
1. INTRODUCTION

One of the predominant difficulties in the control theory of
mechanical structure systems (MS) comes from the fact that
mechanical structures are basically distributed parameter
systems. This implies that such structures have a very high if
not infinity number modes of vibration within and bey-
ond-the bandwidth of the controller. Usually, there are also
modes within the bandwidth that are not targeted for control.
The presence of uncontrolled or unmodelled modes within
the bandwidth of the closed loop system results in the
well-known phenomenon of “spillover”. Spillover is the co-
upling of the control system to the “residual” dynamics,
which occurs because sensors and actuators are not contin-
uously spatially distributed. It has long been know that spil-
lover can destabilize residual dynamics, especially at higher
frequencies where the dynamics is least well modeled. A gre-
at amount of research has centered on developing techniques
to manage these destabilizing influences.

In the area of structural vibration suppression, the tech-
nique with perhaps the greatest immunity from the destabi-
lizing the effects of spillover is collocated direct velocity
feedback, which, in the absence of actuator dynamics, is un-
conditionally stable. In the presence of actuator dynamics,
however, instability may result if a priori precaution is not
taken. It has been shown that the stability boundary of modes

near the natural frequency of the actuators is critically de-
pendent on the inherent natural damping in these modes
a quantity not well known in most cases. In addition, the
technique requires rate measurement a quantity that becomes
vanishingly small at low frequency.

Another crucial problem which has received very little at-
tention is the problem actuator dynamics. Balas [4] furnished
a brief analysis to justify the negligence of fast actuator dy-
namics, the conclusion of which is questionable due to con-
flicting assumptions. Basically the bandwidth of practical
actuators is finite while that of MS is very large if not infi-
nite. Extreme care must be exercised so that control of low-
-frequency modes does not destabilize the intermediate or
higher frequency modes.

The technique implemented in the work of Caughey and
Goh [2], Positive Position Feedback (PPF), was originally
suggested by as an alternative to collocated direct velocity
feedback. Like velocity feedback, the method is not sensitive
to spillover but in addition, it is not destabilized by finite
actuator dynamics. PPF requires only generalized displace-
ment measurements which make it amenable to a strain-
-based sensing approach. While PPF is not unconditionally
stable, as will be seen later, the stability condition is non-dy-
namic and minimally restrictive. The objective of these ex-
periments is to examine the feasibility of using Positive Posi-
tion Feedback as a vibration suppression control strategy on
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a structure with low inherent stiffness, and to investigate the
feasibility of using PZT materials as control actuators and
strain sensors-simulating a PZT active-member.

2. COLLOCATED VELOCITY FEEDBACK
CONTROL IGNORING ACTUATOR DYNAMICS

Mechanical structures are, in principle, continuous distrib-
uted systems described by partial differential equations
(PDE). For practical consideration, however, it is common to
model the system by finite element analysis (FEM), hence
approximating the PDE by a ordinary differential equations

My By Ky F t�� � ( )� � � (2.1)

where y and F are n-dimensional vectors representing the
system physical state and control force respectively. The sys-
tem mass matrix M(n�n) (including the mass of the colloca-
ted sensors and actuators) is positive definite, while the na-
tural passive-damping matrix B(n�n) and stiffness matrix
K (n�n) are positive semi-definite for a real mechanical
structure. Note that we have reduced the infinite dimension
of the original system to n for accurate modelling (n should
be fairly large).

Now we define the sensor/actuator (S/A) location matrix L
(dimension nA�n), where nA is the number of sensor/actuator
pairs available. Sometimes L is written as the set L = {i1, i2,
..., i N A

} where the i, j = 1, …, nA represent the ordered ele-
ments to which a sensor/actuator pair is attached. Assuming
for the moment that the measurement is accurate for all fre-
quencies and actuator dynamics is negligible, the control
force F(t) for direct velocity feedback [3] is simply given by

F t L GLyT( ) – �� (2.2)

where G (dimension nA�nA) is the gain matrix to be designed.
It is easy to see that if G is positive definite, then the system is
globally stable. Note that though spillover still exists, it will
not destabilize the system. Furthermore, with nA pairs of sen-
sor/actuator available, we can design G such that the clo-
sed-loop damping of the first nA modes can be prescribed
approximately.

