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SUMMARY

Sliding mode control of a single-axis type bang-bang magnetic bearing actuator is reported in this paper. The two
electromagnets are driven by switching between a positive and a negative constant voltage. Sliding mode control
using these two switching surfaces in turn is shown to be possible. The sliding mode turns out to take place in
a subregion of state space defined by s;(x)s,(x) < 0 rather than on a surface defined by s(x) = 0 as in most stan-
dard cases.
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STEROWANIE SLIZGOWE DLA SYSTEMU AKTYWNEGO £OZYSKA MAGETYCZNEGO

Praca przedstawia idee sterowania Slizgowego jednoosiowego sitownika aktywnego lozyska magnetycznego z sy-
mulowanym sterowaniem typu przekaznikowego (bang-bang). Dwa elektromagnesy zasilane sq poprzez przelqcza-
nie z duzq czestotliwosciq na przemian ujemnym i dodatnim napieciem statym. Sterowanie slizgowe opiera si¢ na
plaszczyznie fazowej, ktora charakteryzuje faze ruchu symulowanego (badanego) uktadu. Ruch slizgowy odbywa
sie¢ w obszarze plaszczyzny fazowej zdefiniowanej jako s;(x)s,(x) < 0, a nie jak w wigkszosci przypadkow, gdzie

plaszczyzna fazowa jest zdefiniowana w nastepujqcy sposob: s(x) = 0.

1. IDEA OF ACTIVE MAGNETIC BEARING

A single-axis active magnetic bearing as shown in Figure 1
is considered. In this section the equations of this object is
given, which provides a basis for further discussions.

In Figure 1, the motion of the ferromagnetic moving
shaft, which is of mass m, is limited in the x-axis only. The
voltages u; and u, are taken as the input of the system. The
external resistors of resistance R, denote copper resistance
of the coils and may include possible current-sampling
resistors. It is assumed that the permeability of the magnetic
material is constant, and the flux density over the air gap
is uniformly distributed. It is also assumed that the effects
of eddy current, flux stray and flux leak are small. We ig-
nore such effects in this paper in order to presentation of
idea sliding mode control. Then, the equations of the system
are [1]:
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where:
xo=8+1I;
| — accounts for the effect of the finite of per-
meability;
f; — disturbance force;
¢1,¢, — fluxes due to i; and i, respectively;
A — the electromagnet pole face area.

For succinctness in following discussions, let (1) be in
normalized variables. Choosing a nominal biasing current
I, the variables are normalized as:

€ = x/x, € = uy /R,
Ny =L/l € = /R,
Ny = i/l Y = 0/D,
0 = fu/mxy W= 0,/D

where ®, = uoANI/2x, is the nominal biasing flux.

With the normalized variables (1) becomes

E=a(vi-vi)+o (2a)

€ =1fv +MN, € =1fv +M 2b

1 =gVt B =gVt (2b)

m=0+0y;, My =(1-Ew, (20)
where:

o= WoAN 1% /4mx,’,

B =2RE)/LAN.

Concept about reasonable orders of the normalized vari-
ables is useful in subsequent sections. It is seen that || < 1,
’s and ’s are both on the order of 1, and maximum possi-
ble values of €’s are on the order of 10 (probably greater than
ten due to the requirement of a sufficient force slew rate).
For most practical systems o and 3 are on the orders of 10*
and 10? respectively. Figure 2 provides the proposed design
of a system for controlling the active magnetic bearing.

* Department of Mechanical, Technical University of Koszalin, gosiewski@post.pl
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Fig. 1. Schematic of active magnetic bearing
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Fig. 2. Active magnetic bearing as closed structure of automatic control

2. SLIDING MODE CONTROL

It is assumed that the internal of the turned dashed block in
Figure 1 is not available. We have only accessible the coil
tips for control. This may be an adequate situation we face
for sliding control. We search, starting from (2), for equali-
ties that at one side the quantity is useful for control while at
the other side the quantity is readily or easily measured out-
side the dashed block. Rearranging (2c) with the term &y’s
alone on the left-hand side, we have:

)

Then, differentiating (3) with respect of time yields, we
have next expressions:

Eyi=m-vy; Eur=—-m+y,

Wi g =1y — g =11 —Ble; —my) (4a)

W&+ = -y +1rp = -, +Be; —M) (4b)

It is seen that the left-hand sides of (4) are linear in
displacement and velocity, and may serve as part of switch-
ing functions for sliding mode control (the other part is
accele-ration, as under voltage control the system is of
third-order).

Besides, the variables on the right-hand sides are easily
measured: current and its change rate are measured by
connecting sampling resistors and inductors in series
with the coils, both places outside the turned dashed block.
How-ever, as coefficients the fluxes and their change rates
are not of constant values. This may cause problem. Even
worse is that flux change rate cannot have a single sign all
the time.

