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MODELLING AND CONTROL

Lucyna LENIOWSKA "

OF STRUCTURE-ACOUSTIC INTERACTION PROBLEMS

VIA PIEZOCERAMIC ACTUATORS

SUMMARY

Active control of vibration suppression of a circular fluid-loaded plate is analytically studied. The purpose of this
theoretical work is to present a general model of a planar vibrating structure located in a finite baffle and inte-
racted with fluid as well as its time response on harmonic excitation when a control strategy is applied.

The structure under study is a vibrating circular plate of radius a, having a constant thickness h, to which cen-
trally placed circular shaped piezoelectric ceramic patches of radius a; < a are bonded. They are used to cancel
the plate vibrations and related sound field when a controlling voltage is applied. It was assumed, that the plate
clamped at the edge is excited on one side by a uniform periodic force with a constant amplitude F, and it radia-
tes the acoustic waves into a surrounded fluid of density p,. The control problem lies in using piezoceramic actu-
ators working in a pair to reduce the plate vibrations. For the system under consideration the state-space model
is constructed. The modern control theory is then applied to the system model using a linear quadratic regulator
(LOR). The simulations of the active attenuation of the plate vibrations were made with a MATLAB/Simulink com-
puter program. The results demonstrate that it is possible to achieve a significant reduction of the vibration am-
plitude with the use of a pair PZT actuators.
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MODELOWANIE I STEROWANIE STRUKTUR Z UWZGLEDNIENIEM ODDZIALYWAN AKUSTYCZNYCH
ZA POMOCA PIEZOCERAMICZNYCH UKEADOW WYKONAWCZYCH

Praca prezentuje analize aktywnej metody redukcji drgan plyty kotowej oddziatujqcej z osrodkiem. Celem pracy
jest przedstawienie ogolnego modelu plaskiej struktury, umieszczonej w odgrodzie o skonczomych wymiarach,
z uwzglednieniem reakcji osrodka oraz jej odpowiedzi czasowej na wymuszenie harmoniczne dla zastosowanej
strategii sterowania.

Przedmiotem analizy jest cienka plyta kotowa o promieniu a, stalej grubosci h, do ktorej przyklejono centralnie
dwa kolowe elementy PZT o promieniach a; < a. Przylozenie do nich napiecia sterujqcego umozliwia redukcje
drgan plyty i towarzyszqcego im pola akustycznego. Zalozono, ze plyta, utwierdzona na obwodzie, jest z jednej
strony pobudzana do drgan za pomocq rownomiernie rozlozonej sily harmonicznej o stalej amplitudzie i promie-
niuje fale akustyczne do otaczajqcego osrodka o gestosci p,. Problem dotyczqcy sterowania polega na zastoso-
waniu pary elementow PZT do redukcji drgan plyty. W tym celu rozwazany model systemu zostal sprowadzony do
przestrzeni stanow, a nastepnie, stosujqc liniowq teorie sterowania, zaprojektowano regulator LOR. Symulacje ak-
tywnej redukcji drgan plyty zostaly przeprowadzone za pomocq programu MATLAB/Simulink, a otrzymane wyniki
wskazujq, ze mozliwa jest znaczqca redukcja amplitudy drgan z zastosowaniem jednej pary elementow PZT.

1. INTRODUCTION

The application of classical control approaches to the pro-
blem of structural vibrations which lead to noise in the audi-
ble frequency range is promising alternative to conventio-
nal passive methods. Accurate modeling of the acoustic
structural and coupling components is a necessary first step
for predicting the dynamics of the structural acoustics sys-
tems and for the design of model-based controllers. The
control of noise and vibration in such structural acoustic
systems has been intensely investigated in recent years.
A large number of studies on the active vibration control
(AVC) and active noise and vibration control (ANVC) have
been reported. In those studies the classical control, feed-
forward control, modern control and robust control have

been used [3, 4, 15 and references cited inside]. Modern
control theory has been also applied by the author [6-9] to
reduce circular plate vibrations by using a linear — quadratic
(LQR) and PI2D controllers. Those systems have been
successfully implemented on an experimental plant, where
assumed point control force has been put into practice by an
electromechanical shaker attached to the plate [7, 9]

Point force input located at the middle of the plate seems
to be quite an effective kind of control for suppressing the
circular plate vibration and radiated acoustic pressure [8].
In this approach, the optimal control problem is solved by
including in the performance index an additional term pro-
portional to the squared far — field radiation pressure, besi-
des the customary two terms which depend on the vector of
state variables and on the control effort. The control input
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that minimises this performance index is derived by apply-
ing Hamilton’s principle.

