[β](t, x) := f iyi(t, x, β(t, x), β) = ηi(t, x), i ∈ S (2.31)

and the operator F̂ = {F̂i}i∈S

F̂ : β 	→ F̂[β] = δ,

where

F̂i[β](t, x) := f i(t, x, β(t, x), β) + f iyi(t, x, β(t, x), β) · βi(t, x) =

= f i(t, x, β(t, x), β) + Ci[β](t, x) · βi(t, x) := δi(t, x), i ∈ S.
(2.32)

One may use the notation just introduced to write problem (2.30) simpler way.
The operator P̂ is the composition of the Nemytskǐi operators F̂ and C with

the operator

Ĝ : δ 	→ G[δ] = γ,

where γ is the (supposedly unique) solution of the linear problem

{
F i[γi](t, x) + Ci[β](t, x)γi(t, x) = F̂i[β](t, x), i ∈ S, in D,

γ(t, x) = 0 on Γ.
(2.33)

Hence

P̂ = Ĝ ◦ F̂ ◦C.

The following lemmas hold, too.
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Lemma 2.5. (i) If β ∈ C0+α
S (D) and the functions fyi = {f iyi}i∈S generating the

Nemytskǐi operator C satisfy conditions (Hp) and (Lp), then

C[β] = η ∈ C0+α
S (D).

(ii) If β ∈ C0+α
S (D) and the functions f = {f i}i∈S and fyi = {f iyi}i∈S generating

the Nemytskǐi operator F̂ satisfy conditions (Hf ), (L), (Hp) and (Lp), then

F̂[β] = δ ∈ C0+α
S (D).

Proof. It runs analogously to the proof of Lemma 2.1.
From Theorem 1.1 and Lemma 2.5, one may derive the following statements.

Lemma 2.6. If β ∈ C0+α
S (D), all the coefficients of the operators Li, i ∈ S, satisfy

assumption (Ha), then problem (2.27) has exactly one regular solution γ ∈ C2+α
S (D).

Corollary 2.3. There follows from Lemmas 2.5 and 2.6 that

P̂ : C0+α
S (D) # β 	→ P̂[β] = γ ∈ C2+α

S (D).

Lemma 2.7. Let all the assumptions of Lemmas 2.5 and 2.6 hold, β be an upper
solution and α be a lower solution of problem (2.1) in D, and conditions (W ), (Wp)
hold. Then

P̂[β](t, x) ≤ β(t, x) in D (2.34)

and γ = P̂[β] is an upper solution of problem (2.1) in D, and analogously

P̂[α](t, x) ≥ α(t, x) in D (2.35)

and η = P̂[α] is a lower solution of problem (2.1) in D.

Proof. If β is an upper solution, then due to (1.4) and the notation introduced,
there is

F i[βi](t, x) ≥ f i(t, x, β(t, x), β), i ∈ S, in D,

thus β satisfies the following system of inequalities

F i[z̃i](t, x) ≥ f i(t, x, β(t, x), β) + f iyi(t, x, β(t, x), β) ·
[
z̃i(t, x)− βi(t, x)

]
, (2.36)

i ∈ S, in D, and initial-boundary condition (1.2).
From definition (2.30) of the operator P̂ it follows that the function γ is a

solution of the system of equations

F i[˜̃z
i
](t, x) = f i(t, x, β(t, x), β) + f iyi(t, x, β(t, x), β) ·

[
˜̃z
i
(t, x)− βi(t, x)

]
(2.37)

i ∈ S, in D, with condition (1.2).
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Applying Theorem 1.2 to systems (2.36) and (2.37) we obtain

˜̃z
i
(t, x) ≤ z̃i(t, x), i ∈ S, in D,

so,
γ(t, x) = P̂[β](t, x) ≤ β(t, x) in D.

Since the functions f iyi(t, x, y, s) are increasing in variable yi (condition (Wp)),
then the functions f i(t, x, y, s) are convex in yi. Now (2.30), (2.34) and condition
(W ) give

F i
[
γi

]
(t, x) = f i(t, x, β(t, x), β) + f iyi(t, x, β(t, x), β) ·

[
γi(t, x)− βi(t, x)

]
≥

≥ f i(t, x, γ(t, x), β) ≥ f i(t, x, γ(t, x), γ), i ∈ S, in D,

and
γ(t, x) = 0 on Γ.

Thus from (1.4) and Corollary 2.2 it follows that the function γ is an upper solution
of problem (2.1) in D.

Proof of Theorem. One may prove statements 1◦–3◦ of Theorem using induction
argument. Using Assumption A it is easy to see that those statements are immediate
consequences of Lemmas 2.5–2.7 and Corollary 2.2.

Indeed, due to the definition of P̂, (2.30), (2.25) and (2.26), we obtain

û1 = P̂[û0], v̂1 = P̂[v̂0],

ûn = P̂[ûn−1], v̂n = P̂[v̂n−1], n = 1, 2, . . .

which means that the sequences {ûn} and {v̂n} are well defined.
Statement 4◦ follows immediately from the comparison of system (2.25) and

(2.26) with system (2.2) and (2.3) defining the sequences {un} and {vn}.
Indeed, due to (2.30) and condition (Wp), there is

F i[ûi1](t, x)−F i[ui1](t, x) = f i(t, x, u0(t, x), u0)+

+ f iyi(t, x, u0(t, x), u0) ·
[
ûi1(t, x)− ui0(t, x)

]
− f i(t, x, u0(t, x), u0) =

= f iyi(t, x, u0(t, x), u0) ·
[
ûi1(t, x)− ui0(t, x)

]
≥ 0, i ∈ S, in D,

and
û1(t, x)− u1(t, x) = 0 on Γ.

Consequently, by Lemma 1.1

û1(t, x) ≥ u1(t, x) in D.

Using (1.13) and (1.14), by mathematical induction, we obtain

un(t, x) ≤ ûn(t, x) ≤ v̂n(t, x) ≤ vn(t, x),

n = 1, 2, . . . for (t, x) ∈ D.
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The other statements, 5◦ and 6◦, follow immediately from inequality (2.29) and
Theorem 1.1.

Thus the theorem is proved.

Remark 2.3. This method has been introduced by S. A. Chaplygin in [36] for ordinary
differential equations and developed by N. Lusin [69]. Next, P. K. Zeragia [131–
133], W. Mlak [73] and S. Brzychczy [16, 17] have applied this method to parabolic
differential equations and J. P. Mysovskikh [75] to elliptic equations. The Chaplygin
method was generalized and extended in several directions and to a larger class of
equations and problems; has several versions in literature and appears also as Zeragia
method (see R. Rabczuk [96]). Turning of Chaplygin’s idea R. Bellman and R. Kalaba
[12] develope this method as method of quasilinearization and after the publication
of interesting several articles by V. Lakshmikantham et al. (see e.g. [60]) as the
generalized quasilinearization method. In this method the convergence rate is quadratic.

2.3. CERTAIN VARIANTS OF CHAPLYGIN METHOD

Now, we present the next two monotone iterative methods being certain variants
of the Chaplygin method, applicable to problem (2.1), whose right-hand sides are
semi-increasing functions (more precisely, they meet condition (K)). The last of
these methods consists in adding an appropriate linear term including the unknown
functions to the both sides of equations (2.1), in order to render the new sides
monotonous. Thus we obtain the system of equations

F i
k[z

i](t, x) + ki(t, x)zi(t, x) = f i(t, x, z(t, x), z) + ki(t, x)zi(t, x), i ∈ S,

whose right-hand sides are increasing with respect to the variable yi for each i, i ∈ S.
Setting

F i
k := Dt − Li + kiI,

we obtain the system of the following form

F i
k[z

i](t, x) = f i(t, x, z(t, x), z) + ki(t, x)zi(t, x), i ∈ S (2.38)

to which monotone iterative methods, including in particular the simple iteration
method, are applicable.

Theorem 2.4. Let assumptions A and (Ha), (Hf ), (W ), (L), (K), (V ) hold in the
set K and let the successive terms of approximation sequences {∗un} and {

∗
vn} be

defined as regular solutions in D of the following infinite systems of linear parabolic
differential equations

F i
k[

∗
uin](t, x) = f i(t, x,

∗
un−1 (t, x),

∗
un−1) + ki(t, x)

∗
u
i

n−1 (t, x), (2.39)

F i
k[

∗
vin](t, x) = f i(t, x,

∗
vn−1 (t, x),

∗
vn−1) + ki(t, x)

∗
v
i

n−1 (t, x), i ∈ S, (2.40)

for n = 1, 2, . . . in D with homogeneous initial-boundary condition (1.2) and let
∗
u0= u0,

∗
v0= v0.
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Then the statements of Theorem 2.3 hold, thus there exists the unique regular
solution z of problem (2.1) within the sector 〈u0, v0〉, and z ∈ C2+α

S (D).

Proof of Theorem. After some minute changes in technical details, the proof of this
theorem is identical to those of previous theorems, so we may omit here.

If condition (Kκ) holds, then we will define the approximation sequences as
follows.

Theorem 2.5. Let assumptions A and (Ha), (Hf ), (Kκ), (L), (V ) hold in the set K
and let the successive terms of the approximation sequences { ◦

un} and {
◦
vn} be defined

as regular solutions in D of the following infinite systems of linear parabolic equations

F i
κ[

◦
u
i

n](t, x) = f i(t, x,
◦
un−1 (t, x),

◦
un−1) + κ

◦
u
i

n−1 (t, x), (2.41)

F i
κ[

◦
v
i

n](t, x) = f i(t, x,
◦
vn−1 (t, x),

◦
vn−1) + κ

◦
v
i

n−1 (t, x), i ∈ S, (2.42)

for n = 1, 2, . . . in D with the condition (1.2), where

F i
κ := Dt − Li + κI.