If driving current is limited to be unidirectional, then y;
and y, can be nonnegative. If further a substantial biasing
current is maintained, then the fluxes can be positive and
relatively stable. Besides, if switching driving is used,
which is in consistent with sliding mode control, then prob-
lems associated with the flux change may be relieved. Let
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the input voltages be switched between constant positive
and negative voltages, that is:

el:l_(RILOJM’ eZ:H{RILOJM Q)

where:
U - positive physical voltage;
u € {-1, 1} — new control input.

This is the constant voltage sum (CVS) configuration for
maintaining the nominal biasing current /, [1]. Note that (5)
implies €, + €, = 2. The physical driving voltages are
switched between RI, + U and R[, — U. If U/R], is much
greater than 1, then between following switching instants,
dy,/dt and dy,/dt are close to some constants, since in (2b)
compared with €’s the values of n’s are much smaller. It is
also noticed that the orders of {y, y,} and {dy,/dt, dy,/dt}
are 1 and 10° respectively, being desirable as coefficients of
linear switching surfaces. Another fact to notice is that at
any time either dy,/dt or dy,/dt has positive sign. This mo-
tivates an attempt of using equations (4a) and (4b) in turn,
depending on the sign of |, for sliding mode control.

Some effect of acceleration should be included in switch-
ing surfaces. To this end, (2¢) is manipulated to yield

Yo =Yy =M My +E(W + ) (6)

Substitute equation (6) into (2a) and assume 0 = 0, we get

E =y +yo) (M —Mp)+ ol +y) @

The flux sum y; + y, is very close to 2 under CVS. The
second term on the right-hand side, which is linear in &, can
be included in the displacement. Thus, C(n,— 1;), where
C is a positive constant, may be used in switching surfaces
for acceleration.

Now, the above mentioned facts are pieced together to
formulate our possible switching functions as:

51 =C(My =)+ W&+ (8a)

s2 =Cy =M + W28 +¥8 (8b)

Equations s; = 0 and s, = 0 are surfaces in the state space
when u is constant. It is obvious from (4) that the switching
functions s; and s, can be evaluated by the measurement of
Ny, Mo, dNy/dt and dn,/dt. The coefficients in (8a) are all
positive when | = —1, and so are those in (8b) when p = 1.
The attempted sliding mode control algorithm is thus con-
structed in discrete time as below.

At each sampling instant —

ifu=-1ands; <0, then letpu =1 ©9)

else if s, > 0, then let u = -1

It is noted that a continuous time version of (9) is also
possible, but in discrete time it is easier to describe. It is
assumed that the sampling rate is very high that there is no
significant difference between discrete and continuous time
implementations.

3. REACHING CONDITION

The switching functions s; and s, are directly related to the
flux change rates, which are not state variables. In order to
facilitate the analysis we give equivalent switching func-
tions that are functions of state variables alone. Because s;
is checked only when L = —1 and s, is checked only when
w = 1, these switching functions can be redefined as:

51 =C(My =M +yi&+Pp—my)E (10a)

55 =C(My =M+ W6 +B(P—1,)E (10b)

without any influence on the algorithm (9), where p =1 +
+ U/RI, is the positive amplitude of the normalized voltage
inputs. From here s, and s, mean those defined in (10). It is
not hard to see that under first-order approximation about
the equilibrium point s; and s, become identical and are
linear functions of d2&/dt*, d&/dt and &. With the redefined
switching functions, the previous problem that flux change
rate cannot have a single sign all the time is now trans-
formed as only one of the switching functions in (10) is
available at any time through the measurement of driving
current and its change rate, except for instants [l being
switched between —1 and 1.

For the algorithm (9) to work a basic requirement is
that the conditions for the if is can actually become satis-
fied. It is therefore required that ds;/dt < 0 when @ = —1 and
ds,/dt > 0 when u = 1. But this is not enough. For the rea-
sons to be clear below, it is also required that ds,/dt < 0
when 1 =—1 and ds;/dt > 0 when p = 1.

It is therefore assumed that |d&/d¢| is bounded and U is
sufficiently high such that the following conditions hold:

51 <0 5, <0 when u=-1 (11a)

s1>0 §, >0 when p=1 (11b)

It will be seen bellow that this is the reaching condition
for the sliding mode control.

In sliding mode control, the number of switching sur-
faces is equal to that of control variables. But here there
are two switching surfaces while there is only one control
input. It is generally impossible to keep both s; = 0 and
s, = 0. The algorithm (9) can at most maintain s; and s,
close to zero. It actually tries to get out of the situation
51°5, > 0 in the reaching phase. Then, if the switching is

infinitely fast, it maintains s;°s, < 0 in the sliding phase.
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Under infinitely fast switching, the running of the algorithm
is more clearly seen:
— if sy <0and s, <0, then = 1 until 5, = 0;
— ifs; >0 and s, > 0, then p =—1 until 5, = 0;
— ifs; <0 and s, =0, then W is switched between —1 and 1
with 50% duty cycle;
— ifs; 20 and s, <0, then W is switched between —1 and 1
such that s; and s, just reach zero in turn.