For purpose of illustration, consider a clamped beam of n
elements with nA pairs of sensor/actuator. Suppose we would
like the first mode to the closed-loop damping ratio of appro-
ximately �n and the other controlled modes to have approxi-
mately the same damping as the first. It can be shown that the
closed loop damping of all the modes are dominated by the
diagonal elements (�i) of the modal gain matrix Gm, where

G L GLm
T T� � � (2.3)

and � is the modal matrix which simultaneously diagonali-
zes M and K, such that:
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Since the structural natural damping B is small, but not
clearly known, we shall assume that all modes possess the
same damping ratio �i, such that �i = 2 �i �i.

3. STABILITY PROBLEMS
CAUSED BY THE INCLUSION
OF ACTUATOR DYNAMICS

The previous assumption that actuator dynamics are neglig-
ible is never justified in practice, but this is unfortunately
ignored by most researchers in the field of mechanical struc-
tures control. Balas [4] considered the control of a reduced
system by deliberately ignoring all the fast modes. It was cla-
imed that for such a reduced system, the negligence of act-
uator dynamics is justifiable and will not cause instability, if
the actuator dynamics is sufficiently fast. This claim is qu-
estionable since fast modes certainly do exist whether we
would like to model them as such or not. A flexible structure
has essentially infinite bandwidth while the actuators, no
matter how fast, have finite bandwidth. Thus the problem of
finite actuator dynamics interaction is a crucial one which
deserves extremely careful consideration.

Assuming that each actuator has identical second order
dynamics, the velocity feedback control system with actua-
tor dynamics is represented by:

My By Ky L GxT
�� � –� � � (3.1)

�� � ( – � )x x x Lya a a� � �2 02� � � (3.2)

where x is an nA-dimensional actuator state vector, �a and �a

the damping ratio and the natural frequency of the actuators
respectively. It is convenient to analyze the system in modal
space, so we introduce the following transformation:

y q

u L z

�

�

�

�
(3.3)

where q and � are n-dimensional modal state vectors. (3.1)
and (3.2) are transformed to:

�� � –q q q L GL zT T� � �	 � � � (3.4)

�� � ( – � )z z z qa a a� � �2 02� � � (3.5)

The following paradoxical proposition is analogous to
that of Balas [4] but is considered in the context of collocated
velocity feedback control.

Proposition

If �a >> max �i, i = 1, 2, …, n, then the coupled system (3.4)
and (3.5) is stable.

3.1. Positive position feedback control

In the previously published papers it has been shown (see for
example Baz [3] and Inman [10]), that several features of
PPF make it attractive MS environment. Features of PPF are
best demonstrated by considering the scalar case.
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Scalar Case

The scalar system consists of two equations, one describing
the structure, and one describing the compensator

System

�� � ( – )
 � 
 
 ��� � �2 00 0
2� � (3.6)

Compensator

�� � ( – )� � � � 
�� � �2 00
2� � f (3.7)


 � �, , ,
 �R 0

where:
� – scalar gain > 0,

� – modal coordinate,

� – filter coordinate,

�� and �f – structural and filter natural frequencies,
respectively,

� and �f – structural and filter damping ratios, re-
spectively.

The compensator is composed of a second-order filter
with the same form as the modal equation of (3.6), but with
much higher damping ratio. The positive position terminol-
ogy in the name PPF is derived from the fact that the position
coordinate of (3.6) is positively fed to the filter, and the posi-
tion coordinate of (3.7) is positively fed back to the structure.

Multivariate Case

A multivariate synthesis theory is based on the assumption
that filters (such as equation (3.7)) can be tuned to individual
modes that remain uncoupled to first order. If additional mo-
des are included in the single-input-single-output (SISO)
example above, the closed loop poles shift from the design
locations. The uncoupled modes synthesis procedure is used
to produce a specified damping ratio in the first mode, and
equal settling times for the remaining modes. We assumed,
that the poles and zeros are far enough apart to justify the un-
coupled modes assumption. First mode damping ratios about
of 0.30 are prescribed and the resulting damping ratios agree
very closely. If actuator dynamics are present, a feedback
circuit can be synthesized which cause to synchronize with
the filter equation (3.7). This essentially removes the actuat-
or dynamics from consideration. In fact, the PPF technique was
itself motivated in response to the actuator dynamics pro-
blem to provide such a feature. The following necessary and
sufficient condition results for stability (see for example [2]:

The combined system of (3.6) and (3.7) is stable if and only
if � < 1.