Then there exists the unique regular solution z of problem (2.1)

z = z(t, x) = lim
n→infty

◦
un (t, x) = lim

n→infty

◦
vn (t, x)

within the sector 〈u0, v0〉, and z ∈ C2+α
S (D).

Remark 2.4. This variant of Chaplygin method has frequently been applied by several
authors (see e.g. H. Amann [2], O. Dickman and N.M. Temme [39], C.V. Pao [81],
D.H. Sattinger [106], J. Smoller [108]) to prove the existence of solution of nonlinear
parabolic and elliptic equations.

2.4. CERTAIN VARIANT OF MONOTONE ITERATIVE METHOD
(WAŻEWSKI METHOD)

Previously, the four monotone iterative methods have been used to examine the exi-
stence of a solution of problem (0.2), (1.2). Here we shall apply two other monotone
iterative methods. These methods make it again possible to build sequences of suc-
cessive approximations that converge to a solution sought for at a rate higher than
in the case of the iterative sequences of successive approximations defined by (2.2),
(2.3). In general, it consists in what follows: if we consider some nonlinear system of
equations whose right-hand sides are functions of the form f = f(t, x, s, s), then the
successive approximation sequence {ũn} arising from the iteration f(t, x, ũn, ũn−1)
is considered. Thus it is a pseudo-linearization of the nonlinear problem which has
been proposed by T. Ważewski [125,126]. Applying the above iterative method to the
parabolic problem here considered has been suggested by A. Pelczar [86]. Under ap-
propriate assumptions on the functions f , the sequence {ũn} tends to the searched-for
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exact solution at a rate not lower then that of the successive approximation sequence
{un} given by the iteration f(t, x, un, un).

We will define the successive terms of approximation sequences {ũn} and {ṽn} as
regular solutions of the following infinite systems of semilinear parabolic differential
equations

F i[ũin](t, x) = f i(t, x, ũn(t, x), ũn−1), (2.43)

F [ṽin](t, x) = f i(t, x, ṽn(t, x), ṽn−1), i ∈ S, (2.44)

for n = 1, 2, . . . in D, satisfying the homogeneous initial-boundary condition (1.2).

Theorem 2.6. Under assumptions A and (Ha), (Hf ), (W ), (W+), (L), (V ), if we
start approximation process from the same pair of a lower u0 and an upper v0 solution
of problem (2.1) in D, then the sequences {ũn} and {ṽn} given by (2.43), (2.44) and
(1.2) are well defined in C2+α

S (D), the functions ũn and ṽn, (n = 1, 2, . . .) are lower
and upper solutions of problem (2.1) in D, respectively, and these sequences converge
monotonously and uniformly to a solution z of problem (2.1) in D at a rate not lower
then that of the iterative sequences {un} and {vn} defined by (2.2), (2.3) and (1.2)
in D, namely the inequalities

u0(t, x) ≤ ũn(t, x) ≤ ũn+1(t, x) ≤ ṽn+1(t, x) ≤ ṽn(t, x) ≤ v0(t, x) (2.45)

and
un(t, x) ≤ ũn(t, x) ≤ ṽn(t, x) ≤ vn(t, x), (2.46)

hold for n = 1, 2, . . . and (t, x) ∈ D, and the function

z = z(t, x) = lim
n→∞ ũn(t, x) uniformly in D

is the unique regular solution of problem (2.1) within the sector 〈u0, v0〉, and z ∈
∈ C2+α

S (D).

Proof. From Theorem 2.2 it follows that the succesive terms of approximation
sequences ũn and ṽn are well defined and ũn, ṽn ∈ C2+α

S (D) for n = 1, 2, . . .
To proof of theorems we only show inequality (2.46), because the other state-

ments of theorem are obvious. To this we use the mathematical induction. Indeed,
for n = 1, by (2.45), (2.43), (2.2) and (W ) we obtain

F i[ũi1](t, x)−F i[ui1](t, x) = f i(t, x, ũ1(t, x), u0)− f i(t, x, u0(t, x), u0) ≥ 0,

i ∈ S, in D, with initial-boundary condition (1.2). Hence, by virtue of Lemma 1.1,
we obtain

ũ1(t, x) ≥ u1(t, x) in D.

If now
ũn−1(t, x) ≥ un−1(t, x) in D,
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then by (2.43), (2.45), (2.3) and (W ) we come to the inequalities

F i[ũin](t, x)−F i[uin](t, x) = f i(t, x, ũn(t, x), ũn−1)− f i(t, x, un−1(t, x), un−1) ≥
≥ f i(t, x, ũn−1(t, x), ũn−1)− f i(t, x, un−1(t, x), un−1) ≥ 0, i ∈ S, in D

with condition (1.2). Hence by Lemma 1.1 we obtain

ũn(t, x) ≥ un(t, x) in D.

Analogously
vn(t, x) ≥ ṽn(t, x) in D.

Therefore, by induction, inequality (2.46) is proved.

2.5. ANOTHER VARIANT OF MONOTONE ITERATIVE METHOD
(MLAK–OLECH METHOD)

Let us consider the infinite countable system of equations of the form (0.1), i.e.,

F i[zi](t, x) = f i(t, x, z), i ∈ N, in D (2.47)

with homogeneous initial-boundary condition (1.2).
Applying also the idea given by T. Ważewski [125, 126], we will define the

successive terms of the approximation sequences of problem (2.47), (1.2) as solutions
of following infinite countable systems of semilinear equations

F i
[
uin

]
(t, x) = f i(t, x, [un, un−1]

i]), (2.48)

F i
[
vin

]
(t, x) = f i(t, x, [vn, vn−1]

i), i ∈ N, (2.49)

for n = 1, 2, . . . in D, with initial-boundary condition (1.2).
We note, that this method of constructions of approximate sequences has been

applied to ordinary differential equations by W. Mlak and C. Olech [74].

Theorem 2.7. Let assumptions A and (Ha), (Hf ), (W ), (L), (V ) hold in the set
K∗. If we define the successive terms of approximation sequences {un} and {vn} as
regular solutions in D of systems (2.48), (2.49) with homogeneous initial-boundary
condition (1.2) and if u0 = u0, v0 = v0, then:

1◦ {un}, {vn} are well defined and un, vn ∈ C2+α
N

(D) for n = 1, 2, . . .;

2◦ the inequalities

u0(t, x) ≤ un(t, x) ≤ un+1(t, x) ≤ vn+1(t, x) ≤ vn(t, x) ≤ v0(t, x), (2.50)

n = 1, 2, . . . hold for (t, x) ∈ D;

3◦ the functions un and vn for n = 1, 2, . . . are lower and upper solutions of problem
(2.46), (1.2) in D, respectively;
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4◦ if we start two approximation processes from the same pair of a lower solution u0

and upper solution v0 of problem (2.47), (1.2) in D, then the sequences {un} and
{vn} converge monotonously and uniformly to a solution z of problem (2.47),
(1.2) in D at a rate not lower than that of the iterative sequences {un} and {vn}
defined by (2.2), (2.3) and (1.2) in D, i.e. the inequalities

un(t, x) ≤ un(t, x) ≤ vn(t, x) ≤ vn(t, x), (2.51)

n = 1, 2, . . . hold for (t, x) ∈ D;

5◦ the function z = z(t, x) = lim
n→∞un(t, x) uniformly in D is the unique regular

solution of problem (2.47), (1.2) within the sector 〈u0, v0〉 and z ∈ C2+α
N

(D).

Proof. Using the auxiliary lemmas we prove the theorem by induction. The proof
is simple and similar for the lower and upper solutions, so we present the proof for
lower solutions in the both cases only.

Since u0 ∈ C0+α
N

(D), then from Lemma 2.1 and the theorem on the existence
and uniqueness of the solution of the Fourier first initial-boundary value problem for
finite system of parabolic differential–functional equations (see S. Brzychczy [20]; [25],
Th. 3.1, pp. 26–27), it follows that there exists the regular unique solution u1 of
problem (2.48), (1.2) in D and u1 ∈ C2+α

N
(D). Analogously, if un−1 ∈ C2+α

N
(D),

then there exists the regular unique solution un of problem (2.49), (1.2) in D,
un ∈ C2+α

N
(D) and 1◦ is proved by induction.

Since u0 is a lower solution, it satisfies the inequalities

F i[ui0](t, x) ≤ f i(t, x, u0) = f i(t, x, [u0, u0]i), i ∈ N, in D,

with condition (1.2). The function u1 is a solution of the equation

F i[ui1](t, x) = f i(t, x, [u1, u0]i), i ∈ N, in D,

with condition (1.2). Therefore, by Lemma 1.1 we obtain

u0(t, x) ≤ u1(t, x) for (t, x) ∈ D. (2.52)

Moreover, by (2.52) and (W ) there is

F i[ui1](t, x) = f i(t, x, [u1, u0]i) ≤ f i(t, x, [u1, u1]i), i ∈ N, in D,

so the function u1 is a lower solution of problem (2.47), (1.2) in D.
Analogously, if un−1 is a lower solution, then by (1.3) we obtain

F i[uin−1](t, x) ≤ f i(t, x, un−1), i ∈ N, in D,

and un is a solution of system (2.48) with condition (1.2). Therefore, by Lemma 1.1
we obtain

un−1(t, x) ≤ un(t, x) for (t, x) ∈ D. (2.53)
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Moreover, by (2.53) and (W ) there is

F i[uin](t, x) = f i(t, x, [un, un−1]i) ≤ f i(t, x, [un, un]i) =

= f i (t, x, un) , i ∈ N, in D,

so the function un is a lower solution of problem (2.47), (1.2) in D.
By inequalities (2.52), (2.53) for lower solutions and the analogous inequalities

for upper solutions, using mathematical induction, we obtain inequality (2.50).
We now prove inequality (2.51) by induction. From (2.2), (2.53) for n = 1, (2.52)

and (W ) we obtain

F i[ui1](t, x)−F i[ui1](t, x) = f i(t, x, [u1, u0]i)− f i(t, x, [u0, u0]i) ≥ 0, i ∈ N, in D,

with condition (1.2). By virtue of Lemma 1.1 we obtain

u1(t, x) ≥ u1(t, x) in D. (2.54)

