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A single-axis active magnetic bearing as shown in Figure 1
is considered. In this section the equations of this object is
given, which provides a basis for further discussions.

In Figure 1, the motion of the ferromagnetic moving
shaft, which is of mass m, is limited in the x-axis only. The
voltages u1 and u2 are taken as the input of the system. The
external resistors of resistance RCu denote copper resistance
of the coils and may include possible current-sampling
resistors. It is assumed that the permeability of the magnetic
material is constant, and the flux density over the air gap
is uniformly distributed. It is also assumed that the effects
of eddy current, flux stray and flux leak are small. We ig-
nore such effects in this paper in order to presentation of
idea sliding mode control. Then, the equations of the system
are [1]:

( )2 2
2 1

0

1
dmx f

A
= φ − φ +

μ
�� (1a)

1 1 1 2 2 2,u N Ri u N Ri= φ + = φ +� � (1b)

1 0 1 2 0 2
0 0

2 2
( ) , ( )i x x i x x

AN AN
= + φ = − φ

μ μ
(1c)

where:
       x0 = g + l;

l – accounts for the effect of the finite of per-
meability;

fd – disturbance force;
ϕ1�ϕ2 – fluxes due to i1 and i2 respectively;

A – the electromagnet pole face area.

For succinctness in following discussions, let (1) be in
normalized variables. Choosing a nominal biasing current
I0, the variables are normalized as:

ξ = x/x0, �1 = u1 /RI0,

η1 = I1/I0, �2 = u2 /RI0,

η2 = i2/I0, ψ1 = ϕ1/Φ0,

θ = fd /mx0, ψ2 = ϕ2/Φ0,

where Φ0 = μ0ANI0/2x0 is the nominal biasing flux.

With the normalized variables (1) becomes

( )2 2
2 1ξ = α ψ − ψ + θ�� (2a)

1 1 1 2 2 2
1 1

,ε = ψ + η ε = ψ + η
β β
� � (2b)

1 1 2 2(1 ) , (1 )η = + ξ ψ η = − ξ ψ (2c)

where:

α���μ0AN 2I0
2/4mx0

3,

β���5�ξ0/μ0AN 2.

Concept about reasonable orders of the normalized vari-
ables is useful in subsequent sections. It is seen that DξDE9,
ψ′� and η′� are both on the order of 1, and maximum possi-
ble values of ε′��are on the order of 10 (probably greater than
ten due to the requirement of a sufficient force slew rate).
For most practical systems α and β are on the orders of 104

and 102 respectively. Figure 2 provides the proposed design
of a system for controlling the active magnetic bearing.
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It is assumed that the internal of the turned dashed block in
Figure 1 is not available. We have only accessible the coil
tips for control. This may be an adequate situation we face
for sliding control. We search, starting from (2), for equali-
ties that at one side the quantity is useful for control while at
the other side the quantity is readily or easily measured out-
side the dashed block. Rearranging (2c) with the term ξψ′�
alone on the left-hand side, we have:

1 1 1 2 2 2ξψ = η − ψ ξψ = −η + ψ (3)

Then, differentiating (3) with respect of time yields, we
have next expressions:

1 1 1 1 1 1 1( )ψ ξ + ψ ξ = η − ψ = η −β ε − η�

� � � � (4a)

2 2 2 2 2 2 2( )ψ ξ + ψ ξ = −η + ψ = −η + β ε − η�

� � � � (4b)

It is seen that the left-hand sides of (4) are linear in
displacement and velocity, and may serve as part of switch-
ing functions for sliding mode control (the other part is
accele-ration, as under voltage control the system is of
third-order).

Besides, the variables on the right-hand sides are easily
measured: current and its change rate are measured by
connecting sampling resistors and inductors in series
with the coils, both places outside the turned dashed block.
How-ever, as coefficients the fluxes and their change rates
are not of constant values. This may cause problem. Even
worse is that flux change rate cannot have a single sign all
the time.

