PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamics of active biomechanical models of seated human body and their vibration isolation systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Dynamika układu złożonego z aktywnego modelu biomechanicznego ciała siedzącego człowieka i pasywnego układu wibroizolacji
Języki publikacji
EN
Abstrakty
EN
In the paper the dynamic behaviour of the systems composed of active human body models (AHBM) and passive isolation systems (VIS) subjected to sinusoidal and random excitations was discussed. The two active human body biomechanical models ("back-off" and "back-on ") obtained several years ago by the first author of the presented paper can be considered as active, linear, stable, lumped parameter and unidirectional dynamical systems. These models "seated" on passive vibration isolation systems (VIS) make new, coupled dynamical models (AHBM+VIS). In the first part of the presented paper the dynamical characteristics of the coupled, linear models (AHBM+VIS) were thoroughly analyzed. The new maps of poles distribution of characteristic equations of the systems composed of the coupled models show, that in some cases, these systems can be unstable. In the paper the stability areas were numerically estimated and graphically presented for the simplest, linear vibration isolation system. In the second part of the paper the influence of some chosen nonlinear elements injected into VIS on the amplitudes of chosen model mass accelerations and relative displacements between them was estimated, basing on the results obtained from the simulation approach. The simulation investigations were done for a sequence of time delay of the VIS reactions and sinusoidal excitations. The sinusoidal excitations had variable amplitudes and the frequencies corresponding to the first resonant frequency of the considered AHBM+ VIS systems. The values of the corresponding amplitudes of output signals were compared. In chosen cases where the simulations were done for the random excitations the root mean square values of the output signals were compared. The obtained results were compared with the simplest linear VIS, graphically presented and discussed.
PL
W pracy przeprowadzono analizę numeryczną własności dynamicznych układu składającego się z aktywnego modelu biomechanicznego ciała siedzącego człowieka (AHBM) oraz pasywnego układu wibroizolacji (VIS) w wersji liniowej i nieliniowej, poddanego wymuszeniom harmonicznym i przypadkowym. Rozpatrzono dwie wersje modelu ciała siedzącego człowieka. Przeprowadzono numeryczną analizę stabilności układów AHBM - VIS w wersji liniowej. Na podstawie analizy symulacyjnej porównano wpływ wybranych nieliniowości wchodzących w skład pasywnego układu wibroizolacji (VIS) na wartości wybranych sił, przyspieszeń i przemieszczeń względnych układu całego układu AHBM - VIS.
Rocznik
Strony
95--108
Opis fizyczny
Bibliogr. 33 poz., rys. tab.
Twórcy
  • Institute of Applied Mechanics, Cracow University of Technology, Kraków
autor
  • Institute of Applied Mechanics, Cracow University of Technology, Kraków
Bibliografia
  • [1] Amirouche F.M.L.: Modeling of Human Reactions to Whole-Body Vibration. Journal of Biomechanical Engineering, vol. 109, May 1987,210-217
  • [2] Coermann R.R., Ziegenruecker G.H., Wittwer A.L., Von Gierkę H.E.: The Passive Dynamic Mechanical Properties of the Human Thorax-Abdomen System and the Whole Body System. Aerospace Medicine, vol. 31, June 1960, 443-455
  • [3] Coermann R.R.: Comparison of the Dynamic Characteristics of Dummies, Animals and Man. Reprinted from Impact Acceleration Stress. Publication, No. 977, Nov. 1961, 173-184
  • [4] Coermann R.R.: The Mechanical Impedance of the Human Body in Sitting and Standing Position at Low Frequencies. Human Factors, 4(10) October, 1962, 227-253
  • [5] Cullmann A.: Ein aktiver Schwingungsdummy des sitzenden Men-schen. Fortschr.-Ber. VDI-Reihe 12 Nr. 492, Dusseldorf, 2002
  • [6] Engel Z.: Ochrona środowiska przed drganiami i hałasem. Warszawa, Wydawnictwo Naukowe PWN 2001
  • [7] Garg D.P., Ross M.A.: Vertical Mode Human Body Vibration Trans-missibility IEEE Transactions on Systems, Man, and Cybernetics, No. 2, February 1976, 102-112
  • [8] Gierkę H.E.: Biodynamic Models and Their Applications. The Journal of the Acoustical Society of America, 50, 1971, 1397-1413
  • [9] Gunston Т., Griffin M.J.: The Isolation Performance of a Suspension Seat Over a Range of Vibration Magnitudes Tested with an Anthro-podynamic Dummy and Human Subjects. Proceedings of Inter--Noise99, Florida, USA, Annex E