Let now
un−1(t, x) ≥ un−1(t, x) in D, (2.55)

then by (W ), because un−1 is a lower solution of problem (2.47), (1.2) in D, we
derive

F i[uin−1](t, x) ≤ f i(t, x, [un−1, un−1]i) ≤ f i(t, x, [un−1, un−1]i), i ∈ N, in D,

with the condition (1.2). Therefore, by (2.48) and Lemma 1.1 we have

un(t, x) ≥ un−1(t, x) in D. (2.56)

From (2.2), (2.48), (2.55), (2.56) we get

F i
[
uin

]
(t, x)−F i

[
uin

]
(t, x) = f i(t, x, [un, un−1]

i)− f i(t, x, [un, un−1]
i) ≥

≥ f i(t, x, [un, un−1]
i)− f i(t, x, [un, un−1]

i) ≥ 0, i ∈ N, in D,

with condition (1.2). By virtue of Lemma 1.1 we obtain

un(t, x) ≥ un(t, x) in D. (2.57)

From (2.50), (2.54), (2.57) we finally obtain inequality (2.51).
By (2.51) and (2.15) there is

vin(t, x)− uin(t, x) ≤ N0
(Lt)n

n!
, i ∈ N, n = 1, 2, . . . (2.58)

for (t, x) ∈ D. As a direct consequence, we obtain

lim
n→∞

[
vin(t, x)− uin(t, x)

]
= 0 uniformly in D, i ∈ N.
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By arguments similar to that used in section 2.1 we show that

z = z(t, x) := lim
n→∞un(t, x) uniformly in D, (2.59)

is the unique regular solution of problem (2.47), (1.2) within the sector 〈u0, v0〉.
Obviously, z ∈ C2+α

N
(D).

Remark 2.5. It is easy to see that the method used in the proof does not need the
assumption that the considered system is countable. Therefore, in Theorem 2.7 the
countable system may be replated by an arbitrary infinite system (which was observed
by W. Mlak and C. Olech [74], p. 110).

2.6. MONOTONE METHOD OF DIRECT ITERATIONS IN UNBOUNDED DOMAINS

Now we consider infinite system of equations (0.1) with initial-boundary condition
(0.3), i.e., the problem{

F i[zi](t, x) = f i(t, x, z) i ∈ S, for (t, x) ∈ Ω,

z(t, x) = φ(t, x) for (t, x) ∈ ΓΩ,
(2.60)

where Ω is an arbitrary open domain in the time-space R
m+1, unbounded with

respect to x, ΓΩ is the parabolic boundary of Ω, S is an arbitrary set of indices
(finite or infinite) and z stands for the mapping

z : S × Ω ∈ R, (i, t, x) 	→ zi(t, x),

composed of unknown functions zi.
Analogously as in section 1.1 we define the Banach space B(S) and denote by

CS(Ω) the Banach space of mappings

w : Ω → B(S), (t, x) 	→ w(t, x),

and
w(t, x) : S → R, i 	→ wi(t, x),

where the functions wi are continuous in Ω, with the finite norm

‖w‖0 := sup
{∣∣wi(t, x)

∣∣ : (t, x) ∈ Ω, i ∈ S
}
.

We will assume that the unbounded domain Ω has the following property (P)
(cp. J. Szarski [116,117]):

1◦ the projection of the interior of Ω on the t-axis is the interval (0, T ), where
0 < T <∞;

2◦ for every (t̃, x̃) ∈ Ω there is a positive number r such that the lower half
neighbourhood is contained in Ω, i.e.,{

(t, x) : (t− t̃)2 + ‖x− x̃‖2 < r2, t ≤ t̃
}
⊂ Ω.
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We will assume that the boundary ∂Ω of domain Ω consists of m-dimensional
(bounded or unbounded) domains Ω0 and ΩT lying on the hyperplanes t = 0 and
t = T , respectively, and a certain manifold σ (not necessarily connected) of class C2+α

∗
(i.e., it consists of a finite number of manifolds of class C2+α, not overlapping but
having common boundary points) lying in the zone 0 < t < T which is not tangent
to any hyperplane t = const. We will assume that the number T is sufficiently small.
Precisely, T ≤ h0 = const, where h0 is some positive constant depending on problem
(2.60) and defined by M. Krzyżański in [52] (cp. also P. Besala [15]).

We will denote ΓΩ := Ω0 ∪ σ, Ω := Ω ∪ ΓΩ. Moreover, we will denote by ΩR

the part of the domain Ω contained inside the cylindric surface ΣR described by the
equation

∑n
j=1 x

2
j = R2 and ΓR := ∂ΩR \ ΩT .

For a fixed τ , 0 < τ ≤ T , we define Ωτ := Ω ∩ {(t, x) : 0 < t ≤ τ, x ∈ R
m},

στ := σ ∩ {(t, x) : 0 < t ≤ τ, x ∈ R
m}, Γτ := Ω0 ∪ στ , Ω

τ
:= Ωτ ∪ Γτ . Obviously,

ΩT = Ω.
In the theory of parabolic equations it is well-known that initial-value problems

in unbounded spatial domains are considered with the growth condition |w(t, x)| ≤
≤M exp(K‖x‖2), otherwise these problems are ill posed (see A. Tychonoff [120] and
cp. E. DiBenedetto [38], pp. 237–238).

By E2(M,K; Ω) or shortly E2 we denote the class of functions w = w(t, x)
for which there exist positive constants M and K such that the following growth
condition is fulfilled

|w(t, x)| ≤M exp(K‖x‖2) for (t, x) ∈ Ω.

Denote by CS,E2(Ω) the space of mappings w ∈ CS(Ω) belonging to the class
E2(M,K; Ω) with the finite weighted norm

‖w‖E2
0 := sup

{∣∣wi(t, x)
∣∣ exp(−K‖x‖2) : (t, x) ∈ Ω, i ∈ S

}
. (2.61)

For w ∈ CS,E2(Ω) and for a fixed t, 0 ≤ t ≤ T , we define

‖w‖E2
0,t := sup

{∣∣wi
(
t̃, x̃

)∣∣ exp(−K‖x̃‖2) :
(
t̃, x̃

)
∈ Ω

t
, i ∈ S

}
. (2.62)

Analogously as in section 1.1 we define the Hölder space Ck+α(Ω), k = 0, 1, 2.
By Ck+α

S,E2
(Ω) we denote the spaces of mappings w ∈ Ck+α

S (Ω) belonging to the class
E2(M,K; Ω) with the finite weighted norm

‖w‖E2
k+α := sup

{∣∣wi
∣∣
k+α

exp(−K‖x‖2) : (t, x) ∈ Ω, i ∈ S
}
,

where K > 0 is a constant.
In the Banach space CS,E2(Ω) the partial order is defined by means of the

positive cone C+
S,E2

(Ω).
We will assume that the operators F i, i ∈ S, are uniformly parabolic in Ω.
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Assumption (H̃a). We will assume that the coefficients aijk = aijk(t, x), aijk = aikj,
bij = bij(t, x) (j, k = 1, . . . ,m, i ∈ S) of the operators Li, i ∈ S, are continuous
with respect to t and x in Ω, bounded and locally Hölder continuous with exponent
α (0 < α < 1) with respect to t and x in Ω and they Hölder norms are uniformly
bounded.

We will assume that the functions

f i : Ω× CS(Ω) → R, (t, x, s) 	→ f i(t, x, s), i ∈ S

are continuous and satisfy the following assumptions:

Assumption (H̃f ). The functions f i, i ∈ S, are locally Hölder continuous with
exponent α (0 < α < 1) with respect to t and x in Ω, and they Hölder norms are
uniformly bounded.

Assumption (Ef ). f i(t, x, 0) ∈ E2(Mf ,Kf ; Ω), i ∈ S.

Assumption (L̃E2). The functions f i(t, x, s), i ∈ S, fulfil the Lipschitz condition
with respect to s: for arbitrary s, s̃ ∈ CS,E2(Ω) there is∣∣f i(t, x, s)− f i(t, x, s̃)

∣∣ ≤ L1‖s− s̃‖E2
0 for (t, x) ∈ Ω,

where L1 > 0 is a constant.

Assumption (L̃
∗
E2

). We say that the functions f i(t, x, s), i ∈ S, fulfil the Lipschitz–
Volterra condition with respect to s if for arbitrary s, s̃ ∈ CS,E2(Ω) there is∣∣f i(t, x, s)− f i(t, x, s̃)

∣∣ ≤ L2‖s− s̃‖E2
0,t for (t, x) ∈ Ω,

where L2 > 0 is a constant.

Moreover, we will assume that

(H̃φ) φ ∈ C2+α
S (ΓΩ), where 0 < α < 1;

(Ẽφ) φ ∈ E2(Mφ,Kφ; ΓΩ).

Functions u, v ∈ Creg
S,E2

(Ω) satisfying the infinite systems of inequalities{
F i[ui](t, x) ≤ f i(t, x, u) i ∈ S, for (t, x) ∈ Ω,

u(t, x) ≤ φ(t, x) for (t, x) ∈ ΓΩ,
(2.63)

{
F i[vi](t, x) ≥ f i(t, x, v) i ∈ S, for (t, x) ∈ Ω,

v(t, x) ≥ φ(t, x) for (t, x) ∈ ΓΩ

(2.64)

are called, respectively, a lower and an upper solution of problem (2.60) in Ω.