However, design of improver versions of electrodynamic
actuators is still of continued interest [13], on the other
hand, a significant drawback of the approach with the sha-
ker lies in its relative inertia, gravity and bulky. Actuators
are one of the most significant integral parts of controlled
structures. Such features as light weight, high efficiency
long live time and compact size are important issues. Piezo-
electric actuators with proper design almost satisfy all of
this requirements. In recent years, a great deal of work has
been done on the development of control methodologies for
structural and acoustic applications by using piezoelectric
actuators.

The equations for relating strains to out of plane displa-
cements was introduced by Lee and Moon [5]. During the
past few years, a significant amount of research has been
done in the field of control of flexible structures by the use
of smart sensors and actuators. The effectiveness of using
active control of a smart system has been demonstrated.
However, most of the control designs have been applied to
the beam-like or rectangular plate structures [1, 3, 15]. This
paper focuses on modeling and control design issues
concerning a clamped circular plate with a pair of thin pie-
zoelectric ceramic actuators. Similar problems have been
investigated by Van Niekerk ef al. [19] and Tylikowski
[16-18]. Van Niekerk, Tongue and Packard used a circular
piezoelectric actuator to control the sound transmission
through a concentric circular plate located in a duct. Since
the actuator covered 60% of the plate surface area, it was
very effective at controlling the first plate mode. More re-
cently, Tylikowski obtained electromechnical models for
circular [16, 18] and annular [17] plates, both excited by
piezoelectric elements. By considering the structure to be
composed of three regions, analytic displacement relations
were obtained. Constants it the expressions were computed
from the boundary and joint conditions. Those models were
used to analise the performance and some features of such
systems as: influence of external shunting capacity on plate
response, influence of bonding layer, etc. The modeling of
a circular plate with a surface-mounted circular piezocera-
mic elements in the center has been also considered in [10].
Instead of using analytical methods, a parametric system
identification procedure has been employed to establish
a mathematical model of the considered system. On the ba-
sis of this model, the control algorithm based on the pole-
placement method has been developed and implemented on
the real system.

The goal of this work is to develop a general model of
a thin circular plate interacted with fluid, on which two cir-
cular piezoceramic patches are bonded (Fig. 1). It was assu-
med that the vibrating plate was clamped at the circumfe-
rence in a planar finite baffle. The formal solution of the
fluid-plate coupled equation is presented for the plate dri-
ven by a harmonic surface force with constant density. The

control problem lies in using piezoceramic actuators wor-
king in pair to reduce the plate vibrations. For the system
under consideration the state — space model is constructed.
The modern control theory is then applied to the system
model using a linear quadratic regulator (LQR).

~ -
.........

Fig. 1. Circular plate with circular shaped piezoelectric ceramic
patches of radius a, located in finite baffle of radius b

2. FLUID-PLATE COUPLED EQUATION

The structure under study is a vibrating circular plate of
radius a, having a constant thickness /4, to which centrally
placed circular shaped piezoelectric ceramic patches of
radius a; are bonded. They are used to damp the plate
vibrations when a controlling voltage is applied. The plate
is clamped along its contour by a finite rigid co-planar baf-
fle. Although structural damping caused by internal friction
has usually little effect, the Kelvin—Voight term is used
to model the natural damping of the plate motion. The plate
is excited on one side by a uniform periodic force with
a nearly constant amplitude F|, generated by a loudspeaker
and it radiates into free space filled with fluid of density p,,.
The system model is formulated when taking into account
the coupling effect between the structure and the acoustic
medium.

The models for similar systems reported in literature dif-
fer in the manner through the strains produced by the bon-
ding piezoactuators are coupled with the dynamics of the
underlying structures. To simplify the discussion, the initial
assumptions are similar to that presented by Van Niekerk
et al. [19]: the piezoceramic material is perfectly bonded to
the plate and the bonding layer is neglible; the piezoceramic
does not add any mass to the structure; the pezoceramic is
effective in the radial direction; the circular plate deforms
symmetrically in pure bending. In the case being conside-
red, the applied loading of the circular plate are independent
of the angle ¢, (axially symmetrical vibrations), thus we can
write the governing differential equation of the forced mo-
tion of the plate as follows [11, 14]:

114



MECHANICS Vol.24 No.2 2005

2
BV* w(r,t)+ ph 8_ w(r,t) =
or?

@2.1)
= f(r,0)- R%[V“w(r, )] p(r,1,0)

where:
V4 =v?v?