If driving current is limited to be unidirectional, then ψ1
and ψ2 can be nonnegative. If further a substantial biasing
current is maintained, then the fluxes can be positive and
relatively stable. Besides, if switching driving is used,
which is in consistent with sliding mode control, then prob-
lems associated with the flux change may be relieved. Let
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the input voltages be switched between constant positive
and negative voltages, that is:

1 2
0 0

1 , 1
U U

RI RI

⎛ ⎞ ⎛ ⎞
ε = − μ ε = + μ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
(5)

where:
U – positive physical voltage;

μ  ∈ {–1, 1} – new control input.

This is the constant voltage sum (CVS) configuration for
maintaining the nominal biasing current I0 [1]. Note that (5)
implies ε1 �� ε2 = 2. The physical driving voltages are
switched between RI0 + U and RI0 – U. If U/RI0 is much
greater than 1, then between following switching instants,

ψ1;
� and 
ψ2;
� are close to some constants, since in (2b)
compared with ε′� the values of η′� are much smaller. It is
also noticed that the orders of <ψ1��ψ2= and <
ψ1;
���
ψ2;
�=
are 1 and 103 respectively, being desirable as coefficients of
linear switching surfaces. Another fact to notice is that at
any time either 
ψ1;
� or 
ψ2;
� has positive sign. This mo-
tivates an attempt of using equations (4a) and (4b) in turn,
depending on the sign of μ, for sliding mode control.

Some effect of acceleration should be included in switch-
ing surfaces. To this end, (2c) is manipulated to yield

2 1 2 1 1 2( )ψ − ψ = η − η + ξ ψ + ψ (6)

Substitute equation (6) into (2a) and assume θ
>
7, we get

2
1 2 1 2 1 2( )( ) ( )ξ = α ψ + ψ η − η + αξ ψ + ψ�� (7)

The flux sum ψ1 ��ψ2 is very close to 2 under CVS. The
second term on the right-hand side, which is linear in ξ, can
be included in the displacement. Thus, 8?η5@
η9A, where
C is a positive constant, may be used in switching surfaces
for acceleration.

Now, the above mentioned facts are pieced together to
formulate our possible switching functions as:

1 2 1 1 1( )s C= η − η + ψ ξ + ψ ξ�

� (8a)

2 2 1 2 2( )s C= η − η + ψ ξ + ψ ξ�

� (8b)

Equations s1 = 0 and s2 = 0 are surfaces in the state space
when μ is constant. It is obvious from (4) that the switching
functions s1 and s2 can be evaluated by the measurement of
η1, η2, 
η1;
� and 
η2;
�. The coefficients in (8a) are all
positive when μ = –1, and so are those in (8b) when μ = 1.
The attempted sliding mode control algorithm is thus con-
structed in discrete time as below.

At each sampling instant →

if μ = –1 and s1 < 0, then let μ = 1 (9)

else if s2 > 0, then let μ = –1
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The switching functions s1 and s2 are directly related to the
flux change rates, which are not state variables. In order to
facilitate the analysis we give equivalent switching func-
tions that are functions of state variables alone. Because s1

is checked only when μ = –1 and s2 is checked only when
μ = 1, these switching functions can be redefined as:

1 2 1 1 1( ) ( )s C= η − η + ψ ξ + β ρ − η ξ� (10a)

2 2 1 2 2( ) ( )s C= η − η + ψ ξ + β ρ − η ξ� (10b)

without any influence on the algorithm (9), where
ρ
>
9
C
C�F�/7 is the positive amplitude of the normalized voltage
inputs. From here s1 and s2 mean those defined in (10). It is
not hard to see that under first-order approximation about
the equilibrium point s1 and s2 become identical and are
linear functions of 
 5ξ;
� 5, 
ξ;
�  and ξ. With the redefined
switching functions, the previous problem that flux change
rate cannot have a single sign all the time is now trans-
formed as only one of the switching functions in (10) is
available at any time through the measurement of driving
current and its change rate, except for instants μ being
switched between –1 and 1.

