
1. INTRODUCTION

Cables are very often used in many engineering structures
placed in the natural environment. They are very efficient in
cable-stayed bridges and mast supporting. Above all cables
are used in overhead transmission lines [8].

A number of cables used in overhead transmission lines
and cable-stayed bridges have exhibited large vibrations.
They are the main reason of many fatigue failures.

Vibrations and wave motion are usually the result of vor-
tex shedding, galloping, rivulet formation and buffeting. In-
troduction of exterior cable surface modification can elimi-
nate most of the rain and wind vibration problems. However,
longer cables are still vulnerable to the aerodynamic distur-
bances due to their low intrinsic damping.

The types of oscillation depend on: blow-up angle of wind,
initial angle, turbulence intensity, surface roughness, diver-
sities of the wind field, cable length, mass damping ratio. The
loading process within a span is often only imprecisely
known through interpretation of displacement response.

Various countermeasures are proposed to protect cables
against vibrations and wave motion. They can be arranged
into following groups of methods:

– The methods of modifying of the cables surface by
using the elements preventing from aerodynamic forces
induced by the air flow.

– The methods of the wave energy dissipation by increa-
sing the cable internal damping or by using the special
dampers, damping loops and spacers with the dissipating
elements. Results of researches are presented in [2–4].

Prototypes of the new dampers to be applied mainly in
cable-stayed bridges and overhead transmission lines
are being tested in laboratories.

The forced motion of the cables is usually analysed as
a superposition of the modes [1]. This approach is very effi-
cient for describing the response of short cables. For very
long cables and high frequencies the wavelength is small rel-
ative to the cable length and the time that the waves take to
pass along the cable is relatively long. In this case the motion
of the cable (especially the transient response) is better and
more naturally described using the superposition law of trav-
elling waves [5–7, 9]. In some works the equations of motion
are solved using numerical methods.

In this study the problem of optimal damping force neces-
sary to suppress the wave travelling along the cable is consi-
dered. The effectiveness of external damper is investigated by
analytical and numerical methods. The concentrated force and
distributed force are taken into considerations. The energy
dissipated by damper force is assumed as the objective function.

2. EQUATIONS OF TRAVELING WAVES

According to the superposition law, the resultant wave trave-
ling along the cable is the sum of the original wave, the re-
flected and transmitted waves. The original wave arises as
a result of the environment interaction while the reflected
and transmitted waves arise due to the force in constraints.
The damper attached to the cable is also the constraint for the
traveling wave. The damper force can be modeled as the con-
centrated force or the force distributed on the short segment
of the cable.
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2.1. Equations of waves induced by the concentrated
force

The concentrated force applied to the cable induces two
waves traveling in opposite directions with the same veloc-
ity. This waves and the coordinate system are presented
schematically in Figure 1.

The cable motion induced by the concentrated force P(t)
can be described by the following differential equation
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with additional condition at the point x = 0
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In equation (1) � is a linear mass density and T is a tension
force.

Equation (1) was solved using the Laplace transform
method. Finally the displacement u(x, t) can be written as
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The above expression describes two waves traveling with
velocity c on both sides of the force P(t). These waves trans-
fer the displacement u(0, t) along the cable. The relationship
between the displacement u(0, t) and the force P(t) is de-
scribed by the following equation
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Using equations (3) and (4) we can solve the wave propa-
gation problem for arbitrary force P(t).

2.2. Equations of waves induced by the distributed force
applied to the short segment of the cable

In the case of distributed force applied to the short segment
of the cable, the problem of waves generating is more com-
plicated. The distributed force induces waves traveling in
opposite directions, outside the segment, as well as standing
waves inside the load segment (Fig. 2).

The equation of the cable motion with excitation force ap-
plied to the short segment, placed symmetrically about the
origin of coordinate system, can be written as
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When the width of the active segment is small in relation
to the wave length the following form of distributed force
can be considered

q x t q f t( , ) ( )� �0 (7)

In this case the distributed force is a product of the un-
known function of time and the uniform function of space
coordinate. Taking into account this form of load, equation
(5) may be solved using the Laplace transform method. The
waves traveling to the left and to the right outside the load
segment are described by the following formula
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The relationship between displacements u(l, t) = u(–l, t)
and the function f(t) has the form of differential equation
with time delay
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Using equations (8) and (9) we can determine the waves
traveling outside the load segment for arbitrary function f(t).

The general solution of equation (5) can be written in the
following integral form
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This form is useful to simulate the phenomenon of the
waves travelling along a cable for any function ~( , )q x t . The
solution of equation (5) at point x and at time t depends only
on values of the function ~q in the triangle � as shown in
Figure 3.

From the general solution (10) one can derive the expres-
sion for the cable velocity which is suitable in numerical cal-
culations of energies of traveling waves.
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Fig. 1. Concentrated force as a source of waves

Fig. 2. Distributed force as a source of waves



3. OPTIMAL DAMPER FORCE

In order to suppress the original wave traveling along the ca-
ble, the damper force should be controlled optimally. The
energy dissipated by the damper force can be assumed as the
objective function of the considered problem. The complete
dissipate of the wave is impossible, because the damper force
is a source of the secondary waves. The original wave and se-
condary waves traveling in the same direction can partly can-
cel each other but the remaining secondary waves traveling
in the opposite direction. It is apparent that the optimal force
exists both for the concentrated and for the distributed dam-
per force.