2
1
V2= G +——a — the Laplace operator,
o2 ror

B=Eh’ /12(1—V2) — the bending stiffness of the
plate,
E, p,v,R — the Young’s modulus, density,
Poisson’s ratio and Kelvin—
Voigt damping coefficient for
the plate.

It should be pointed out that the material parameters li-
sted above might have changed a little in the region occu-
pied by the piezoelectric elements and they should be iden-
tified experimentally. The displacement w(r, ¢) and its deri-
vative ow(r, 1)/dr satisfy the boundary condition for a clam-
ped plate: they both equal zero at the edge of the plate. The
coupling between the plate dynamics and external acoustic
field is incorporated by including the backpressure p as
a surface force acting on the plate.

The pair of circular PZT actuators bonded to the surface
of the plate generate external bending moments A,,. For the
analytical development being undertaken in this paper, it is
assumed that an external surface force f{(7, f) in Eq. (2.1) can
be expressed as follows

F(r0)= [, (r0)+ fo(r,0) 2.2)
where f, (7, t)is a surface force, modelling the external exci-
tation, generated by a loudspeaker:

fo(rt)=Fype™ for 0<r<a (2.3)

and the second term of (2.2) represents the control force due
to application of voltage to the ceramic patches, which can
be expressed as:

f(r.)=V?M,, 0<r<aq (2.4)

The plate equation (2.1) can be re-expressed now as

2
Bv4w(r,t)+R3[V4w(r,t)]+pha—zw(r,t) =
ot ot (2.5)

= fuw(r0+ f5(r,0) = p(r,1,0)

For the considered circular plate with the axially-sym-
metrically located circular piezoactuators of radius a;, the
external moment generated by the piezodiscs in response to
an applied voltage (out of-phase) is given by [see 16, 19]

K
M, =—d3u(t)H (a1 —r)
hp

2.6)

In the above expression H(a,—r) is the Heaviside’a func-
tion, which has a value of 1 in the region covered by the
piezoactuator and zero elsewhere; the constant k¥ depends
on geometric and material properties of plate and piezoactu-
ator, u(¢) is the applied voltage, d5 is the piezoelectric strain
constant, and /£, is the piezoactuator thickness. The goal in
the control problem is to determine a control force, which,
when applied to the plate (realized via a voltage u(¢) for
piezoactuators), leads to a reduced level of vibrations.

In considered case, the equivalent external load can be
calculated as follows [16, 19]:

3PM, 20M
_ p_ «%%p
fS (r’ t) - arz + 7 ar

0<r<q 2.7

By denoting &(.) and 8°(.) the Dirac delta distribution and
the derivative of Dirac distribution one can obtain

fi(r,0) = K'u(t)[S'(al —r)+25(a1 —r):| (2.8)
r

The third component of the right side of equation (2.4)
represents the acoustic fluid-loading acting on the plate as
additional force. The acoustic waves propagating through
the fluid must satisfy the wave equation

1 9%p(r,z.1)

o or?

V2p(r,z,t) = (2.9)

where V2 is the two-dimensional Laplacian in cylindrical
coordinates

2 2
T
and c is sound velocity in the fluid. At the fluid-structure

interface, the pressure must satisfy the boundary condition
[12]

2

) .
2=0 = Po 87 W(I", t) = —pOW(I’, t)

(.21 (r’z’t)| .11
on

with 7 denoting the normal to the structure.
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3. SYSTEM DISCRETIZATION

To approximate the plate dynamics, a Fourier—Bessel expan-
sion of the plate displacement is used to discretize the infi-
nite dimensional system (2.5). As showed in [4, 14], the
plate displacement can be approximated by

N
W (1) = X5 (Owy () 3.
m
where N is considered to be a finite number suitably large
for the accurately modelling the system dynamics and w,,(r)
is the (0, m) plate mode described as follows [11, 14]

w. (r)=u 1 _JO(Ym) 1
5] om[fo(vma) —Io(ym)lo(vma)] (3.2)

Jo(x), Iy(x) designate the cylinder functions, 7y, =k,,a is
the m-th root of the frequency equation and s,,(¢) is the cor-
responding modal amplitude in time ¢ In a similar way let
us expand the right side of the plate equation of motion (2.4)
into series:

N
£ty = Y ()W, () (3.3)
N
Yty = Y u, Ow, (r) (3.4)
N
PN (rz=0.0)=Y 2, (Ow, () (3.5)

Inserting above expansions into the equation (2.5), mul-
tiplying both sides by the orthogonal eigenfunction w,(r),
and integrating over the surface of the structure S, the go-
verning equation of motion can be re-expressed as

N |5, @)+ Zuco,z,,jm )+ co,znsm ()= o)

m=1| =, (t) +u,, (t) + z,, (¢
where:

(1)
Uy (1) =”fj(r,t)wm(r)dS, j=ws,pym=12,..,N (3.7)
MO

mean the modal generalised forces.