Assumption Ã. We assume that there exists at least one pair u0 and v0 of a lower
and an upper solution of problem (2.60) in Ω and u0, v0 ∈ C0+α

S (Ω)∩E2(M0,K0; Ω).
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Remark 2.6. If u and v are a lower and an upper solution of problem (2.60) in Ω,
respectively, and z is a regular solution of this problem and assumptions (W ), (L̃E2)
and (V ) holds, then by the Szarski theorem on differential-functional inequations for
infinite systems of parabolic type in an arbitrary domain (see [117] Theorem 1.2 and
Remark 1.6) there is

u(t, x) ≤ z(t, x) ≤ v(t, x) for (t, x) ∈ Ω (2.65)

and in particular there is

u0(t, x) ≤ z(t, x) ≤ v0(t, x) for (t, x) ∈ Ω. (2.66)

Assumption Ã0. Therefore, we will assume that there exists at least one ordered
pair of these functions u0, v0 ∈ C0+α

S (Ω) ∩ E2(M0,K0,Ω).

Let β ∈ CS(Ω) be a sufficiently regular function. Denote by P̃ the operator

P̃ : β 	→ P̃[β] = γ,

where γ is the (supposedly unique) solution of the initial-boundary value problem{
F i[γi](t, x) = f i(t, x, β) i ∈ S, for (t, x) ∈ Ω,

γ(t, x) = φ(t, x) for (t, x) ∈ ΓΩ.
(2.67)

The operator P̃ is the composition of the nonlinear Nemytskǐi operator F̃ =
= {F̃i}i∈S generated by the functions f i(t, x, s), i ∈ S, and defined for any β ∈ CS(Ω)
as follows

F̃i : β 	→ F̃i[β] = δi,

where
F̃i[β](t, x) := f i(t, x, β) = δi(t, x), i ∈ S, (2.68)

and the operator
G : δ 	→ G[δ] = γ,

where γ is the (supposedly unique) solution of the linear problem{
F i[γi](t, x) = δi(t, x) i ∈ S, for (t, x) ∈ Ω,

γ(t, x) = φ(t, x) for (t, x) ∈ ΓΩ.
(2.69)

Hence
P̃ = G ◦ F̃.

Lemma 2.8. If β ∈ C0+α
S,E2

(Ω) and the function f = {f i}i∈S generating the Nemytskǐi
operator, satisfies conditions (H̃f ), (Ef ) and (L̃E2), then

F̃ : C0+α
S,E2

(Ω) # β 	→ F̃[β] = δ ∈ C0+α
S,E2

(Ω).
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Proof. Using the same argument as in the proof of Lemma 2.3 we obtain that
δ ∈ C0+α

S (Ω) and by (Ef ) and (L̃E2) there is δ(t, x) ∈ E2(Mδ,Kδ; Ω).

Lemma 2.9. If assumptions (H̃a), (H̃f ), (Ef ), (H̃φ), (Eφ) and (L̃E2) hold, then the
operator P̃ is well defined for β ∈ C0+α

S,E2
(Ω), where T ≤ h0 and

P̃ : C0+α
S,E2

(D) # β 	→ γ = P̃[β] ∈ C2+α
S,E2

(Ω).

Proof. Observe that system (2.67) has the following property: the i-th equation
depends on the i-th unknown function only. This fact, Lemma 2.8 and assumptions
on the domain Ω imply that the M. Krzyżański [52,53] theorem on the existence and
uniqueness of solution for a linear parabolic problem in an unbounded domain holds.
Therefore, problem (2.67) has exactly one regular solution γ ∈ C2+α

S,E2
(Ω) provided

T ≤ h0 (where h0 is formerly defined).
Using the same arguments as in section 1.1 we will prove the following lemma.

Lemma 2.10. Let all the assumptions of Lemmas 2.8 and 2.9 hold, β be an upper
solution and α be a lower solution of problem (2.60) in Ω, α, β ∈ 〈u0, v0〉 and condition
(W ) hold. Then

α(t, x) ≤ P̃[β](t, x) ≤ β(t, x) in Ω (2.70)

and γ = P̃[β] is an upper solution of problem (2.60) in Ω, and analogously

α(t, x) ≤ P̃[α](t, x)) ≤ β(t, x) in Ω (2.71)

and η = P̃[α] is a lower solution of problem (2.60) in Ω.

Lemma 2.11. If the assumptions of Lemma 2.9 and condition (W ) hold, then the
operator P̃ is monotone increasing (isotone).

Proof. Of course, P̃ is monotone increasing, because F̃ is monotone increasing by
assumption (W ) and G is monotone increasing by the maximum principle.

Theorem 2.8. Let assumptions Ã and (H̃a), (H̃f ), (Ef ), (H̃φ), (Eφ), (L̃E2), (W ),
(L̃∗

E2
) hold in the set K̃

K̃ :=
{
(t, x, s) : (t, x) ∈ Ω, s ∈ 〈u0, v0〉

}
and now

〈u0, v0〉 :=
{
w ∈ CS(Ω): u0(t, x) ≤ w(t, x) ≤ v0(t, x) for (t, x) ∈ Ω

}
.

Consider the following infinite systems of linear equations:

F i[uin](t, x) = f i(t, x, un−1), (2.72)

F i[vin](t, x) = f i(t, x, vn−1) i ∈ S, for (t, x) ∈ Ω, (2.73)

for n = 1, 2, . . . with initial-boundary condition (0.3) in Ω and let Ñ0 = ‖v0−u0‖E2
0 <

<∞.
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Then:

1◦ there exist regular unique solutions un and vn (n = 1, 2, . . . ) of systems (2.72)
and (2.73) with boundary condition (0.3) in Ω and un, vn ∈ C2+α

S,E2
(Ω);

2◦ the inequalities

u0(t, x) ≤ un(t, x) ≤ un+1(t, x) ≤ vn+1(t, x) ≤ vn(t, x) ≤ v0(t, x),

n = 1, 2, . . .
(2.74)

hold for (t, x) ∈ Ω;

3◦ the functions un and vn (n = 1, 2, . . . ) are lower and upper solution of problem
(2.60) in Ω, respectively;

4◦ the following estimate

wi
n(t, x) ≤ Ñ0

(Lt)n

n!
, i ∈ S, n = 1, 2, . . . , for (t, x) ∈ Ω, (2.75)

holds, where

wi
n(t, x) := vin(t, x)− uin(t, x) ≥ 0 i ∈ S, in Ω;

5◦ lim
n→∞[vin(t, x)− uin(t, x)] = 0 almost uniformly in Ω, i ∈ S;

6◦ the function
z = z(t, x) = lim

n→∞un(t, x)

is the unique regular solution of problem (2.60) within the sector 〈u0, v0〉, and
z ∈ C2+α

S,E2
(Ω).

Proof. Starting from the lower solution u0 and the upper solution v0 of problem
(2.60), we define by induction the successive terms of the iteration sequences {un},
{vn} as solutions of systems of linear equations (2.72), (2.73) with boundary condi-
tions (0.3) in Ω, or shortly

u1 = P̃[u0], un = P̃[un−1],

v1 = P̃[v0], vn = P̃[vn−1] for n = 1, 2, . . .

From Lemmas 2.8, 2.9 and 2.10 it follows that un and vn, for n = 1, 2, . . . exist,
un, vn ∈ C2+α

S,E2
(Ω) and are the lower and the upper solution of problem (2.60) in Ω,

respectively.
By induction, from Lemma 2.10, we derive

un−1(t, x) ≤ P̃[un−1](t, x) = un(t, x),

vn(t, x) = P̃[vn−1](t, x) ≤ vn−1(t, x), n = 1, 2, . . . , for (t, x) ∈ Ω.

Therefore, inequalities (2.74) hold.
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From (2.74) and Assumption Ã it follows that un, vn ∈ E2(M0, N0; Ω) for n =
= 1, 2, . . .

We now show by induction that (2.75) hold. It is obvious that (2.75) holds for w0.
Suppose it holds for wn. Since the functions f i (i ∈ S) satisfy the Lipschitz–Volterra
condition (L̃∗

E2
), by (2.72)–(2.75) we obtain

F i[wi
n+1](t, x) = f i(t, x, vn)− f i(t, x, un) ≤ L‖wn‖E2

0,t .

By the definition of the norm ‖ · ‖E2
0,t and by (2.75) we obtain

‖wn‖E2
0,t ≤ Ñ0

(Lt)n

n!
,

so we finally obtain

F i[wi
n+1](t, x) ≤ Ñ0

Ln+1tn

n!
, i ∈ S, for (t, x) ∈ Ω (2.76)

and
wn+1(t, x) = 0 for (t, x) ∈ Γ. (2.77)

Consider the comparison system

F i[M i
n+1](t, x) = Ñ0

Ln+1tn

n!
, i ∈ S, for (t, x) ∈ Ω, (2.78)

with the boundary condition

M i
n+1(t, x) ≥ 0 for (t, x) ∈ Γ. (2.79)

It is obvious that the functions

M i
n+1(t, x) = Ñ0

(Lt)n+1

(n+ 1)!
, i ∈ S,

are regular solutions of (2.78), (2.79) in Ω.
Applying the theorem on weak differential inequalities of parabolic type in an

unbounded domain (see P. Bessala [15]) to systems (2.76) and (2.78) we get

wi
n+1(t, x) ≤M i

n+1(t, x) = Ñ0
(Lt)n+1

(n+ 1)!
, i ∈ S, for (t, x) ∈ Ω, (2.80)

so the induction step is proved by inequality (2.75).
As a direct consequence of (2.75) we obtain

lim
n→∞[vin(t, x)− uin(t, x)] = 0 almost uniformly in Ω, i ∈ S. (2.81)

The iteration sequences {un} and {vn} are monotone and bounded, and (2.81)
holds, so there is a continuous function U = U(t, x) in Ω such that

lim
n→∞uin(t, x) = U i(t, x), lim

n→∞ vin(t, x) = U i(t, x) (2.82)

almost uniformly in Ω, i ∈ S, and this function satisfies boundary condition (0.3).
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To prove that the function U(t, x) defined by (2.82) is the regular solution of
system (0.1) in Ω it is enough to show that it fulfils (0.1) in any compact set contained
in Ω.