It is interesting to note that the stability condition does not
depend on the damping in the structure. Instability occurs
when the stiffness of the structure is made singular by the
action of the control. We will see that a non-dynamic stabil-
ity criterion is characteristic of PPF. Three cases are possib-
le, depending on whether the damped frequency of the filter
is greater than, equal to, or less than the damped frequency of

the structure. It has been shown in [1], that the uncoupled
modes assumption is violated if the poles and zeros are very
close. Strictly speaking, if the real coordinate of the filter
pole is of the same order as the spacing between structural
pole and zero, the modes can be treated as uncoupled. In or-
der to achieve large reductions in dynamic response, an al-
ternative approach is taken: the pole associated with the PPF
filter is designed to have a higher damped natural frequency
than the structural pole. There are several approaches that
can be taken at this point. For best performance in steady sta-
te response amplitude, which depends on the number of mo-
des and the quantities �i, �i it is better to leave the filter pole
farther in the left half plane than the structural pole. For this
particular system we can adjust the actuator frequency such
that the system frequency �i lies just beneath the resonance
peak in order to achieve maximum closed-loop damping
while keeping � well below unity thus ensuring stability.

For multivariate systems, however the actuator frequency
cannot be simultaneously adjusted to suit more than one
mode, hence the concept of tuning filters is introduced to
overcome this difficulty.

Tuning filters are basically band-limited electronic filters
with dynamics similar to those of the actuators, but with fre-
quencies “tuned” to the controlled mode frequencies, in or-
der to achieve maximum closed-loop damping. Assuming
for the moment that actuator dynamics can be ignored (we
shall show shortly that this is possible by appropriate ar-
rangement) and nA tuning filters are available to control nA

modes, then maximal damping effect can be realized if we
set the peak corresponding to each of these tuning filters to
lie right above the natural frequency of the corresponding
controlled modes. In general, less than nA (nr say) sets of tun-
ing filters can be used to control nA modes. With the inclu-
sion of these filters, however the complexity of the overall
system is increased and symmetry is not preserved.

Multivariate Stability Criterion for PPF

The general collocated local control implementation of Po-
sitive Position Feedback can be written in matrix form as:

�� �

�� �


 
 
 �

� �� � 


� � � �

� �

B a C G

B a C

T

f f f

�

� �
1

2

0 (3.8)

where:
G – gain diagonal matrix nf � nf,

C – participation matrix nf � np,

�f – spectral diagonal matrix of filters nf � nf,

� – spectral diagonal matrix of systems np � np,

Bf – modal damping matrix of filters nf � nf,

B – damping matrix of the system np � np.

Theorem 1

System (3.8) is asymptotically stable if � – a1a2C
TGC > 0

i.e. positive definite.
The stability criterion does not depend on the inherent

damping in the structure.
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Stability by the inclusion of actuator dynamics

The overall system-filter-actuator dynamics can be express-
ed as:

System

M y By Ky L GxT
�� �� � � (3.9)

Filters

I z z z G Ly

i n

nA i fi fi i fi i fi fi
(�� � )

, , ... ,
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2

1 2

2 1 2� � � �

f

(3.10)

Actuators
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T
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� �

� � �
1

nr

�
(3.11)

For �a a� sufficiently large and initial conditions suffi-
ciently small, x converges rapidly to

� i fi

T
i

i

nr

G z/ 2

1�
� (3.12)

and consequently, actuator dynamics fall out of the case
completely. The overall system than reduces to the symmet-
rical form

My By Ky L G zT
i fi
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�� �
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(3.13)
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2 1 2� � � �
(3.14)

Theorem 2

The overall system in (3.13) and (3.14) is stable if and only if
the block matrix W is positive definite.