Thus, once s;°s, < 0 becomes true it will remain true in
future time and this indicates the entering of sliding mode.
These switching laws are summarized in Figure 3. It is not
hard to notice that the reaching condition (11) must be true
to guarantee the algorithm to run properly. Unlike standard
sliding mode control where sliding occurs on surfaces or in
subspaces of the state space, here the sliding occurs in
a subregion of the state space. One may also notice, as
shown in Figure 3, that the reaching behaviors in the two
reaching regions are symmetrical while the sliding behav-
iors in the two sliding regions are not.

sliding reaching

/

el

/

reaching

Vo

sliding

Fig. 3. Reaching and sliding areas

4. STABILITY OF SLIDING DYNAMICS

In order for succinctness of equations, let y, = (y; + ,)/2
and y = (y, — y;)/2, referred to as biasing and actua-
ting flux respectively. Similarly, let n, = (m; + Nn,)/2 and
N = (M, — M;)/2, referred to as biasing and actuating current
respectively. Note that at equilibrium we have y, =n, = 1.
From (2¢) we also have:

Mo =Wp —&vy (12)

(13)

Let sq = (51 + 5,)/2. Then it follows from (10) and (12)—
(13) that

n =v-&wo

2C

7 E+yob+[Bp—(2C +P)yq JE
124V

(14)

Sp =

Adding the two equations in (2b) and substituting (5) and
(12)—(13), we arrive at

1

B\ifo +yo =1+8y

(15)

Equations (14)—(15) are looked upon as state equations
of a 3rd-order system with inputs on the right-hand sides.
It is seen that if s, = O then the autonomous system is lo-
cally stable about the equilibrium point & = d&/dt = 0 and
Y, = L. Since in sliding mode s,-s, < 0 is true, which implies
sy + 85| < |5, — sy, that is

50| < e~ B + Byt (16)

Thus s, is bounded by a quadratic function of the states
and the sliding dynamics is locally stable. It is noted that
though the system (14)—(15) is of 3rd-order, the sliding dy-
namics is of 4th-order. As (16) is an inequality, s, is not
a function of the state variables &, d€/dt and y,. Thus
a’zé/a’t2 in (14) is not a function of the state variables but
a fourth state variable. The sliding dynamics is not com-
pletely determined by the switching surfaces. Even if the
reaching condition (11) is true, the robustness associated
with standard sliding mode control is lost.

5. COMPUTER SIMULATION

Formulate an assumption about parameters of the active
magnetic bearing which A = 102 m% N = 300; m = 0.3 kg;
xp=0.3x 107 m and R = 0.27 Q. The effect of the finiteness
of permeability is not considered, that is, / = 0. For other
parameters, I, = 0.8 A, U = 25 V and C = 300 are chosen.
Transformers with an inductance of 0.1 mH in both sides
are used for the measurement of current change rate. The
sampling rate is 100 kHz. In simulation is done on the base
equation (10) and then with a term z as determined by

T z+z+-C(ny—m) 17)
being added to the right-hand sides of (10a) and (10b), thus
canceling the term C(1, —n,) under steady-state. The value
of T is 0.005 s. This is the similar concept of disturbance
observation for achieving zero steady-state error under ex-
ternal disturbance force 6. Simulation results of startup
from € =-0.9, with other initial states being zero, are shown
in Figure 4. It is assumed that the motion axis is vertical, so
that the mass of the moving part causes a static displace-
ment in Figure 4a.

It is observed in simulation that performance is sensitive
to some of the parameters and the symmetry of the two
sides. The switching function values are close to zero under
steady-state. But they are based on the canceling of two
large values: the two terms on the right-hand sides of (4). A
small percentage error on [ used for the construction of the
bright-hand sides of (4) will cause large errors of s, and s,
when the state is close to the equilibrium point.
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Fig. 4. Simulation results: a) startup without disturbance observer;
b) startup with disturbance observer

6. CONCLUSIONS

Under switching driving, as the input voltages are piece-
wise constant, some functions of state variables are avail-
able through the measurement of driving current and its
change rate. Using these functions as switching functions,
the system state is conducted towards and then kept in
a subregion of the state space, in which the system dyna-
mics is stable.

Sliding mode control is applied for magnetic bearings for
the associated robustness. In this paper, however, sliding
mode control is used due to the very format of the available
information under switching driving. As a result, two
switching surfaces are used in turn and the state is only kept
within a subregion other than a subspace. Thus the good
properties of sliding mode control are lost. The sliding dy-

namics is dependent on disturbance and plant parameters
such as biasing current and amplitude of driving voltage.
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