Consequently, because of the definition of ΩR, we only need to prove that it is
a regular solution in ΩR for any R > 0 (cp. M. Nowotarska [79]).

Since the functions f i, i ∈ S, are monotone (condition (W)) and from (2.74)
it follows that the functions f i(t, x, un−1), i ∈ S, are uniformly bounded in Ω with
respect to n.

On the basis of Pogorzelski’s results (see [91]; [92], pp. 140–160) concerning the
properties of weak singular integrals, by means of which the solution of the linear
system of equations is expressed

F i[uin](t, x) = f i(t, x, un−1), i ∈ S, for (t, x) ∈ ΩR, (2.83)

we conclude that the function un(t, x) satisfies locally the Lipschitz condition with
respect to x, with a constant independent on n. Hence by (2.82), we conclude that
the boundary function U(t, x) satisfies locally the Lipschitz condition with respect
to variable x.

If we now take the system of equations

F i[zi](t, x) = f i(t, x, U), i ∈ S, for (t, x) ∈ ΩR, (2.84)

with the initial-boundary condition

z(t, x) = U(t, x) for (t, x) ∈ ΓR, (2.85)

then the last property of U(t, x) together with conditions (Hf ) and (L), implies that
the right-hand sides of system (2.84) are continuous with respect to t, x in ΩR and
locally Hölder continuous with respect to x.

Hence, by Lemma 2.9, there exists the unique regular solution z of problem
(2.84), (2.85) in ΩR and z ∈ C2+α

S (ΩR).
On the other hand, using (2.82), we conclude that the right-hand sides of (2.83)

converge uniformly in ΩR to the right-hand sides of (2.84),

lim
n→∞ f i(t, x, un) = f i(t, x, U) uniformly in ΩR, i ∈ S. (2.86)

Moreover, the boundary values of un(t, x) converge uniformly on ΓR to the respective
values of U(t, x). Hence, using the theorem on the continuous dependence of the
solution on the right-hand sides of the system and on the initial-boundary conditions
(see J. Szarski [111], Th. 51.1, p. 147) to systems (2.83) and (2.84), we obtain

lim
n→∞uin(t, x) = zi(t, x) uniformly in ΩR, i ∈ S. (2.87)

By (2.82) and (2.87), there is

z = z(t, x) = U(t, x) in ΩR
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for an arbitrary R, which means that

z = z(t, x) = U(t, x) for (t, x) ∈ Ω,

i.e., z is the regular solution of problem (2.60) within the sector 〈u0, v0〉, and z ∈
∈ C2+α

S,E2
(Ω).

Moreover, by (2.74) and Lemma 2.9, there is z ∈ E2(M,K; Ω), where M =
= M(M0,Mf ,Mφ) and K = K(K0,Kf ,Kφ).

The uniqueness of the solution of this problem follows directly from the uniqu-
eness criterion of Szarski [116] (cp. [50]), which ends the proof.
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CHAPTER 3. REMARKS ON MONOTONE ITERATIVE METHODS

3.1. SOME REMARKS IN CONNECTION WITH APPLICATIONS
OF NUMERICAL METHODS

For certain numerical methods (cp. M. Malec [71]) it is essential that the derivatives
Dtw

i(i ∈ S) of the functions w = {wi}i∈S searched for exist and are continuous not
only for t ∈ (0, T ), but also for t ∈ [0, T ). It is so, as this fact is used to construct
appropriate difference schemes and to prove the consistency and convergence of the
numerical method used. Thus, the assumption that a solution of problem (0.1), (0.2)
is a C2+α

S (D) — function is not sufficient. One has to consider functions continuous in
D, with continuous derivatives Dtw

i, Dxj
wi and D2

xjxk
wi (j, k = 1, . . . ,m; i ∈ S) in

D. This means one has to consider the Hölder spaces Hk+α, k+α
2 (D) in Ladyženskaja’s

sense (see O. A. Ladyženskaja et al. [57], pp. 7–8).

Definition 3.1. The Hölder space H l, l
2 (D) := Hk+α, k+α

2 (D) (k = 0, 1, 2, 0 <

< α < 1, l = k + α) is the space of continuous functions h in D whose all de-
rivatives Dr

tDs
xh(t, x) (0 ≤ 2r+ s ≤ k) exist and are Hölder continuous with exponent

α (0 < α < 1) in D, with the finite norm

|h|k+α := 〈h〉k+α +
k∑
l=1

〈h〉l,

where the components 〈h〉k+α and 〈h〉l are defined as in [ibid.].

Definition 3.2. By H l, l
2

S (D) := H
k+α, k+α

2
S (D) we denote the Banach space of map-

pings w such that wi ∈ H l, l
2 (D) for all i ∈ S, with the finite norm

‖w‖k+α := sup{
∣∣wi

∣∣k+α : i ∈ S}.

Remark 3.1. We have

Hα,α
2 (D) = C0+α(D),

H2+α,1+ α
2 (D) ⊂ C2+α(D),

where Ck+α(D) are the Hölder spaces in Friedman’s sense (see A. Friedman [41,
pp. 61–63] and Definition 1.3).

Definition 3.3. A mapping w = {wi}i∈S ∈ CS(D) will be called *-regular in D if
the functions wi, i ∈ S, have continuous derivatives Dtw

i, Dxj
wi and D2

xjxk
wi in D

for j, k = 1, . . . ,m.

We will consider system (0.1) with initial-boundary condition (0.3), i.e., the
problem {

F i[zi](t, x) = f i(t, x, z) for (t, x) ∈ D, i ∈ S

z(t, x) = φ(t, x) for (t, x) ∈ Γ.
(3.1)
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We assume that ∂G ∈ H2+α and

Assumption (Ha). All the coefficients aijk = aijk(t, x), aijk = aikj and b
i
j = bij(t, x)

(j, k = 1, . . . ,m, i ∈ S) of the operators Li, i ∈ S, are locally Hölder continuous with
exponent α (0 < α < 1) with respect to t and x in D and they Hölder norms are
uniformly bounded.

Assumption (Hf ). f(·, ·, s) ∈ H
α,α

2
S (D), where 0 < α < 1.

Assumption (Hφ). φ ∈ H
2+α,1+ α

2
S (Γ), where 0 < α < 1.

AssumptionA.We will assume that there exists at least one pair u0 and v0 of a lower
and an upper solution of problem (3.1) in D, respectively, and u0, v0 ∈ H

2+α,1+ α
2

S (D).
Using a similar argument as in section 2.1 we will prove the following auxiliary

lemmas and main theorem.

Lemma 3.1. If β ∈ H
α,α

2
S (D) and the function f = {f i}i∈S generating the Nemytskǐi

operator F = {Fi}i∈S
F : β 	→ F[β] = δ,

where
F
i
[β](t, x) := f i(t, x, β) = δ

i
(t, x), i ∈ S, (3.2)

satisfies assumptions (Hf ) and (L), then

F[β] = δ ∈ H
α,α

2
S (D).

Lemma 3.2. If assumptions (Ha), (Hg), (Hφ) hold and ∂G ∈ H2+α, then the
problem {

F i[zi](t, x) = gi(t, x) i ∈ S, for (t, x) ∈ D,

z(t, x) = φ(t, x) for (t, x) ∈ Γ
(3.3)

has the unique *-regular solution γ, and γ ∈ H
2+α,1+ α

2
S (D).

(For a proof, see [57], Th. 5.2, p. 320).

Corollary 3.1. If the assumptions of Lemmas 3.1 and 3.2 hold, then the operator P
defined analogously as in section 2.1 has the following property:

P : Hα,α
2

S (D) # β 	→ P[β] = γ ∈ H
2+α,1+ α

2
S (D). (3.4)

The following theorem is true.

Theorem 3.1. Let assumptions A and (Ha), (Hf ), (Hφ), (W ), (L), (V ) hold in
the set K∗. If the successive terms of the approximation sequences {un} and {vn}
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are defined as *-regular solutions of the following infinite systems of linear parabolic
differential equations{

F i[uin](t, x) = f i(t, x, un−1), i ∈ S, for (t, x) ∈ D,

un(t, x) = φ(t, x) for (t, x) ∈ Γ
(3.5)

and {
F i[vin](t, x) = f i(t, x, vn−1), i ∈ S, for (t, x) ∈ D,

vn(t, x) = φ(t, x) for (t, x) ∈ Γ,
(3.6)

i.e., if we use the method of direct iterations, then there exists the unique *-regular
solution z of problem (3.1) within the sector 〈u0, v0〉, and z ∈ H

2+α,1+ α
2

S (D).

3.2. ON CONSTRUCTIONS OF UPPER AND LOWER SOLUTIONS;
POSITIVE SOLUTIONS

3.2.1. Fundamental example

A basic difficulty in applying monotone iterative methods lies in the construction
of a pair of a lower and an upper solution of the given problem. The otherwise
ample literature on monotone methods describes no general way to build such func-
tions. However, the right-hand sides of the equations discussed, i.e., the functions
f i(t, x, s), should be bounded in the domain considered. A lower and an upper solu-
tion can be easily built by means of the Green function for the equation and domain
considered.

Let functions f i(t, x, s), i ∈ S, and operators F i fulfil the suitable assumptions
in the set D×CS(D). Using the fundamental solutions Γi(t, x; τ, ξ) for the equations
F i[zi](t, x) = 0, i ∈ S, we define the Green functions Gi(t, x; τ, ξ) for the domain D

(see O. A. Ladyżenskaja et al. [57], pp. 412, 413 and S. Brzychczy [25], pp. 32–33)
and consider the functions

U i
0(t, x) = mi(2

√
π)−m

t∫
0

∫
G

Gi(t, x; τ, ξ)dτdξ, (3.7)

V i
0 (t, x) = Mi(2

√
π)−m

t∫
0

∫
G

Gi(t, x; τ, ξ)dτdξ, i ∈ S, (3.8)

where
mi = inf

D×CS(D)
f i(t, x, s), Mi = sup

D×CS(D)

f i(t, x, s).