3.1. Optimal concentrated damper force

During the motion of the original wave, the damper exerts
the resisting force applied to the cable. This force is a source
of two secondary waves (Fig. 1). The secondary wave that
travels in opposite direction to the original wave is called the
reflected wave. The superposition of the other secondary
wave and the original wave is called the transmitted wave.

The displacement of the point at which the damper is
attached is a sum of the displacement associated with the
original wave u0(0, t) and the displacement associated with
the wave u(0, t) induced by the damper force. The power of
damper force P(t) can be expressed as

W
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If the above quantity is negative, the wave energy is dissi-
pated. Substituting the relation (4) into equation (11) we can
determine the objective function W P( ) in a relatively sim-
ple form. It is easy to show that the relationship between the
original wave and the optimal damper force takes the
following form

P
T

c
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( , )0 0
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The energy dissipated by the optimal damper force is
equal to the half of original wave energy.
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Fig. 3. Area of integration

Fig. 4. Original wave before the damper



The original wave used in numerical simulations was as-
sumed in the form of packet wave, described by
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A lot of disturbances observed in cables can be modeled
using this type of wave with amplitude modulation. The orig-
inal wave propagating in the positive x-direction is presented
in Figure 4 at the moment before it reaches the point where
the damping force is placed. The location of damping force is
marked with the vertical arrow. The transmitted wave and
the reflected wave for the optimal damper force are present-
ed in Figure 5.

3.2. Optimal distributed damper force

Taking into account the relationship (12) between the original
wave and the optimal damper force the similar strategy for
the distributed damper force have been proposed. The dam-
ping force is proportional to the component of cable velocity
resulting from the motion of the original wave with appro-
priate switching that is realized by the Heaviside function
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Figures 6, 7 and 8 present the velocity associated with the
motion of the original wave for different damping force coef-
ficient !.
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Fig. 5. Transmitted and reflected waves

Fig. 6. Schematic graphs of waves travelling through the active segment 2 2 60 4 0 1l
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The aim of calculations was to find the optimal value
of !

� which maximizes the energy dissipated in the active

segment. We can determine this energy by calculation the
work done by distributed force applying in active segment.
On the other hand we can use the principle of energy balance
to determine the energy dissipated in the active segment. The
second method is more convenient in numerical calculation.
The sought energy can be calculated from
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is the energy of the original wave
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is the energy of the reflected wave, and
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is the energy of the transmitted wave.
Time intervals [tS1, tS2], [tR1, tR2], [tT1, tT2] refer to disloca-

tions of appropriate waves.
The ratio of energy dissipated in the active segment to the

energy of original wave given by
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is called the dissipation efficiency ratio. For optimal distrib-
uted force this ratio takes on maximum value.

Figures 9, 10 and 11 illustrate the dissipation efficiency
ratio versus the relative damping force coefficient for differ-
ent segment widths. As shown, the dissipation efficiency ra-
tio as a function of damping coefficient has maximum value
for all segment widths.
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Fig. 7. Schematic graphs of waves travelling through the active segment 2 2 60 8 0 1l
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Fig. 8. Schematic graphs of waves travelling through the active segment 2 2 60 12 0 1l
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When the segment width decreases the maximal effi-
ciency ratio decreases and approaches 0.5, as for optimal
concentrated force.

Taking into account the results of calculations of maximal
efficiency ratio done so far we can perform the summarizing
plot presented in Figure 12. The plot shows the optimal rela-
tive damping force coefficient versus the damping segment
length. When the segment is longer than 0.2", the optimal
damping coefficient is almost reciprocal to the segment
length and the optimal distributed force dissipates over 98%
of energy of the original wave.

4. CONCLUSIONS

Optimal damper forces based on the distributed parameters
model are intuitive and physically motivated. But distributed
parameter methods require more difficult calculations.

In the case of the concentrated force the optimization
problem can be solved exactly. The optimal force takes place

in the opposite direction to this component of cable velocity
vector that is associated with the original wave. The force
magnitude is proportional to the magnitude of velocity com-
ponent. The constant of proportionality is equal to the ratio
of the cable tension to the wave velocity. The maximum
value of the dissipated energy is equal to the half of the
original wave energy.

In the case of the distributed load calculations are more
complex. The optimal force can be obtained using numerical
methods – almost the whole energy of the original wave can
be dissipated. It is possible to adjust the damper parameters
so the damper may be efficient in a wide range of wave
lengths.
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Fig. 9. Dissipation efficiency ratio vs. relative damping
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Fig. 11. Dissipation efficiency ratio vs. relative damping
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" �

�

�
	




�
�.

Fig. 10. Dissipation efficiency ratio vs. relative damping
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Fig. 12. Optimal relative damping force coefficient
vs. active segment length
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