4. DERIVATION OF MODAL
GENERALISED FORCES

To derive the modal generalised forces 7,,(¢), u,,(£), z,,,(¢) it is
necessary to integrate the analytical expressions according
to the formula (3.7). The excitation force (2.3) we can

express as f,,(r, t) = f,,(r)r( £). Regarding Eq. (3.7) and using

a
the orthonormality property me )w, (P)rdr =3,,,, as
a result of integration we get 0

T (8) = Ky 7 () 4.1
where
— aFOJI(’Ym) (42)
M Y o (Y PH

For the control force f(, ¢) = f;(r)u(¢) described by (2.4),
the result is:

Up () = kg (2) (4.3)

alJ o (Yo (Ym LZ)—JO (Ym 6;l)lo(Ym)]
k. = —_
o aIO(Ym)

(4.4)

a

alYm[JO(Ym)Il (Ym % )+J1 (Ym E )IO(Ym)]

{1[0 (Ym)

The third component of the right side of Eq. (2.5) can be
calculated as follows [6, 8]

z,, () b € ! i s, (t)c (4.5)
R AR/ (7 o
where € = Po represents the fluid-loading parameter
pHkg

and ¢, = ZWleOl(—ih)WnTl, v&{ith the characteristic
=0

function of a circular plate W,,; = J Wy, (M)So; (=ih,n)NdM
-1
is expressed in spheroidal coordinate system. The coeffi-

cients c,,,, can be transformed into cylindrical coordination
system by assuming &, = 0 with the use of the following
expression r = b[(1-n?)][6].

5. TRANSFORMATION INTO STATE-SPACE FORM

As a result of previous calculations the following equation
describing the behaviour of m-ith mode of considering sys-
tem is obtain

§ o (0)+ 21005, (1) + Oy, (1) =

42 (.1

2 Sﬂ (t)cmn

N
= kwmr(t) +ksmu(t) + z_
T dt

The matrix notation greatly simplifies the mathematical
representation of the system, and provides a form of pro-

116



MECHANICS Vol.24 No.2 2005

blem expression which is readily amenable to computer so-
lution. So, we write Eq. (5.1) in the matrix form

(1 +C)5(r) +2uQ28(r) + Q2s(r) = Ku(1) + K, r(r) (5.2)

In above expression I denotes identity matrix, Kq i Kyy
are the coefficient vectors, calculated for each mode with
expression (4.2) and (4.4) respectively, C represents fluid-
plate interaction matrix , Q = diag[®;, ®,, ..., Oy].

The modal model presented above can now be expressed in
the state space format. To do so, let us define the state vector

s
x(t)= [S (t)] (5.3)
Equation (5.2) can be expressed as
x(¢) = Ax(¢)+ Bu(?) + Vr(t) 5.4)

where the dot denotes differentiation with respect to time,
x is the (nx 1) state vector, u is (mx1) control vector, and A is
(nxn) state matrix, B is the (nxm) control input matrix, V is
(1xn) disturbance matrix:

[ 0 1
A=
-I+0)'Q?  —2u(I+ C)—lgz}

[0
B= (5.5)
_(I+C)_1KS:|

[ 0
V=
_(I+C)‘1Kw:|

The above state-space model of the considered system
will be used in the process of designing optimal feedback
control so as to suppress the plate vibrations.

6. COMPUTER SIMULATION
OF THE FEEDBACK CONTROL

The goal of control problem is to determine a voltage u(?)
which, when applied to the piezoactuators, leads to a signi-
ficantly reduced level of vibration. For the system (5.4) one
possible approach is to obtain a solution by applying the
well known linear-quadratic regulator (LQR). LQR method
consists on using a control law [2]

u(?) =-Kx(?) (6.1)
which minimise the cost function given by
1 oo
J= [| x"Qx+u"Ru fdr 6.2)
0

where Q, R denote weighting matrices chosen as follows:

[ B ] [QZ 0 ]
R= ,Q =
Umax 0 OLQZ

and o and [} are the weight coefficients. The problem is to
determine the gain matrix K which facilitates our require-
ments. The optimal solution is [2]

(6.3)

K=R'B"P (6.4)
where the matrix P is the unique, positive definite solution
to the algebraic Riccatti equation

ATP+PA-PBR'BTP+Q=0 (6.5)

In simulations the model including the four first modes
of the aluminium plate of a 0.46 m diameter and 1 mm
thickness was applied. Since the system (5.4) has all its po-
les in the left half plane and is both stabilisable and detecta-
ble, the feedback gains are obtained by solving the Riccatti
equation and by applying the Schur tuning technique.