These functions fulfil homogeneous initial-boundary condition (1.2) and the equations

F i[U i
0](t, x) = mi,

F i[V i
0 ](t, x) = Mi, i ∈ S, for (t, x) ∈ D.
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Therefore, the following differential inequalities hold

F i[U i
0](t, x)− f i(t, x, U0) = mi − f i(t, x, U0) ≤ 0,

F i[V i
0 ](t, x)− f i(t, x, V0) = Mi − f i(t, x, V0) ≥ 0, i ∈ S,

for (t, x) ∈ D. Consequently, the functions U0 and V0 are the lower and the upper
solution of problem (0.1), (1.2) in D, respectively, and one may use them as zero-
approximations.

3.2.2. Other examples

In papers K. Y. K. Ng [118] and K. K. Tam [119] have given the construction of a
lower and an upper solution of a flow past a non-uniformly heated plate and for a
problem in combustion theory. The construction procedure itself is interesting and
instructive.

These authors consider the problem of forced heat convection over a heated flat
plate and apply the monotone iterative method to solve it. A lower and an upper
solution are constructed by applying the so-called modified Oseen linearization or
by use of a comparison theorem. In both these papers, while constructing a lower
and an upper solution, the knowledge of the processes described and interpretation
of coefficients appearing in the equations play a crucial role.

In the second paper basing on results of D.H. Sattinger [107], the author describe
a procedure which makes use of the comparison principle (Theorem 1.2) in the
construction of a lower and an upper solution of the following semilinear equation
which governs the combustion of a material

∂Θ
∂t

= ∆Θ + δ exp
(

αΘ
α+ Θ

)
in D, (3.9)

Θ(0, x) = h(x) on G,

Θ(t, x) = 0 on σ,

where Θ = Θ(t, x) is the temperature, δ and α are positive parameters and D =
= (0, T ]×G, where G is a long cylinder or a sphere.

In the case of ∆ = ∂2

∂x2 and 0 < x < 1, the author seeks steady-state lower and
upper solutions in the form

u0(x) = C sin2 πx,

v0(x) = 4kx(1− x),

where C, k > 0 are constants to be determined.
The solution Θ of the problem considered is such that

C sin2 πx ≤ lim
t→+∞Θ(t, x) ≤ 4kx(1− x)

for some constants C and k.
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3.2.3. Positive solutions

For the purposes of applications, an important task is to find positive (nonnegative)
solutions of the problem considered. Namely, in many physical problems only positive
solutions are of interested. In general, this is a difficult question. The papers of H.
Amann [1] and C. V. Pao [81,83], V. Lakshmikantham and Z. Drici [59] play a crucial
role in this field.

The following theorem may be directly proved.

Theorem 3.2. Let we consider problem (0.1), (0.4), (0.5) and (0.6) in D, i.e.:

F i[zi](t, x) = f i(t, x, z), i ∈ S, for (t, x) ∈ D,

z(0, x) = φ0(x) for x ∈ G,

z(t, x) = ψ(t, x) for (t, x) ∈ σ

(3.10)

and

1◦ there exists a positive upper solution v0 of this problem in D;

2◦ the following inequalities:

f i(t, x, 0) ≥ 0, i ∈ S in D, φ0(x) ≥ 0 on G, ψ(t, x) ≥ 0 on σ (3.11)

hold and not all the three functions are identically zero;

3◦ the functions f i(t, x, s), i ∈ S, satisfy the condition (W ), (V ) and the left-hand
side Lipschitz condition (L) with respect to s for s ∈ 〈0, v0〉.

Then problem (3.10) has at last one positive solution z within the sector 〈0, v0〉.
Moreover, if f i(t, x, 0) = φ0(x) = ψ(t, x) = 0, then z = z(t, x) = 0 in D.

3.3. ESTIMATION OF CONVERGENCE RATES
FOR DIFFERENT ITERATIVE METHODS

Let {un} be a sequence of successive approximations which converges to a solution
z of the problem considered (0.2), (0.3):

z = z(t, x) = lim
n→∞un(t, x) for (t, x) ∈ D.

We shall say that the sequence {un} converge to the solution z with a geometrical
rate, if the following inequalities hold

‖un − z‖0 ≤ cqn, n = 1, 2, . . . , in D, (3.12)

where c = const > 0 and 0 < q < 1.
If

‖un − z‖0 ≤ c
Kn

n!
, n = 1, 2, . . . , in D, (3.13)

where c and K are nonnegative constants, then we say that {un} converges to z with
a power rate.

The convergence in this sense is essentially faster than the convegence with a
geometrical rate.
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We shall say that {un} converges to z with a Newton rate, if

‖un − z‖0 ≤ cδ2
n

, n = 1, 2, . . . , in D, (3.14)

where c = const > 0 and 0 < δ < 1. This convergence is essentially faster than the
previous one.

If the successive terms of sequences {un} and {vn} are lower and upper solutions
of problem (0.2), (0.3), defined respectively as solutions of systems (2.2) and (2.3),
then we have estimates

0 ≤ vin(t, x)− uin(t, x) ≤ N0
[(L1 + L2)t]n

n!
, n = 0, 1, 2, . . . , i ∈ S,

for (t, x) ∈ D,where N0 = ‖v0 − u0‖0 <∞.
Therefore, by (2.7) these sequence converge to the exact solution with a power

rate.
Analogously, by (2.46), the sequences {un} and {vn} defined as solutions of

systems (2.43) and (2.44), converge to z with at least power rate.
Almost the same we have for Chaplygin’s sequences {ûn} and {v̂n} defined as

solutions of equations (2.25) and (2.26). Estimate (2.28) proves that these sequences
converge with at least power rate.

W. Mlak [73] (see also P. K. Zeragia [133]) has applied Chaplygin’s method
for the Fourier first initial-boundary problem for the nonlinear parabolic differential
equation of the form

∂z

∂t
− ∂2z

∂x2
= f(t, x, z(t, x)) for (t, x) ∈ D := [0, T ]× [a, b],

z(t, x) = ψ(t, x) for (t, x) ∈ Γ.

He assumed that there existed a lower u0 and an upper v0 solutions and defined a
sequence of lower function {un} as regular solutions of the following linear equations

∂un
∂t

− ∂2un
∂x2

= f(t, x, un−1(t, x))+

+ fy(t, x, un−1(t, x)) · [un(t, x)− un−1(t, x)], n = 1, 2, . . . .

Next he studied the convergence of the sequence {un} to the exact solution of
this problem, assuming additionaly that the function f(t, x, y) is sufficiently regular
and the derivative fy(t, x, y) satisfies the Lipschitz condition with respect to y. In
particular, assuming that

sup
(t,x,y)∈K∗

|fy(t, x, y)| = c0 < +∞,

sup
(t,x,y)∈K∗

|fyy(t, x, y)| = H < +∞
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and fyy > 0 he proved the estimates

|un(t, x)− z(t, x)| ≤ 2C
22n , n = 1, 2, . . . , in D,

where
C =

1
2HTec0T

,

which is analogous to the one obtained by N. N. Lusin [69] for ordinary differential
equations.

This means that the convergence rate is quadratic and the sequence of successive
approximations converges uniformly to the unique solution with the Newton speed.

We cannot directly repeat the above results on the rate of convergence of suc-
cessive approximations in the case of a differential-functional equation of parabolic
type of the form

∂z

∂t
− ∂2z

∂x2
= f(t, x, z(t, x), z). (3.15)

It is so because even in the simple case considered by us the algorithms have not
guaranteed convergence with this rate. To prove results similar to the above ones we
need stronger assumptions about the regularity of function f(t, x, y, s), or have to
use the full quasilineralization of equation (3.15) with respect to the both arguments
y and s, simultaneously. This means that we need to define the sequence of succes-
sive approximations {u∗n} as solutions of the following linear differential-functional
equations

∂u∗n
∂t

− ∂2u∗n(t, x)
∂x2

= f
(
t, x, u∗n−1(t, x), u∗n−1

)
+

+ fy
(
t, x, u∗n−1, u

∗
n−1

)
·
[
u∗n(t, x)− u∗n−1(t, x)

]
+

+ fs
(
t, x, u∗n−1(t, x), u∗n−1

)
·
[
u∗n − u∗n−1

]
, n = 1, 2, . . . ,

(3.16)

where fs is the Fréchet derivative of a function f = f(t, x, y, s) with respect to the
functional argument s.

3.4. EXTENSIONS OF MONOTONE ITERATIVE METHODS
TO MORE GENERAL EQUATIONS

3.4.1. Weakly coupled systems

We have confined ourselves to studying weakly coupled systems in view of the results
of A. Pliś [88, 89] and the usefulness of such systems in numerous applications. In
the case of strongly coupled systems, the situation gets intrinsically complex.

There is the well-known fundamental example, given by A. Pliś, of the nonuni-
queness of the Cauchy problem for the strongly coupled system of linear first order
partial differential equations of the form

∂uj
∂x

=
2∑

k=1

ajk(x, y)
∂uk
∂y

for (x, y) ∈ R
2 (j = 1, 2), (3.17)
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with the initial condition

uj(0, y) = 0 for y ∈ R (j = 1, 2), (3.18)

where the coefficients ajk (j, k = 1, 2) are defined in the whole plane R
2 and ajk ∈

∈ C∞(R2). Problem (3.17), (3.18) does not have a unique solution of the class
C∞(R2). Precisely, this problem has a solution of the class C∞(R2), vanishing
together with all its derivatives for x = 0, and not vanishing identically in any
neighbourbood of the point (0, 0).