For the algorithm (9) to work a basic requirement is
that the conditions for the if is can actually become satis-
fied. It is therefore required that ds1/dt < 0 when μ = –1 and
ds2/dt > 0 when μ = 1. But this is not enough. For the rea-
sons to be clear below, it is also required that ds2/dt < 0
when μ = –1 and ds1/dt > 0 when μ = 1.

It is therefore assumed that D
ξ;
�D is bounded and U is
sufficiently high such that the following conditions hold:

1 20 0 when 1s s< < μ = −� � (11a)

1 20 0 when 1s s> > μ =� � (11b)

It will be seen bellow that this is the reaching condition
for the sliding mode control.

In sliding mode control, the number of switching sur-
faces is equal to that of control variables. But here there
are two switching surfaces while there is only one control
input. It is generally impossible to keep both s1 = 0 and
s2 = 0. The algorithm (9) can at most maintain s1 and s2

close to zero. It actually tries to get out of the situation
s1·s2 > 0 in the reaching phase. Then, if the switching is
infinitely fast, it maintains s1·s2 ≤ 0 in the sliding phase.
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Under infinitely fast switching, the running of the algorithm
is more clearly seen:
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Thus, once s1·s2 ≤ 0 becomes true it will remain true in
future time and this indicates the entering of sliding mode.
These switching laws are summarized in Figure 3. It is not
hard to notice that the reaching condition (11) must be true
to guarantee the algorithm to run properly. Unlike standard
sliding mode control where sliding occurs on surfaces or in
subspaces of the state space, here the sliding occurs in
a subregion of the state space. One may also notice, as
shown in Figure 3, that the reaching behaviors in the two
reaching regions are symmetrical while the sliding behav-
iors in the two sliding regions are not.
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0 0η = ψ − ξψ (12)

0η = ψ − ξψ (13)

Let s0 = (s1 + s2)/2. Then it follows from (10) and (12)–
(13) that

[ ]0 0 0
0

2
(2 )

4

C
s C= ξ + ψ ξ + βρ − + β ψ ξ

αψ
�� � (14)

Adding the two equations in (2b) and substituting (5) and
(12)–(13), we arrive at

0 0
1

1ψ + ψ = + ξψ
β
� (15)

Equations (14)–(15) are looked upon as state equations
of a 3rd-order system with inputs on the right-hand sides.
It is seen that if s0 = 0 then the autonomous system is lo-
cally �%�:,#
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Formulate an assumption about parameters of the active
magnetic bearing which A = 10–3 m2; N = 300; m = 0.3 kg;
x0 = 0.3 × 10–3 m and R = 0.27 Ω. The effect of the finiteness
of permeability is not considered, that is, l = 0. For other
parameters, I0 = 0.8 A, U = 25 V and C = 300 are chosen.
Transformers with an inductance of 0.1 mH in both sides
are used for the measurement of current change rate. The
sampling rate is 100 kHz. In simulation is done on the base
equation (10) and then with a term z as determined by

2 1( )z z Cτ + + − η − η� (17)
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Under switching driving, as the input voltages are piece-
wise constant, some functions of state variables are avail-
able through the measurement of driving current and its
change rate. Using these functions as switching functions,
the system state is conducted towards and then kept in
a subregion of the state space, in which the system dyna-
mics is stable.

Sliding mode control is applied for magnetic bearings for
the associated robustness. In this paper, however, sliding
mode control is used due to the very format of the available
information under switching driving. As a result, two
switching surfaces are used in turn and the state is only kept
within a subregion other than a subspace. Thus the good
properties of sliding mode control are lost. The sliding dy-

namics is dependent on disturbance and plant parameters
such as biasing current and amplitude of driving voltage.
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