W
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(3.15)

H G Li i� 1 2/ � (3.16)

W H H L G Li i
T

i
T T

i� �/ /2 1 2 � � (3.17)

There remains the question of designing the feedback
gain matricesG fi

for the filters to achieve the desired closed-
-loop damping for the controlled modes. A specified level of
damping ratio � p is prescribed, for the first mode, and the
control is such that all other controlled modes achieve ap-
proximately the same closed-loop damping as the first mode.
This has the effect of causing all the controlled modes to de-
cay at approximately the same rate. The necessary and suffi-
cient condition in Theorem 2 is checked to ensure stability,
and the scalar gains �i (the diagonal elements of their corre-
sponding modal gain matrices) are also computed to indicate
the relative stability margin. The filter parameters (i.e. �f

and �f ) are computed a priori such that only minimal gains
are required to achieve the required damping. When a full
complement of filters is available (i.e. nA = nf) closed-loop
damping performance for the three cases can be � p = 0.3;
0.4; 0.5. We can achieve closed-loop damping as high as
� p = 50% for the first mode without causing instability or
other undesirable situations. The closed-loop damping ratio
or the first-mode turns out to be within 6% of the actual pre-
scribed value. This error is mainly attributed to the presence
of off-diagonal coupling terms. As opposed to the result ob-
tained using velocity feedback, the uncontrolled modes all
result in higher than natural closed-loop damping.

If fewer filters than controlled modes are used, the tech-
nique still applies, thought the performance deteriorates.In
practice we would assign one filter to tune each of the
lower-order modes and share those remaining among the
higher-order modes, as the lower modes are more critical.
Note that position feedback is also much less sensitive to the
uncertain natural damping of the structure than velocity
feedback.

4. DESIGN OF THE EXPERIMENT

In this section we demonstrate the designing of scalar PPF
control on experimental example of vibration suppression,
where prismatic steel one side clamped beam with cross-sec-
tion area of 40 � 2 mm is used as controlled structure. One
100 mm long piezopatch, product QP45W of Mide Technol-
ogy Corporation, is attached on the surface of the beam and
serves as self-sensing actuator.

Uniform Beam Test Structure

For purposes of validating the feasibility of PZT active-
-member control of a test structure consisting of a thin steel
clamped cantilever beam was constructed. One PZT form the
actuator which was glued on the top side of the clamp of the
beam (because of the maximum of the stress energy at that
location) to simulate the moment-producing effect of active
part on a beam (Fig. 1). The PZT actuator with their poling
geometries arranged such that a common voltage causes one
to expand or contract, producing a bending moment on the
cross section. The beam was clamped in a support fixture on
table. The free end of the beam was driven by a permanent
magnet shaker. This can produce a single frequency sine
wave as an input to measure dynamic response and closed
loop performance.
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Piezoceramics Actuators and Sensors

PZT material is an inherent electro-mechanical transducer.
The electro-mechanical action of the sensor and actuator PZT
thin sheet material used in the experiments (type QP 45W).
The material is poled across the thickness, but the induced
strain occurs along the length. The relationship between the
applied electric field and the induced free strain for the act-
uator is given by

�3 31� d E f (4.1)

where d31 is the PZT strain constant, or the transverse charge
coefficient. The relationship between the applied mechanical
stress and the induced electric field is given by

E gf � – 31 3� (4.2)

where g31 is the PZT voltage constant, or transverse voltage
coefficient.

A mechanics analysis results in the following equation
for the applied moment from the actuators

M F z K u K
E b d z

v
ya xa a ya a ya

a a a� � � � –
–

31

1
(4.3)

where:
Mya – applied moment which is proportional to PZT

transverse charge coefficient d31,
Ea – Young’s modulus of the PZT material,

Fxa – force which originates from the voltage bet-
ween electrodes,

za – distance from neutral axis,
Kya – constant of the actuator,

v – Poisson constant.

This equation does not account for the compliance of the
adhesive use to attach PZT which results in a slightly lower
effective moment. The actuator is assumed to apply a con-
stant magnitude moment across the composite beam cross
section everywhere along the length of the actuator.