3.4.2. Examples of finite and infinite important systems

1. Let us consider the differential equations of heat conduction in homogeneous
isotropic solids (see H. S. Carslaw and J. C. Jaeger [35], pp. 1–49)

cρ
∂u

∂t
−

3∑
j=1

∂

∂xj

(
κ
∂u

∂xj

)
= f(t, x, u), (3.19)

where x = (x1, x2, x3), u = u(t, x) is the temperature, ρ and c are the average density
and the specific heat of the material, κ is the thermal conductivity coefficient and f

is the reaction function. If the thermal properties of solid depend on the temperature
(as in the solidification of castings, cp. S. Brzychczy et al. [19]), then the situation is
more complicated, since the equation becomes nonlinear. In particular, if κ = κ(u),
then we obtain the following equation

cρ
∂u

∂t
− κ(u)∆u− dκ

du

3∑
j=1

(
∂u

∂xj

)2

= f(t, x, u). (3.20)

In the case of anisotropic solids (crystals, laminated materials such as transformer
cores), if the thermal conductivity coefficients depend on the temperature, i.e., κjk =
= κjk(u), then we obtain the quasilinear equation (with cubic anisotropy)

cρ
∂u

∂t
−

3∑
j,k=1

κjk(u)
∂2u

∂xj∂xk
−

3∑
j,k=1

dκjk
du

(
∂u

∂xj

) (
∂u

∂xk

)
= f(t, x, u). (3.21)

2. As a particular case of system (0.2), when S is a finite set of indices with r elements,
we may consider the classic system of reaction-diffusion-convection equations with
multicomponent diffusion, which can be writen in the following conventional form

Dtz
i(t, x)−∇ ◦

(
ai(t, x)∇zi(t, x)

)
+−→v i(t, x) ◦ ∇zi(t, x) = f i (t, x, z(t, x)) , (3.22)

where i = 1, . . . , r, z = (z1, . . . , zr), ∇ := Dx := (Dx1 , . . . ,Dxm
) is the gradient

operator, −→v i := −→v i(t, x) =
(
vi1(t, x), . . . , vim(t, x)

)
is the drift vector, ai = (aijk(t, x)),

j, k = 1, . . . ,m, are coefficients of multicomponent diffusion and

−→v i(t, x) ◦ ∇zi(t, x) := vi1(t, x)Dx1z
i(t, x) + · · ·+ vim(t, x)Dxmz

i(t, x).
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3. In numerous papers [14,61,127–129], D. Wrzosek with Ph. Bénilan and Ph. Lau-
rençot studied the phenomenon of coagulation and fragmentation of clusters. The
discrete coagulation-fragmentation models with diffusion are expressed in terms of
the infinite countable systems of reaction-diffusion equations of the form

Dtz
i(t, x)− di∆zi(t, x) = f i6(t, x, z), i ∈ N, (3.23)

for (t, x) ∈ (0, T ) × G = D, G ⊂ R
m is a bounded domain with sufficiently smooth

boundary ∂G, with the initial condition

z(0, x) = U0(x) ≥ 0 on G, (3.24)

and the boundary condition of the Neumann type

∂zi

∂ν
= 0, i ∈ N, on σ, (3.25)

where the functions f i6 are given by (0.7), the coagulation aik and fragmentation
bik rates are nonnegative constants and the diffusion coefficients di are positive for
i, k = 1, 2, . . ..

4. M. Lachowicz and D. Wrzosek in interesting article [55] proposes a new nonlocal
model of cluster coagulation and fragmentation. This model is expressed in terms of
the infinite countable system of semilinear integro-differential parabolic equations of
the form

Dtz
i(t, x)−Ai[zi](t, x) = f i7(t, x, z), i ∈ N, (3.26)

in (0,∞) × G = D, with initial and boundary conditions (3.24), (3.25) where the
diffusion operators

Ai[zi](t, x) :=
m∑

k,l=1

Dxk

(
dikl(x)Dxl

zi(t, x)
)
, i ∈ N

are uniformly elliptic in D, the functions f i7 are given by (0.8) (these are nonlocal
coagulation-fragmentation operators), and the diffusion coefficients dikl are positive.

To solve the problems considered for systems (3.23) and (3.26) the authors apply
the truncation method.

5. The more general reaction-diffusion operators and suitable infinite uncountable
systems of equations of the form

Dtz(t, x)−∇ ◦
(
a(t, x)∇z(t, x) +

−→
b (t, x)z(t, x)

)
+−→c (t, x) ◦ ∇z(t, x)+

+ d(t, x)z(t, x) = [Dtz]coag + [Dtz]frag + h,
(3.27)

where the diffusion matrix a, the drift vectors
−→
b and −→c , and the absorption rate d are

sufficiently smooth functions, has been studied by H. Amann in [3] and the existence
and uniqueness has been proved in some class of volume preserving solutions.
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3.4.3. Extensions of monotone iterative methods to more general equations

The theorems and methods given in this paper can be extended to more general
infinite systems of quasilinear parabolic differential–functional equations with a full
functional dependence of the right-hand sides of the systems on the unknown function
z and on its spatial derivatives Dxz, of the form

Dtz
i(t, x)−

m∑
j,k=1

aijk
(
t, x, zi(t, x),Dxz

i(t, x)
)
D2
xjxk

zi(t, x) =

= f i
(
t, x, z(t, x),Dxz

i(t, x), z,Dxz
i
)
, i ∈ S,

(3.28)

with classic or nonlocal initial-boundary conditions. The remarks and algorithms
given by W. Mlak [73], T. Kusano [54], H. Leszczyński [63,64] and A. Bychowska [32]
for finite systems of similar equations may by used to construct iterative sequences
for infinite systems.

The generalized quasilinearization method for infinite systems of semilinear
differential-functional equations of parabolic type of the form (0.2) we will study
in a forthcoming paper.

3.5. SOME REMARKS ON THE TRUNCATION METHOD7)

Let us consider the infinite countable system of semilinear parabolic equations of the
reaction-diffusion-convection type of the form (0.1), i.e.,

F i[zi](t, x) = f i(t, x, z) := f i(t, x, z1, z2, . . .), i ∈ N, for (t, x) ∈ D, (3.29)

where the operators F i, i ∈ N, are uniformly parabolic in D and the functions
f i(t, x, s), i ∈ N, where

f i : D × CN(D) → R, (t, x, s) 	→ f i(t, x, s), i ∈ N,

are functionals of the unknown function z = {zi}i∈N = (z1, z2, . . .).
For system (3.29) we will consider the initial-boundary condition (0.3), i.e.,

z(t, x) = φ(t, x) for (t, x) ∈ Γ. (3.30)

We will study the solvability of problem (3.29), (3.30) in some real Banach space
B. This means that we will be interested in the existence of solutions z = z(t, x),
which are defined for (t, x) ∈ D and such that z(t, x) ∈ B, for each (t, x) ∈ D.

A solution z of the infinite countable system (3.29) is defined as a limit in
a Banach space B of sequence of successive approximations {zN}N=1,2,..., where

7) In this paper we give only some general remarks on the truncation method, however this
method we will study in a separate paper.
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zN = (z1
N , z

2
N , · · · , zNN ) is defined as a solution of a suitable finite system of N

equations (N is an arbitrary fixed natural number) of the following form

Fj [zjN ](t, x) = F j
N (t, x, zN ) := F j

N (t, x, z1
N , z

2
N , . . . , z

N
N ), j = 1, 2, . . . , N, (3.31)

for (t, x) ∈ D, with the initial-boundary condition

zjN (t, x) = φj(t, x), j = 1, 2, . . . , N, for (t, x) ∈ Γ. (3.32)

where ψ(t, x) = φ(t, x) for (t, x) ∈ Γ and the functions F j
N are defined in a special

way. Moreover, the remaining functions zN+1
N , zN+2

N , . . . will be defined as follows

zjN (t, x) := ψj(t, x), j = N + 1, N + 2, . . . , for (t, x) ∈ D, (3.33)

where ψi are functions defined also in a special way.
We adhere to the convention that every finite sequence zN =

(
z1
N , z

2
N , · · · , zNN

)
is treated as an infinite one

zN,ψ =
(
z1
N,ψ, z

2
N,ψ, · · · , zNN,ψ, ψN+1, ψN+2, · · ·

)
.

Now, we will study the methods of constructed an auxiliary finite system of
N equations. First, we present the method of substitution given by W. Mlak and
C. Olech [74]. This method has been applied as a method of integration of infinite
countable systems of ordinary differential equations.

If α is a lower solution of problem (3.29), (3.30) in D and

α(t, x) = φ(t, x) for (t, x) ∈ Γ,

then we construct the finite system of N equations by substituting

Fj [zjN,α](t, x) = f j
(
t, x, z1

N,α, z
2
N,α, . . . , z

N
N,α, α

N+1, αN+2, . . .
)

:=

:= F j
N,α

(
t, x, z1

N,α, z
2
N,α, . . . , z

j
N,α

)
, j = 1, 2, . . . , N, for (t, x) ∈ D,

(3.34)

with the initial-boundary condition (3.32) and we define the remaining functions

zjN,α(t, x) := αj(t, x), j = N + 1, N + 2, . . . , for (t, x) ∈ D. (3.35)

The sequence {zN,α} is defined as follows

zN,α =
(
z1
N,α, z

2
N,α, . . . , z

N
N,α, α

N+1, αN+2, . . .
)
.

Analogously, if β is an upper solution of problem (3.29), (3.30) in D and

β(t, x) = φ(t, x) for (t, x) ∈ Γ,
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then we construct the finite system of N equations by substituting

Fj [zjN,β ](t, x) = f j
(
t, x, z1

N,β , z
2
N,β , . . . , z

N
N,β , β

N+1, βN+2, . . .
)

:=

:= F j
N,β

(
t, x, z1

N,β , z
2
N,β , . . . , z

j
N,β

)
, j = 1, 2, . . . , N, for (t, x) ∈ D,

(3.36)

with initial-boundary condition (3.32), and we define

zjN,β(t, x) := βj(t, x), j = N + 1, N + 2, . . . , for (t, x) ∈ D. (3.37)

The suitable sequence {zN,β} is defined as follows

zN,β =
(
z1
N,β , z

2
N,β , . . . , z

N
N,β , β

N+1, βN+2, . . .
)
.