  • [10] Gunston T.P.: Two methods of simulating a suspension seat cushion. Proceedings of the 37* United Kingdom Group Meeting on Human Responses to Vibration, Loughborough University, September 18-20, 2002, England, 322-335
  • [11] Hopkins G.R.: Nonlinear Lumped Parameter Mathematical Model of the Dynamic Response of the Human Body. AMRL-TR-71-29, Wright-Patterson Air Force Base, Ohio, 649-669
  • [12] Kiene J., Meltzig-Thiel R., Schatte M.: Results of the mathematical and mechanical modeling of the sitting man. Strojnicki Casopis, 40, 1989, с 2, 151-168
  • [13] Kowal J.: Sterowanie drganiami. Kraków, Wyd. Gutenberg 1996
  • [14] Książek M.: Some Problems of Identification and Modelling of the Human Body, Man under Vibration, Suffering and Protection. Proceedings of the International CISM-IFToMM-WHO Symposium, Udine, Italy, April 3-6, 1979, 200-209
  • [15] Książek M.: Synteza aktywnych modeli ciała człowieka. Materiały III Szkoły Układów Aktywnych, Zakopane, kwiecień 1997,135-140
  • [16] Książek M.A.: New active models of a sitting human body. Proceedings of the 11* Conference of the European Society of Biome-chanics, Toulouse, July 8-11, 1998, France, Journal of Biomecha-nics, vol. 31, Suppl. 1
  • [17] Książek M.A.: Modelowanie i optymalizacja układu człowiek — wibroizolator - maszyna. Seria Mechanika, nr 244, Kraków, Wyd. Politechnika Krakowska 1999
  • [18] Książek M. A.: Active biomechanical models of a sitting human body. Proceedings of the 34* United Kingdom Group Meeting on Human Responses to Vibration, Dunton, September 22-24, 1999, England
  • [19] Lewis C.H., Griffin M.J.: Evaluating the vibration isolation of soft seat cushions using an active anthropodynamic dummy. Journal of Sound and Vibration, vol. 253, 2002, 295-311
  • [20] Mansfield N.J., Griffin, M.J.: Vehicle seat dynamics measured with an anthropodynamic dummy and human subjects. Proceedings of Internoise 96 Congress, 30 July-2 August, Liverpool, 1996, UK, 1725-1730
  • [21 ] Muskian R., Nash, CD. Jr.: On Frequency-Dependent damping Coefficients in Lumped-Parameter Model of Human Beings. Journal of Biomechanics, vol. 9, 1976, 339-342
  • [22] Paddan G.S., Griffin M.J.: Transmission of vibration through the human body to the head: a summary of experimental data. ISVR Technical Report, No. 218, 1993
  • [23] Payne P.R., Band E.G.U.: A Four-Degree-of Freedom Lumped Parameter Model of the Seated Human Body. AMRL-TR-70-35, Wright-Patterson Air Force Base, Ohio, 1971, 1-111
  • [24] Potiemkin B.A., Frolov K.V.: Non-linear Effects Connected With The Spatial Vibrations of Biomechanical Systems. Man Under Vibration. Suffering and Protection, Proceedings of the International CISM-IFToMM-WHO Symposium, Udine, Italy, April 3-6, 1979, 228-234
  • [25] Rosen J., Arcan M.: Modeling the Human Body/Seat System in a Vibration Environment. Journal of Biomechanical Engineering, April 2003, vol. 125,223-231
  • [26] Suggs C.W., Abrams C.F.Jr.: Simulation of Whole Body Dynamics. Proc. 5th Ann. Southwestern Symp. on Systems Theory, March, 1973, 176-180
  • [27] Smith S.D.: Resonance behaviour of the human exposed to whole -body vibration. United Kingdom Informal Group on Human Response to Vibration, Southampton, 28-30 September, 1992, 41-52
  • [28] YamakawaS.: Vibration Data analysis of Automobiles. Statistics for Engineering and Physical Science, The Practice of Time Series Analysis, Chapter 14, Editors: H. Akaike, G. Kitagawa, Springer-Verlag New York Inc., 1999
  • [29] Yoshimura Т., Tamaoki G.: A study of dynamics and modeling of human body exposed to multi-dimensional excitation. Proceedings of Internoise 96 Congress, 30 July-2 August 1996, Liverpool, UK, 1743-1748
  • [30] Wei L., Griffin M.J.: Mathematical models for the apparent mass of the seated human body exposed to vertical vibration. Journal of Sound and Vibration, 212(1), 1998, 855-874
  • [31] Wei L., Griffin M.J.: Mathematical model for the mechanical impedance of the human body exposed to vertical vibration. Journal of Sound and Vibration, 212(5), 1998, 855-874
  • [32] Wei L., Griffin M.J.: Effect of subject weight on predictions of seat cushion transmissibility. Proceedings of the 35* United Kingdom Group Meeting on Human Responses to Vibration, Southampton, September 13-15, 2000, England, 17-28
  • [33] Wiesner A., Donnadieu A., Berthoz A.: A Biomechanical Model of Man for the Study of Vehicle Seat and Suspension. The International Journal of Production Research, vol. 3, No. 4, 1964, 285-315
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGH3-0001-0047
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.