The sensor ceramics respond to the applied stress due to
bending strain along their length. Assuming small strains,
the sensor voltage can be approximated by

u
K

C
x xs

ya

p
y y� – ( ( )– ( ))� �2 1 (4.4)

where:
us – sensing voltage,
Cp – capacitance of PZT measured for constant strain,
� y – the slope of the beam about axis y.

The capacitance of the glued PZT can be given by

C
d E

v

A

t
p

a�
�

�

�
�

�
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31
22

1
–

–
(4.5)

where:

��
3 – PZT permitivity for constant mechanical stress,
A – cross section of electrode,
t – distance between electrodes.

In our case a self-sensing actuator was used, which makes
both sensing and actuating.

Partial Differential Equation of Motion

Figure 1 shows the geometry of a cantilever beam acted on by
PZT actuator spanning from station x1 to station x2. The actuat-
or applies a constant moment of magnitude M along its length.
The governing partial differential equation is given by

m x
y

x x
E x I x

y

x
( ) – ( ) ( )
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(4.6)

By using of standard modal expansion we receive modal
equations, and by multiplying modal equations by the mode
shape, and integrating over the domain and making use of the
fact th � i x( ) at the actuators do not span to the ends of the
beam and after some manipulations follows

�� ( ) ( ) [ ( )– ( )]
 
i i i i a i it t a V x x� �� � �2
2 1 (4.7)

We see that the actuators couple into the modes through
the difference in the slopes of the mass-normalized mode
shapes at the ends of the actuators.

5. EXPERIMENT AND SIMULATION RESULTS

The one Mode control experiments will be discussed.
The open loop and closed loop free decay of Mode 1 is

shown in Figures 2, 3 and 4. The settling time has been redu-
ced from about 20 seconds to about two seconds. It is a sub-
stantial reduction.

The result of application of PPF control method for sup-
pression of the steady-state vibration is on Figure 5. The
clamped beam has been excited at the free end by magnetic
shaker up to the first resonance (at about 10 Hz). From Fig-
ure 5 we can see, that suppression of vibration has very good
efficiency.

The resulting frequency response functions for the region
of Modes 1 and 2 are shown in Figures 6 and 7. The line of
the frequency function on Figure 7 indicates that, that the
damping of Mode 1 has been increased (a wider half-power
bandwidth) and the peak amplitude has been decreased from
the open loop peak of 25 dB to about 18 dB of closed one.
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Fig. 1. Experimental one side clamped steel beam with self-sensing
piezoactuator and acceleration sensor
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Fig. 2. Open loop free decay of Mode 1 – measured

Fig. 3. Simulated closed loop free decay of Mode 1

Fig. 4. Closed loop free decay of Mode 1 – measured
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Fig. 6. Frequency response function for Mode 1 without control

Fig. 7. Frequency response function for Mode 1 with control – measured

Fig. 5. Suppression of vibration of the forced vibration in resonance – measured



The solid line shows a reduction in response amplitude
well below the open loop peak response as the damping from
the Mode 1.

6. CONCLUSIONS

Table 1 summarizes the two mode control performance.

Table 1
Experimental natural frequencies and damping ratios

of the clamped beam

Mode

Open loop values Closed loop values

Natural
frequencies

[Hz]

Damping
ratios
[%]

Natural
frequencies

[Hz]

Damping
ratios
[%]

1 9.82 4.26 10.09 13.57

2 57.29 2.98 61.5 5.98

The open loop and closed loop free decay of Mode 1 is
shown in Figures 2, 3 and 4. The settling time has been re-
duced from about 20 seconds to about two seconds, a sub-
stantial reduction.

A simple, necessary and sufficient stability criterion has
been given for the case of local control PPF. This criterion is
nondynamic, which accounts for the superior robust stability
of the technique. The damping of Mode 1 has been increased
from 4.26% to 13.57% (a wider half-power bandwidth). The
frequency response function for the first two modes is shown
in Figures 6 and 7.

From Figure 5 follows, that suppression of steady-state
vibration, under resonance condition (magnetic shaker) indi-
cates, that piezoceramics can be used for solving vibration
suppression problem.
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