For nominal parameters presented in Table 1, the state-
space model of the system is discretized by using a sam-
pling time period of 0.0001 s. Figures show the time respon-
se of the system with and without the control feedback obta-
ined with the MATLAB/Simulink computer program.

Figure 2 presents the results obtained at 70 Hz, which
corresponds to the resonance frequency of the first mode.
It can be seen that the controller that is started after 0.6
second, provides substantial damping within very short
time (attenuation of 80%) in case when the piezo-actuator
covers 1% of controlled plate surface (a;/a = 0.1). As can
be expected, this result is better for piezodiscs of grea-
ter radius: if piezo-actuator covers 9% of plate surface
(a;/a=0.3), the vibration cancellation exceeds 95% (Fig. 3).
Similar simulation results can be observed for sinusoidal
disturbance of 200 Hz, closed to second plate mode, i.e.
(0.2), but obtained attenuation is worsen (Figs. 4 and 5).

Table 1. The physical material properties used in simulations

Para- Densitgy Y01c11nlg S Poisson’s Thickness Radius CStraln

meter [Kg/m’] e ratio [m] [m] onstant
[N/m”] [N/V]

Plate p =2700 E=71*% 1010 v=0.33 h = 0.001 a=023 _

PZT p =7600 E=6*10" v=03 h = 0.0001 a1=0.02 | dy =190%10"2
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Fig. 2. Simulation results for sampling time 0.0001 s obtained for
a,/a = 0.1 The time response of the open-loop system (0-0.6 s) and
the closed-loop system (0.6-2 s) for sinusoidal disturbance of 70 Hz
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Fig. 3. Simulation results for sampling time 0.0001 s obtained for
two ratio of a,/a.

a;/a = 0.3 (solid line); a;/a = 0.1 (dashed line). The part of

the time response of the open-loop system (0—0.6 s) and the clo-
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Fig. 4. Simulation results for sampling time 0.0001 s and
a,/a=0.3. The time response of the open-loop system (0-0.6 s) and
the closed-loop system (0.6-2 s) for sinusoidal disturbance of 200 Hz

=

N
=
=

|

—
e

3=::>= r

Jezee]

Displacement [m]
N
e
<,
e
4
=
-
o=
-

0.56 057 058 059 06 061 062 063 064 0.65

Time [s]

Fig. 5. Simulation results for sampling time 0.0001 s obtained for
two ratio of a;/a.
a,/a=0.3 (solid line); a/a = 0.1 (dashed line). The part of the time
response of the open-loop system (0-0.6 s) and the closed-loop
system (0.6-2 s) for sinusoidal disturbance of 200 Hz

7. CONCLUSION

The paper is concerned with the problem of active atte-
nuation of plate vibrations in contact with fluid. The aim of
this work was to investigate the feasibility of using a pair of
PZT actuators, positioned symmetrically on each side of the
circular plate to suppress its vibrations. It was assumed that
the plate was clamped at the circumference in the planar
finite baffle and radiated into a lossless homogeneous liquid
medium. The mathematical model of the plate included the
influence of the acoustic wave radiated by the plate on its
vibrations. The acoustic pressure was calculated on the ba-
sis of the known distribution of vibration velocity in a series
of eigenfunctions, using properties of the oblate spheroidal
coordinates. Primary excitation is provided by a low fre-
quency loudspeaker installed centrally at the bottom of the
cylinder and 2-layer piezo disk elements (PZT) are used as
the actuators. For the designing process this continuous
model was reduced and approximated by the linear sta-
te-space model while the orthogonal series method was
applied. An optimal reduction of the plate vibrations was
obtained using a linear quadratic regulator (LQR). The si-
mulations of the active attenuation of the plate vibrations
were made with a MATLAB/Simulink computer program.
The results demonstrate that it is possible to achieve a signi-
ficant reduction of the vibration amplitude with the use of
a pair PZT actuators, for the low frequency bandwith.
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