If u0 = u0(t, x) ≡ 0 in D is the lower solution of homogeneous problem (3.29),
(1.2) in D, then we construct the finite system of N equations in the following form

Fj [zjN,0](t, x) = f j
(
t, x, z1

N,0, z
2
N,0, . . . , z

N
N,0, 0, 0, . . .

)
:=

:= F j
N,0

(
t, x, z1

N,0, z
2
N,0, . . . , z

j
N,0

)
, j = 1, 2, . . . , N, for (t, x) ∈ D,

(3.38)

with the homogeneous initial-boundary condition

zjN,0(t, x) = 0, j = 1, 2, . . . , N, for (t, x) ∈ Γ (3.39)

and we define

zjN,0(t, x) = 0, j = N + 1, N + 2, . . . , for (t, x) ∈ D. (3.40)

The sequence {zN,0} is defined as follows

zN,0 =
(
z1
N,0, z

2
N,0, . . . , z

N
N,0, 0, 0, . . .

)
.

On the other hand several authors to solve infinite countable systems of ordinary
and partial differential equations (cp. J. M. Ball and J. Carr [5], M. Lachowicz and
D. Wrzosek [55], B. Rzepecki [105], D. Wrzosek [127–129]) apply the truncation me-
thod: first one studies finite systems obtained by truncating to the first N equations
and next they pass to the limit as N tends to inifinity. Proceeding this way, they
obtain a system of N equations which is identical to system (3.38).

Example 3.1. As an example of the use of truncation method, we will consider this
method for the infinite countable system of differential-functional equations of the
form (see M. Lachowicz and D. Wrzosek [55])

Dtz
i(t, x)−Ai[zi](t, x) = f i7(t, x, z), i ∈ N, (t, x) ∈ D (3.41)
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where the operators

Ai[zi](t, x) :=
m∑

k,l=1

Dxk

(
dikl(x)Dxl

zi(t, x)
)
, i ∈ N

are uniformly elliptic in D, the coefficients of multicomponent diffusion dikl are positive
and f i7 are nonlocal operators given by formula (0.8), i.e.,

f1
7 (t, x, z) = −z1(t, x)

∞∑
k=1

∫
G

a1
k(x, ξ)z

k(t, ξ)dξ +
∞∑
k=1

∫
G

B1
k(x, ξ)z

1+k(t, ξ)dξ,

f i7(t, x, z) =
1
2

i−1∑
k=1

∫
G×G

Ai−k
k (x, ξ, η)zi−k(t, ξ)zk(t, η)dξdη−

− zi(t, x)
∞∑
k=1

∫
G

aik(x, ξ)z
k(t, ξ)dξ+

+
∞∑
k=1

∫
G

Bi
k(x, ξ)z

i+k(t, ξ)dξ − 1
2
zi(t, x)

i−1∑
k=1

bi−kk (x), for i = 2, 3, . . .

(3.42)

For system (3.41) these authors consider the initial condition

z(0, x) = U0(x) ≥ 0 for x ∈ G (3.43)

and the boundary condition of the Neumann type

∂zi

∂ν
= 0, i ∈ N, for (t, x) ∈ σ = (0, T ]× ∂G, (3.44)

where ν ∈ C1 is the outward normal vector field to ∂G.
This problem is considered in the real Banach sequence space Xr

Xr := {w = w(t, x) :
∞∑
i=1

∫
G

ir
∣∣wi(t, ξ)

∣∣ dξ <∞}

for r ≥ 0, equipped with the weighted norm

‖w‖r :=
∞∑
i=1

∫
G

ir
∣∣wi(t, ξ)

∣∣ dξ.

They will be search the positive (nonnegative) solutions of this problem, i.e.,
solutions in the positive cone X+

r of the Banach space Xr defined as follows

X+
r :=

{
w ∈ Xr : wi(t, x) ≥ 0, i ∈ N, for t ∈ (0, T ] and for a.e. x ∈ G

}
.
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A solution z of problem (3.41)–(3.44) is constructed from successive approxima-
tions {zN}N=1,2,..., where zN is defined as a solution of a suitable finite system of N
equations of the form

Dtz
j
N (t, x)−Aj [zjN ](t, x) = F j

7,N (t, x, zN ), j = 1, 2, . . . , N, (3.45)

for (t, x) ∈ D, where

F 1
7,N (t, x, z) := −z1

N (t, x)
N−1∑
k=1

∫
G

a1
k(x, ξ)z

k
N (t, ξ)dξ +

N−1∑
k=1

∫
G

B1
k(x, ξ)z

1+k
N (t, ξ)dξ,

F j
7,N (t, x, z) :=

1
2

j−1∑
k=1

∫
G×G

Aj−k
k (x, ξ, η)zj−kN (t, ξ)zkN (t, η)dξdη−

− zjN (t, x)
N−j∑
k=1

∫
G

ajk(x, ξ)z
k
N (t, ξ)dξ+

+
N−j∑
k=1

∫
G

Bj
k(x, ξ)z

j+k
N (t, ξ)dξ − 1

2
zjN (t, x)

j−1∑
k=1

bj−kk (x), for j = 2, 3, . . .

(3.46)

with the initial condition

zN (0, x) = U0(x) ≥ 0 for x ∈ G (3.47)

and the boundary condition

∂zjN
∂ν

= 0, j = 1, 2, . . . , N for (t, x) ∈ σ. (3.48)

We note that these authors obtain truncated system (3.45), (3.46) of N equations
from system (3.41), (3.42) by setting (cp. [55], p. 52)

aik ≡ 0, and bik ≡ 0, for i+ k > N.

On the other hand, we have 0 ≤ f i(t, x, 0) = 0 in D, 0 ≤ U0(x) on G and
therefore u0 = u0(t, x) = 0 in D is the lower solution of this problem. Therefore, from
(3.38) it follows that system (3.45), (3.46) may be obtained from system (3.41), (3.42)
by substituting

zjN,0(t, x) = 0, j = N + 1, N + 2, . . . , for (t, x) ∈ D.

and we will have

f j
(
t, x, z1

N,0, z
2
N,0, . . . , z

N
N,0, 0, 0, . . .

)
:= F j

N,0

(
t, x, z1

N,0, z
2
N,0, . . . , z

N
N,0

)
.
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NOTES AND COMMENTS

Monotone iterative methods for partial differential equations of parabolic and ellip-
tic type have been studied by numerous authors: H. Amann [1, 2], D. Bange [10],
S. Brzychczy [16–18], [20–28], A. Bychowska [32], O. Diekman and N. M. Temme [39],
T. Kusano [54], V. Lakshmikantham [59, 60], H. Leszczyński [63, 64], I. Łojczyk-
Królikiewicz [70], S. G. Mikhlin and H. L. Smolickǐi [72], W. Mlak [73], W. Mlak and
C. Olech [74], I. P. Mysovskikh [75], M. Nowotarska [79], C. V. Pao [80,81], D. H. Sat-
tinger [106], J. Smoller [108], P. K. Zeragia [131–133] and for problems with nonlocal
boundary condition e.g. S. Carl and S. Heikkilä [33], C. V. Pao [84, 85]. Abstract
monotone iterative methods in ordered Banach spaces are studied by E. Liz [66],
E. Liz and J. J. Nieto [67]. It is also to be said that the monographs G. S. Ladde,
V. Lakshmikantham and A. S. Vatsala [56] and C. V. Pao [83] plays a crucial role in
this field.

Equations of reaction–diffusion–convection type arise naturally in numerous mo-
dels. These describe e.g. the heat transfer process [34], the prediction of groundwater
level (A. M. Nakhushev and V. N. Borisov [76]), the fluid flows with fading memory
through fissured media (M. Peszyńska [87]) and other phenomena pertaining to the
memory (H. Bellout [13]). Numerous examples of these systems arising in applica-
tions are given by O. Diekmann and N. M. Temme [39], P. C. Fife [40], A. Leung [65],
J. D. Logan [68], C. V. Pao [82,83], F. Rothe [104], J. Smoller [108], J. Wu [130].

In the theory of differential inequalities the monographs by V. Lakshmikantham
and S. Leela [58], J. Szarski [111] and W. Walter [122] play a crucial role. In the
papers W. Walter [123, 124] given a review of the problems in the theory of pa-
rabolic equations In the case of finite systems of differential–functional inequalites,
the fundamental results were obtained by J. Szarski [112–115] and, under somewhat
different assumptions, by K. Nickel [77, 78], R. Redheffer and W. Walter [97–101],
R. Redlinger [102, 103] (cp. also A. Bartłomiejczyk and H. Leszczyński [11]). In
the case of infinite systems of inequalities, the fundamental results were obtained
by J. Szarski [116, 117], D. Jaruszewska-Walczak [42], B. Kraśnicka [49, 50] and
S. Brzychczy [31].

Infinite systems of differential equations, partial differential equations, integral
and differential–functional equations have been studied by numerous authors: J. Ba-
naś and M. Lecko [6–9], S. Brzychczy [26–28, 30], J. Chandra, V. Lakshmikantham
and S. Leela [35], K. Deimling [37], D. Jaruszewska-Walczak [42], Z. Kamont and
S. Kozieł [43], Z. Kamont [45], B. Kraśnicka [49, 50], W. Mlak and C. Olech [74],
W. Pogorzelski [90, 92], A. Pudełko [94,95], B. Rzepecki [105].
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Ukrǎin. Mat. Zh. 55 (2003) 12, 1678–1696.
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